
Chapter 2

Symmetries, Groups, and

Conservation Laws

The dynamical properties and interactions of a system of particles and fields are
derived from the principle of least action, where the action is a 4-dimensional
Lorentz-invariant integral of the corresponding Lagrangian density. The general
theorem called Noether’s theorem dictates that to every symmetry of the La-
grangian there is a conserved current. It is a key ingredient in the construction
of theories in particle physics. Symmetries appear in many ways in the stud-
ies of particle interactions: gauged (local) and global symmetries, exact and
approximate symmetries, explicitly realized and spontaneously broken symme-
tries. The branch of mathematics devoted to the study of symmetries is called
Group theory. It will be useful to familiarize ourselves with some basic concepts
of group theory.

2.1 Groups and Representations

Definitions A group is a set G on which a law of composition “ · ” is defined
with the following properties:

1. Closure: if x1 and x2 are in G, so is x1 · x2;

2. Identity: there is an identity element e in G such that x · e = e · x = x for
any x in G;

3. Inverse: for every x in G, there is an inverse element x−1 in G such that
x · x−1 = x−1 · x = e;

4. Associativity: for every x1, x2, and x3 in G, (x1 · x2) · x3 = x1 · (x2 · x3).

A group is said to be commutative or Abelian if x1 ·x2 = x2 ·x1 for all x1, x2

in G. Otherwise, it is non-Abelian.
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A group may have a finite or infinite number of elements. For example,
the set of all real numbers form a continuous Abelian group with an infinite
number of elements under the composition law of arithmetic addition. The set
of all possible permutations of 3 labelled objects is an example of a discrete
non-Abelian group with a finite number of elements:

( ) : (a, b, c) → (a, b, c),
(12) : (a, b, c) → (b, a, c),
(23) : (a, b, c) → (a, c, b),
(31) : (a, b, c) → (c, b, a),

(123) : (a, b, c) → (c, a, b) (cyclic permutation),
(321) : (a, b, c) → (b, c, a).

(2.1)

The permutation group is an example of a transformation group on a physical
system. In quantum mechanics, a transformation of the system is associated
with a unitary operator in the Hilbert space.1 Thus, a transformation group of
a quantum mechanical system is associated with a mapping of the group into a
set of unitary operators. So, for each x in G there is a D(x) which is a unitary
(linear) operator. Furthermore, the mapping must preserve the composition law

D(x1)D(x2) = D(x1 · x2) (2.2)

for all x1, x2 in G. A mapping which satisfies Eq. 2.2 is called a representation

of the group G.2 For example, the mapping

D(x) = e−ipx, (2.3)

is a representation of the additive group of real numbers because

e−ipx1e−ipx2 = e−ip(x1+x2). (2.4)

The following mapping is a representation of the permutation group on 3 labelled
objects:

D( ) =





1 0 0
0 1 0
0 0 1



 , D(12) =





0 1 0
1 0 0
0 0 1



 ,

D(23) =





1 0 0
0 0 1
0 1 0



 , D(31) =





0 0 1
0 1 0
1 0 0



 ,

D(123) =





0 0 1
1 0 0
0 1 0



 , D(321) =





0 1 0
0 0 1
1 0 0



 .

(2.5)

1We will ignore the possibility of antiunitary operators, which are irrelevant in our context.
2Unitarity is not required in the definition of representation.
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For example, the composition (12) · (23) = (123) is mapped into the matrix
multiplication





0 1 0
1 0 0
0 0 1









1 0 0
0 0 1
0 1 0



 =





0 0 1
1 0 0
0 1 0



 . (2.6)

Thus, in any representation of a group, the composition law is realized by mul-
tiplication of (finite- or infinite-dimensional) matrices that the group elements
map into. Such a mapping is not necessarily one-to-one. When it is, we call it
the fundamental representation.

