

Status of crystal E/M calorimetry studies

- Motivation
- Simulation studies
- Lab tests
- Manpower

Matthew Charles, U. of Iowa

Why are we interested?

- Very good energy resolution
 - e.g. BABAR's CsI(TI) ECAL gets $\sigma_{E}/E = 1\%/\sqrt{E}$ (+) 1.2%
 - For PbWO₄, $X_0 \sim 9mm$, $\lambda \sim 18 cm$
 - Light yield of "new" PbWO₄ is ~ 10x greater than that used in CMS.
- Decent spatial resolution
 - $R_m \sim 2.2 \text{ cm for PbWO}_4$
- Inexpensive

Other considerations

- Depth and distance from IP of crystal ECAL
 - Consequences for HCAL?
- Optimization of transverse segmentation
- Particle flow algorithm
 - Effects of longitudinal segmentation?

- To find out, need:
 - A serious simulation study
 - Intensive lab tests with various samples of crystals towards crystal development
 - Beam tests later

Simulation

- Goal is a realistic particle-flow study of a detector.
 - Crystal detector geometry: LD? SD-like with crystal?
 - Fair comparison with Si/W ECAL needed
- So far, lowa group has been getting up to speed on the LC simulation environment:
 - SLAC workshop on LC simulation
 - Useful discussions with the SLAC group, NICADD, Ties Behnke
 - Some tests with Gizmo and JAS 2, 3

Simulation

- It's clear that:
 - Doing crystal ECAL simulation and particle flow properly will require a lot of work and understanding
 - We will also need to study the Si/W ECAL design to understand the differences

• ... so we are joining the particle flow effort

- Starting with the Si/W (SD)
- More on manpower shortly

Lab tests: Current setup

- Sample PbWO₄ crystals obtained from Ren-Yuan Zhu (CalTech)
- Lab set up at SLAC (bldg 40, room 223)
- Testing the setup...

Lab tests: Next steps

- Install drivers for Jorway CAMAC controller on Linux system for direct readout
- Radioactive source(s)
- Begin real measurements
 - Light yield
 - Uniformity
 - Linearity
 - Consistency between crystals

Manpower

- Usha Mallik
- Two post-docs (part-time)
 - Mat Charles: simulation, lab tests
 - Wolfgang Mader (from September): simulation?
- One student (full-time)
 - Arriving at SLAC on July 13
 - Will work on the lab tests
 - A second student may work on the simulation
- Collaborating institutions: SLAC, CalTech, U. of Austin

Conclusions

- Many things to do:
 - Lab tests of crystals
 - Establish particle flow algorithm (with Si/W)
 - Geometry and particle flow studies with a crystal ECAL