2.4 Parity transformation

An extremely simple group is one that has only two elements: {e, P}. Obviously,
P! = P, so P? = e, with e represented by the unit n x n matrix in an n-
dimensional representation. Thus, if |¢) is an eigenstate of P, then

Ply) = £[¢) (2.65)
We could represent P as a phase-changing operator P = e, where n is an
integer. Such a phase would be additive for a composite system. However,
the common practice is just to keep track of the sign, which then becomes a
multiplicative quantum number.

The most familiar example of a multiplicative quantum number is parity, or
space inversion, given by the Lorentz transformation in Eq. 1.12. Since both
x and p change sign under a parity transformation, J =r x p does not. Since
[P, p] # 0, momentum eigenstates of particles in motion are not eigenstates of P,
but one would expect stationary systems described as eigenstates of H and J?2,
J3 to be. Indeed, it had been known that parity is conserved in electromagnetic
and strong interactions. However, to everyone’s suprise, it was found in the
1950’s that parity is violated (i.e. [P, H] # 0) in weak interactions. Indeed, it
is a maximal violation: in the limit of a massless neutrino, which can only be
produced in weak interactions, its spin 3-vector always points opposite to its
momentum 3-vector, i.e. in a left-handed helicity state.5

It is useful to know how fields transform under parity. Since the single
particle states are obtained by applying the field operator to the vacuum, this
tells us the parity transformation properties of the state. For integral spin, if
the transformation of the field is the same as that of a spatial tensor of the
same rank (e.g. a scalar or a vector), then the field is said to have natural spin-
parity. If the field transforms with an extra minus sign (e.g. a pseudoscalar or
a pseudovector), then it is said to have unnatural spin-parity. The photon has
natural spin-parity since the polarization vectors are ordinary 4-vectors. For
spin—% there is no analogy to space tensors, but we can (and will, in the next
chapter) examine how the current behaves under parity transformation. We
state, without proof for now, that we must assign opposite intrinsic parities to
the fermions and antifermions. Thus, in the massless limit, all antineutrinos
produced in weak interactions are right-handed.

One of the clearest manifestation of the maximal parity violation can be seen
in the decay of charged pions, which is a weak process. Even though energy-wise
a larger phase space is open for the decay 7= — e~ ¥, than 7=~ — =, the for-
mer is exceedingly rare: B(r~ — e ) = 1.23 x 107* vs B(n~ — p~1,) = 0.999877
(No other 2-body decay is kinematically feasible)! This is explained by the fact
that for spin (=0 for pions) to be conserved in the process, the £~ and the 7y
must have the same helicity. This is harder to achieve in the e~ 7, channel since
the electron, being ~200 times lighter than the muon, gets a much higher boost
in the 7~ rest frame. Consequently, the phase space is severly squeezed in the

6The helicity of a massive particle is not absolute - it can be flipped by a Lorentz boost.

27



e~ U, channel because the boost needed for a frame to observe the e~ and the
Ve in the opposite helicity states is much larger than for the 4~ and the v,.

2.5 Charge Conjugation

Charge conjugation is an operation that converts a particle to its antiparticle:

Cly) = [¥), (2.66)

resulting in the inversion of all internal quantum numbers, i.e. electric charge,
isospin, color, lepton number, baryon number, ..., without alterning mass, mo-
mentum, and spin. This is another example of a group with only two elements,
with

C2ly) = [4), (2.67)

so the eigenvalues of C' are +1. Unlike P, however, only particles that are their
own antiparticles are eigenstates of C.

Classical electrodynamics is invariant under charge conjugation. The poten-
tials and fields all change their signs so as to leave the forces unaffected. Since
the field changes its sign, its quantum, the photon, has a charge conjugation
eigenvalue of —1. In general, a fermion-antifermion system with orbital angular
momentum [/ and total spin s constitutes an eigenstate of C' with eigenvalue
(—1)!*2. This is the basis of classification of mesons, which are quark-antiquark
bound states, in terms of JFC.