Group theory makes it possible to determine many properties of any rep-
resentation from the abstract properties of the group. It is convenient to view
representations both as abstract linear operators and as matrices. The connec-
tion is as follows: let |i〉 be an orthonormal basis in the space on which D(g)
acts as a linear operator. then

D(g)ij = 〈i|D(g)|j〉. (2.7)

So,

D(g)|i〉 =
∑

j

|j〉〈j|D(g)|i〉 =
∑

j

|j〉D(g)ji. (2.8)

Two representations are equivalent if they are related by a similarity trans-

formation

D2(x) = SD1(x)S
−1, (2.9)

with a fixed operator S for all x in G.
A representation is reducible if it is equivalent to a representation D′ with

block-diagonal form:

D′(x) = SD(x)S−1 =

(

D′
1(x) 0
0 D′

2(x)

)

, (2.10)

whence the vector space on which D′ acts breaks up into two orthogonal sub-
spaces, each of which is mapped into itself by all the operators in D′(x). The
representation D′ is said to be the direct sum of D′

1 and D′
2,

D′ = D′
1 ⊕D′

2. (2.11)

A representation is irreducible if it is not reducible, that is if it cannot be put into
a block-diagonal form by any similarity transformation. Any finite dimensional
representation of a finite group is completely reducible into a direct sum of
irreducible representations.

Group elements are rarely dealt with as abstract mathematical objects. In-
stead, a representation is used to obtain the composition table which is, in a
sense, the group. For the groups of our interest (in the realm of quantum the-
ories of particles and fields), all irreducible representations are equivalent to
representations by unitary operators.

17



A Lie group is a group of unitary operators that are labeled by a set of
continuous real parameters with a composition law that depends smoothly on
the parameters. If the volume of the parameter space of a Lie group is finite,
then it is called a compact Lie group. Any element of a compact Lie group can
be obtained from the identity element by continuous changes in the parameters
and can be expressed as eiαaXa , where αa (a = 1 . . . n) are real parameters
and Xa are linearly independent hermitian operators (a sum over the repeated
index a is implied). The Xa are a basis of a vector space spanned by the linear
combinations αaXa, called the generators of the group. Any function of the
generators that commutes with all generators of a Lie group is called a Casimir

operator of that group.
Note that the space of the group generators is different from the space on

which the generators act, which is some as yet unspecified Hilbert space. For the
compact Lie groups, the space on which the generators act are finite dimensional,
so the Xa can be expressed as finite hermitian matrices.

Generators have two nice features. First, since the generators form a vec-
tor space, unlike the group elements, they can be multiplied by numbers and
added to obtain other generators. Second, they satisfy simple commutation re-
lations which determine (almost) the full structure of the group. Consider the
composition

eiλXbeiλXae−iλXbe−iλXa = 1 + λ2[Xa, Xb] + · · ·

Because of the properties of group composition, the result corresponds to an-
other group element and can be written as eiβcXc . As λ → 0, we must have
λ2[Xa, Xb] → iβcXc. Writing βc = λ2fabc, we get

[Xa, Xb] = ifabcXc. (2.12)

The constants fabc are called the structure constants of the group. The structure
constants reflect the group composition law. This can be seen as follows. It is
always possible to define

eiαaXaeiβbXb ≡ eiδcXc , (2.13)

where δc is determined by α, β and f :

δc = αc + βc −
1

2
fabcαaβb + · · · (2.14)

The generators also satisfy the Jacobi identity:

[Xa, [Xb, Xc]] + cyclic permutations = 0. (2.15)

This is obvious for the representation, since then theXa are just linear operators,
but in fact it is true for the abstract group generators. In terms of the structure
constants, the Jacobi identity becomes

fbcdfade + fabdfcde + fcadfbde = 0. (2.16)
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If we define a set of matrices Ta

(Ta)bc ≡ −ifabc, (2.17)

Then, after simular definitions for Tb and Tc, Eq. 2.16 can be rewritten as

[Ta, Tb] = ifabcTc. (2.18)

In other words, the structure constants themselves generate a representation of
the algebra. The representation generated by the structure constants is called
the adjoint representation. The dimension of a representation is the dimension of
the vector space on which it acts. The dimension of the adjoint representation is
just the number of generators, which is the number of real parameters necessary
to describe a group element.

The generators and the commutation relations define the Lie algebra associ-
ated with the Lie group. Every representation of the group defines a representa-
tion of the algebra. The generators in the representation, when exponentiated,
give the operators of the group representation. The definitions of equivalence,
reducibility and irreducibility can be transferred unchanged from the group to
the algebra.

