Progress on Silicon-Tungsten Calorimeter for SD

David Strom University of Oregon

- Design Consideration
- Silicon Detectors
- Electronics
- Some Mechanical Details

M. Breidenbach, D. Freytag, G. Haller.O. Milgrome	R. Frey, D. Strom	V. Radeka
SLAC	UO	BNL

Primary ECAL Design Requirements

- Excellent separation of γ 's from charged particles *Efficiency* > 95% for energy flow
- Good reconstruction of π^{\pm} , detection of neutral hadrons
- Reasonable EM energy resolution ($< 15\%/\sqrt{E}$)
- Reconstruct τ 's and measure polarization (separate π , ρ , a_1 , e's)
- Reconstruct Bhabhas and deconvolve luminosity spectra *Position resolution* $\sim 100 \mu m$, *bias* $\sim 25 \mu m$ *in endcap*

Secondary ECAL Design Requirements

- Excellent electron identification in jets (tag and b/c quarks)
- Partial reconstruction of b/c hadrons in jets
- Good γ impact resolution for long lived SUSY neutrals $\sim 1~cm$
- Good background immunity
 - Bunchlet identification
 - High granularity

SiW Design Consideration

- Transverse shower size scales with Molière radius (9mm in pure W, 16mm in pure Pb)
 ⇒ Minimize gaps between layers of absorber
 ⇒ Use a high purity tungsten alloy
- Sample between 1/2 and 2/3 of X_0 (1.75mm to 2.5mm of W)
- Allow for detector segmentation at a fraction of the Molière radius \Rightarrow Use \sim 5mm pads

Silicon Concept

- Readout each wafer with a single chip
- Bump bond chip to wafer
- To first order cost independent of pixels /wafer
- Hexagonal shape makes optimal use of Si wafer
- Channel count limited by power consumption and area of front end chip
- May want different pad layout in forward region

6 inch (152mm) Dia Wafer

Silicon Design Details

- DC coupled detectors
- Two metal layers *Could a design with only one work?*
- Keep Si design as simple as possible to reduce cost
- Cross talk look small with current electronics design

Electronics Design

- Chip area driven by feedback capacitor on charge integrator and 3V supply.
 Need 2000 MIP (8 pC) dynamic range for 500 GeV electrons.
 ⇒ 10pF feedback capacitor needed
- New design samples integrated $(\tau = 200 \text{ns})$ signal after $1\mu \text{s}$ for each bunch train Lowers cross talk, little gain variation with bunchlet number
- Timing at the 10ns level should be possible
- Current in input transistor pulsed duty cycle $< 10^{-3} \ 0.1 mW/ch$
- Currently estimating chip area and power needed for digital section

American Linear Collider Meeting

13 July 03 – David Strom – UO

Si Prototypes

• Rough draft of design completed Waiting for chip area estimate to set grip spacing for bump-bonding

Si Prototype properties – leakage current and noise

 \bullet Radiation damage to detectors is probably dominated by neutrons, $\sim 10 \times 10^{10}/\text{cm}^2$

 \Rightarrow < 10nA /pixel leakage current

• Expect typical leakage current at start of life < 1nA/pixel

• Noise from leakage current at end-of-life for 1μ sampling time (can be adjusted) and DC coupling scheme is <350 electrons

• Largest source of electronics noise will be front-end input transistor, noise scales as

$$\frac{C_{in}}{\sqrt{\tau}I^{1/4}} \propto \frac{C_{in}}{\sqrt{\tau} \text{power}^{1/4}}$$

• Present design has noise:

$$\sim 20 - 30 e/pf$$

For most channels the value of C_{input} is dominated by stray capacitance of the trace connecting the pixels to the electronics:

 $C_{input} \sim 5.7 pF(pixel) + 12 pF(trace) + 10 pF(amp) \sim 30 pF$

 \longrightarrow ~1000 electrons noise (c.f. 24,000 from MIP)

• Analog power consumption will probably be driven by timing requirements (under investigation)

• Digital power may be dominated by drivers needed to get data off the chip

 \Rightarrow Data transmission schemes which minimize dissipation of heat on chip are under consideration

 \Rightarrow Maximum data rate/ chip are small << 3Mbits/s

Fitting it all together

- Cartoon of possible barrel calorimeter configuration
- Assume heat flows along tungsten and/or copper heat sink to cooling water (green)
- Longest path for heat flow < 1.4 m

Layout of Individual calorimeter layers:

Critical parameter: minimum space between tungsten layers.

American Linear Collider Meeting

Heat flow

Back of the envelope calculation of change in temperature:

- Thermal Conductivity of W alloy 120W/(K-m)
- Thermal Conductivity of Cu 400W/(K-m)

Need to reduce heat to below 100mW/wafer.

Physical model test in progress

Model of strip of detectors equivalent to blue region:

American Linear Collider Meeting

Conclusion

- Design of silicon detectors well underway
- Electronics rough draft complete
 ⇒ Prototypes will be ordered once area needed by the
 digital design is set
- Mechanical conceptual design started
 ⇒ 1mm gap between layers without a copper heat
 sink may be possible
 ⇒ Gap size depends crucially on power consumption

Near Term Plans

- Order Si prototypes soon
- Confirm thermal model and explore best coupling method of chips to absorber
- Produce prototype electronics next year
- Simulation, more effort needed here:
 - Optimize sampling for energy resolution
 - Optimize pixel layout
 - Would more granularity help?
 - How sensitive is energy flow to Molière radius?