Like P, C is a multiplicative quantum number that is conserved in the
strong and electromagnetic interactions, but not in weak interactions. This can
be readily seen as a consequence of parity violation in weak processes: applying
C' to any process involving a (massless left-handed) neutrino will result in one
with a left-handed antineutrino, which does not exist. It was once argued by
some that charge conjugation should be considered an integral part of a more
general definition of “parity” amounting to C'P by our definitions, which would
be conserved in weak interactions. But a superbly reasoned prediction followed
by a landmark experiment on mixing of the neutral kaon with its own antiparti-
cle (AS = 2) established C'P violation in weak processes, albeit extremely mild
compared to C' or P violations separately. Subsequent studies of semileptonic
decays of K?, the longer-lived (near-symmetric) admixture of the two pseu-
doscalar C'P eigenstates, showed even more dramatic evidence of C'P violation
through a slight imbalance in the decay fractions to 7+e~ 7, and 7~ et v,. This
is a process that makes an absolute distinction between matter and antimatter,
and provides an unambiguous, convention-free definition of positive charge: it
is the charge carried by the lepton preferentially produced in the decay of K9.7

"However, the level of C'P violation within the standard model seems to fall far short of
explaining the observed degree of preponderance of matter over antimatter in today’s universe.

28



2.6 Lagrangian Density, Field Equations, and
Conserved Currents

A particle theory is set up by defining the dynamical variables ¢;(z*) that are
functions of space-time. These fields are described by the Lagrangian density,
which is a function of the fields and their first derivatives only

L=L(~¢;,0.0;), (2.68)

where j = 1,2,...,n label the fields and/or different components of a field. The
variational principle contends that the action integral

S = /£(¢(:c))d4:c (2.69)

is stationary with respect to any changes in ¢ that vanish on the boundary.
Then, in a manner analogous to the one in classical mechanics where the La-
grangian is a function of space-time directly, it can be shown that the variational
principle leads to the equations of motion

8#76£ — % =0. (2.70)
a(au¢j ) 99

The elementary particles of a theory appear as the solutions of the field equations
resulting from the associated Lagrangian.® For example, in quantum electro-
dynamics, the photon is the quantum of the electromagnetic field, represented
by the vector potential A#. The electron is represented by the fermion field
1. The Lagrangian contains the fundamental interactions of the theory. For
electrodynamics, that is the J, A" term in the Lagrangian

1
L= FuF" — J, A" (2.71)

(Exercise: show that Maxwell’s equations follow from this Lagrangian).

It is the potential energy parts of the Lagrangian that specify the theory. The
kinetic energy parts are general and only depend on the spins of the particles.
The potential energy terms specify the forces. These terms are collectively called
the interaction Lagrangian.

Consider an infinitesimal change d¢; in fields ¢; that is a symmetry of £ in
the the sense that

L(p; +d0;) = L(¢;). (2.72)

8Composite objects may appear as bound states of the elementary particles.
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We can then write using Eq. 2.70,

0 = BL(6) = £6; +36) = £16) = 5003 + 55 550(0,5)
-0, <a(§—‘c¢)) 30+ s O (273)
=9 (557™):
Thus the conserved current is
Jh = %5@. (2.74)

We will be particularly interested in transformations of the ¢ fields that are
homogeneous, linear, and unitary. Such a symmetry takes the form

56 = ie, T, (2.75)

where the T% are a set of n x n Hermitian matrices accting on the space of the
¢’s and the ¢, are infinitesimal parameters. Equation 2.75 is the infinitesimal
form of a unitary transformation

6 — ¢ =explieT)o~ (1+ieaT")s, (2.76)

Let us consider for the moment only global symmetries, in which the param-
eters ¢, are independent of z, but otherwise arbitrary. Then the following is
true:

0(0* @) = ie,T0" ¢, (2.77)
which looks just like Eq. 2.75. We say 0"¢ transforms (under the symmetry
operation) like ¢.

In this case, the conserved currents take a particularly simple form. Taking
out the infinitesimal parameters, we can write the conserved currents as

Y
= " g

T, (2.78)

So far we have not put the quantum into the quantum field theory. When
we do, the fields ¢; and their conjugate momenta

oL

satisfy the equal time (anti-)commutation relations for (fermion) boson fields:

[05(x), or(W)IET = [;(2), M (y)ET =0

(2.80)
[6(2), T (W))} =i0;u6@ (x — y),
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where “ET”stands for equal time, 2° = 3°; and [A, B+ = AB 4+ BA.

We will deal with situations where the matrices are organized into an algebra
that closes under commutation relations of Eq. 2.18. The time components of
the currents are related to charges

Q" = /d?’ng(a:), (2.81)
which satisfy Eq. 2.18. It follows after some algebra that
Q% Q" =if* Q. (2.82)
The existence of these charges and their associates currents is an important
consequence of the symmetry. Note that nothing in the derivation requires the
interpretation to be in terms of electric charge. Indeed, particles have a number
of charges, of which at least some can be related to conserved currents. Let us
examine a few examples.