Spacetime symmetries like rotations in an Euclidean space are particularly
obvious examples of transformation groups. Other important transformation
groups include the Lorentz group of special relativity and the Poincaré group
(Lorentz boost plus translations and rotations). However, these are not compact
groups. The nature of their representations is different from that of the groups
which involve changes in particle identities, with no connection to the structure
of space and time. These groups are associated with internal symmetries, and
are the primary objects of our interest.

The structure constants depend on the choice of bases in the vector space
of the generators. For the treatment of internal symmetries in this course, we
will deal with unitary unimodular groups called SU(n).3 They belong to a class
called compact semisimple Lie groups, for which one can choose a basis such
that

Tr(TaTb) = λδab (2.21)

for some positive real number λ. In this basis, the structure constants are
completely antisymmetric, because one can write

fabc = −iλ−1Tr([Ta, Tb], Tc), (2.22)

3The unitary group U(n) is the subgorup consisting of those elements A of the general linear
group GL(n, C), represented by n × n complex matrices, such that AA† = 1. The special
unitary group SU(n) is that subgroup of U(n) for which detA = 1. The latter condition
requires the generators to be traceless since

for ψ → ψ′ = Uψ with U = exp

 

i

2

X

a

αaXa

!

, (2.19)

detU = exp(Tr(logU)) = exp(
i

2
Tr(αaXa)). (2.20)

Since αa are arbitrary numbers, detU = 1 ⇒ Tr(Xa) = 0.
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whence the antisymmetry of the RHS is ensured by the cyclic property of the
trace. Also in this basis, the generators in the adjoint representation are her-
mitian matrices. In fact, it can be shown that for compact Lie groups (as for
finite groups) any representation is equivalent to a representation by hermitian
operators and all irreducible representations are finite hermitian matrices. The
SU(n) group has n2 − 1 generators (one less than the U(n)), of which n− 1 can
be simultaneously diagonalized.

2.2 The Group SU(2)

The simplest non-Abelian Lie algebra consists of three generators Ja; a = 1, 2, 3,
with fabc = εabc, resulting in the commutation relations

[J1, J2] = iJ3, [J2, J3] = iJ1, [J3, J1] = iJ2. (2.23)

This is the angular momentum algebra obeyed by the generators of the rotation
group in 3 dimensions. They determine the properties of SU(2), the unimodular
unitary group that is the most frequently appearing symmetry in particle phy-
sics, as it describes not only spin, but also isospin symmetry, e.g. that between
the proton and the neutron, and of the three charged states of the pion.

The SU(2) matrices are complex 2 × 2 matrices

U = exp

(

i

3
∑

k=1

φkJk

)

=

(

u1
1 u1

2

u2
1 u2

2

)

(2.24)

with the constraints
U † = U−1, detU = 1. (2.25)

In the fundamental representation, the SU(2) algebra is realized by

Ji =
1

2
σi, (2.26)

where the σi, are the Pauli matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (2.27)

The operator U operates on a complex two-component spinor ψ = (ψ2, ψ2),
which transforms under SU(2) as

ψ′ = Uψ or, (ψ′)i =

2
∑

j=1

ui
jψ

j . (2.28)

The metric tensor is the two-dimensional Levi-Civita tensor εij = εij . Using
this metric, covariant spinors can be obtained from contravariat spinors and
vice-versa:

ψi = εijψ
j , ψi = εijψj . (2.29)
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The invariance of the inner product of two spinors (ψ1, ψ2) and (φ1, φ2)

φ1∗ψ1 + φ2∗ψ2 ≡ φi∗ψi, (2.30)

implies that the contravariant complex conjugate ψ∗ transforms the same way
as the covariant ψ:

ψi∗ ∼ εijψ
j = ψi. (2.31)

This property is called the reality of SU(2). It means that the complex conjugate
ψi∗ does not introduce any new representation.

The basis for the fundamental representation of SU(2) is conventionally
chosen to be the eigenvalues of J3, that is, the column vectors

(

1
0

)

and

(

0
1

)

describing a spin- 1
2 particle of spin projection up and spin projection down along

the 3-axis, respectively. The other two spin components combine to form raising
and lowering operators

J± ≡ 1√
2
(J1 ± iJ2) (2.32)

so called because when they act on an eigenstate of J3, they raise or lower the
eigenvalue by one unit (up to the highest or down to the lowest possible value).
This is easily seen from the commutation relations

[J3, J
±] = ±J±

[J+, J−] = J3

(2.33)

So, if
J3|m〉 = m|m〉, (2.34)

then
J3J

±|m〉 = J±J3|m〉 ± J±|m〉 = (m± 1)J±|m〉. (2.35)

Suppose that a set of |m〉 forms an M -dimensional representation. The eigen-
values m are called weights. Let j be the highest weight. Then, by definition,

J+|j〉 = 0. (2.36)

applying the lowering operator to |m〉, we find

J−|m〉 = Nm|m− 1〉, (2.37)

where Nm is a normalization constant which is determined as follows. From Eq.
2.37, we find

〈m− 1|J−|m〉 = Nm ⇔ 〈m|J+|m− 1〉 = N∗
m. (2.38)
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By suitably choosing the phase of Nm, we have

J−|m〉 = Nm|m− 1〉; J+|m− 1〉 = Nm|m〉. (2.39)

Taking the square of Eq. 2.37, we get

N2
m = 〈m|J+J−|m〉

= 〈m|J−J+|m〉 +m

= N2
m+1 +m.

(2.40)

Solving this recursion formula for Nm under the initial condition N2
j = j we get

Nm =

√

1

2
(j +m)(j −m+ 1). (2.41)

There are 2j coefficients that are non-zero and real for −(j−1) ≤ m ≤ j. From
Eq. 2.37, Nm appears when a state |m − 1〉 is created from |m〉 by applying
J−. Starting from |j〉, they are |j − 1〉, |j − 2〉, . . . | − j〉. Adding to these the
initial state |j〉, the total number of states is M = 2j + 1. This completes the
M -dimensional representation of SU(2), with j corresponding to the total spin
and m to the 3rd component of the spin. In the above we have not used the
properties of the only Casimir operator

J2 = J1
2 + J2

2 + J3
2 (2.42)

for the rotation group. There is an alternative way to derive the same result by
using the commutation relations

[J2, Ji] = 0. (2.43)

The method shown here can be extended to SU(3).

2.3 The Group SU(3)

Another symmetry group that has many manifestations in particle physics is
SU(3), the group of 3× 3 unitary unimodular matrices. Its generators are 3× 3
hermitian traceless matrices.4 The standard basis in physics literature consists

4The tracelessness is a consequence of the condition that the determinant be 1.
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of the 8 (= 32 − 1) Gell-Mann λ matrices:

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 ,

λ3 =





1 0 0
0 −1 0
0 0 0



 , λ4 =





0 0 1
0 0 0
1 0 0



 ,

λ5 =





0 0 −i
0 0 0
i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0



 ,

λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 = 1√
3





1 0 0
0 1 0
0 0 −2



 .

(2.44)

The generators are

Ta =
1

2
λa, (2.45)

normalized by Eq. 2.21 and satisfying the commutation relations

[Ta, Tb] = ifabcTc. (2.46)

Clearly, T1, T2, and T3 generate a SU(2) subgroup of SU(3). It is called
the isospin subgroup, because in the physical application of uds (quark) flavor
SU(3), it represents isospin.

The structure constants of SU(3) in the λi basis of Eq. 2.44 are fully an-
tisymmetric under any pairwise interchange of indices, and the non-vanishing
values are permutations of

f123 = 1,

f458 = f678 =
√

3
2 ,

f147 = f165 = f246 = f257 = f345 = f376 = 1
2 .

(2.47)

Just as in SU(2), the fundamental representation of SU(3) is based on the
transformation

ψ′ = Uψ or, ψ′i =

3
∑

j=1

ui
jψ

j , (2.48)

but with ui
j as the components of the 3 × 3 special unitary matrix

U = eiαaT a

(2.49)

However, unlike the SU(2) case, the SU(3) representation (ψi) is not real, i.e.
the complex conjugate transforms as

ψ′∗i = ui
j
∗
ψ′∗j (2.50)
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which is independent of Eq. 2.49. This is because the metric tensor is εijk,
which means the complex conjugate behaves as

ψ′∗i = εijkψ
jψk. (2.51)

Among the 8 generators of SU(3), two can be diagonalized simultaneously.5

In the fundamental representation of Eq. 2.44, they are already given by T3

and T8. Therefore, SU(3) states are labeled by eigenvalues of T3 and T8. For a
given simultaneous eigenstate, two eigenvalues define a point on a 2-dimensional
(t3, t8) plane. The remaining generators combine to form the raising or lowering
operators that shift one stae to another:

I± = 1√
2
(T1 + iT2),

V± = 1√
2
(T4 + iT5),

U± = 1√
2
(T6 + iT7).