Example 1

The simplest example is that of a real scalar (i.e., a spinless) field ¢ of mass m,
described by the Lagrangian density

L= %(8@8% —m?¢?), (2.83)

which leads to the Klein-Gordon wave equation

o0y = m?¢. (2.84)

Identifying the free-particle 4-momentum with the 4-gradient in space-time

pt = oF = s we see that this is merely the relativistic rendition of the
T

Schrodinger equation. The solution (the field amplitude), except for a normali-
zation constant, is given by

p(xh) = e (2.85)

Interactions of the field with other particles requires the introduction of a
source term into the field equations. The simplest example modifies the field
equations as follows:

(049, — m*)¢ = p. (2.86)

Since ¢ is a Lorentz scalar, p must be so as well. If the source is localized, static
and unperturbed by the interactions (a very heavy particle at rest would be a
good approximation), then choosing the origin at the source,

p = g% (x). (2.87)
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Since p is not time dependent, Eq. 2.86 becomes

(=V2 —m?)g = g6*(x). (2.88)
Writing
1 -
000 = o [ dhe**(k) (289)
(2m)}
and the inverse Fourier transform
- 1 .
300 = —— [ Pseox) (290)
(2m)?
yields (since V2 — —k?)
(K2 + m2)p(k) = L (2.91)
212
Substituting this into Eq. 2.89, we get
1 eik-x
= d*k . 2.92
660 = o [ P (292)
Evaluation of the integral yields the time-independent solution
g efmr
=2 2.93
o) = L, (293)

which is called the Yukawa potential. We see that the strength of the potential
at a given point is determined by the coupling constant g, and m. A large value
of m is gives a short range of interaction. This is the reason, in fact, of the
weakness of the weak interactions. It is an example of a general result that
high-mass physics is hard to see at low energies, since it corresponds only to
phenomena at very short distances.

If we had removed the constraint that the source be time-independent, the
denominator in the integrand on the RHS of Eq. 2.92 would simply be modified
to m? — k2, where k2 = k*k,. Indeed, such a denominator appears as a propa-
gator whenever a particle is exchanged in an interaction. This conforms to the
general interpretation, in a quantum field theory, that all interactions are due
to the exchange of field quanta. The concepts of force and of interaction are
used interchangeably. Usually the matrix elements are written in the momen-
tum space. Then from Eq. 2.92, the momentum space quantity representing
the exchanged particle of mass m is

1

k2 —m?2’

(2.94)

This is called a propagator, which will show up whenever we write the matrix
element. The complete propagator also has a phase factor and a numerator that
depends on the spin of the exchanged particle, but for most calculation these
can be considered as technical details that do not affect the qualitative results.
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Example 2

Some interesting physics emerges if we consider a system of two real scalar
fields, ¢1 and ¢, that have the same mass m. Then we can expect from Eq.
2.83 that

1 1
L= 5(5M¢15“¢1 —m2¢?) + 5(3H¢2(9“¢2 —m2¢3). (2.95)
We can combine ¢; and ¢9 into a single complex scalar field ¢ by writing
1
= —(¢1 +ig2). 2.96
¢ \/5(¢1 i2) (2.96)
Then .
" = —(p1 — ip2). (2.97)

V2

So, the Lagrangian can be rewritten as
L =0,0"0"p —m?¢*¢. (2.98)

Note that ¢ has the same mass m as ¢; and ¢2, and ¢ and ¢* are normalized
to the same total amplitude as ¢; and ¢ are.
The current density is

JH =i(¢" 0" — PO P"), (2.99)
satisfying the continuity equation
ouJ" =0. (2.100)
The field (wave) equations are

(010, — m*)¢p = (00, — m*)¢* = 0. (2.101)

Example 3

If there were an Abelian vector (spin-1) field B*, like the electromagnetic
field, but massive, the Lagrangian given in Eq. 2.71 would acquire an additional
term

1
§mQB“BM, (2.102)

to accommodate a mass term will in the wave equation. If we see a term B*B,,
2

m
appear in a Lagrangian, we can identify its coefficient as —. Such a term

explicitly violates gauge symmetry. Thus, the gauge symmetry forbids a non-
zero mass for the photon.
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