(2.52)

Each of these matrices has a single non-zero element, which is, of course, off-
diagonal, so as to transform one (T3, T8) eigenstate to another. The following
commutation relations follow:

[T3, I±] = ±I±, [T8, I±] = 0,

[T3, V±] = ± 1
2V±, [T8, V±] =

√
3

8 V±,

[T3, U±] = ∓ 1
2U±, [T8, U±] =

√
3

8 U±.

(2.53)

These imply that I±, U±, and V± raise or lower the values of t3 and t8 by
the coefficients on the right-hand sides. Therefore, they are expressed by 2-
dimensional vectors, which point from the origin to one of the vertices of a
regular hexagon.

In a fashion similar to the one demonstrated for SU(2), it is possible to
construct the SU(3) representation. The simultaneous eigenvectors of T3 and
T8 are

ψ1 =





1
0
0



 , ψ2 =





0
1
0



 , ψ3 =









0
0
1









. (2.54)

We see that

T3ψ
1 = 1

2ψ
1

T8ψ
1 =

√
3

6 ψ
1

⇒ ~µ1
1 = | 12 ,

√
3

6 〉,

T3ψ
2 = − 1

2ψ
2

T8ψ
2 =

√
3

6 ψ
2

⇒ ~µ2
1 = | − 1

2 ,
√

3
6 〉,

T3ψ
3 = 0

T8ψ
3 = −

√
3

3 ψ
3

⇒ ~µ3
1 = |0,−

√
3

3 〉,

(2.55)

5Hence, SU(3) has a rank 2.
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where we have introduced three 2-dimensional vectors, called weight vectors ~µ1
i ,

to represent the states ψi. The superscript 1 for the ~µ is to distinguish it from
another set tof weights ~µ2

i which will be introduced shortly. The weight vectors
form a unit equilateral triangle centered at the origin of the t3, t8 plane.

The three states of the fundamental representation are related to each other
through the raising and lowering oprators. For instance, it is easy to check in
the 3-component vector form that

ψ1 = V+ψ
3. (2.56)

In terms of weight vectors, this is expressed as

~µ1
1 = ~α1 + ~µ1

3, (2.57)

where the root vector

~α1 = |1
2
,

√
3

2
〉 (2.58)

relates two weights additively and increases a weight by the “unit ~α1”. Similarly,
one can consider another root

~µ1
2 = ~α2 + ~µ1

2, (2.59)

which raises a weight by another unit

~α2 = |1
2
,−

√
3

2
〉. (2.60)

The root vectors ~α1 and ~α2 are independent. In general, all weight vectors are
related by

~µ′ = ~µ+ l~α1 +m~α2, (2.61)

where l and m are some integers.
Notice the correspondence between the root vectors and lowering and raising

operators:
~α1 ∼ V+, ~α2 ∼ U−. (2.62)

In principle, one could choose any two independent operators out of the six: I±,
U±, V±. In the particular choice above, the two roots are called simple roots.

In SU(3) there is another fundamental representation which is the complex
conjugate ψ′∗i (see Eq. 2.51). Complex conjugation of the commutation relations
in Eq. 2.46 leads to

[−Ta
∗, Tb

∗] = ifabcTc
∗, (2.63)

implying −Ta
∗ = − 1

2λa
∗ can be another representation. The diagonal genera-

tors T3 and T8 are replaced simply by the negatives of the original ones, and,
therefore, the weight vectors change their signs. In other words,

ψ1∗ → ~µ1
2 = | − 1

2 ,−
√

3
6 〉,

ψ2∗ → ~µ2
2 = | 12 ,−

√
3

6 〉,
ψ3∗ → ~µ3

2 = |0,
√

3
3 〉,

(2.64)
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which form another triangle, rotated by π w.r.t. the first one. Notice that
the new states represented by the new triangle are still connected by the same
simple root vectors. In the SU(3) of strong interactions, one representation
represents the color states of a quark, while the other represents the color states
of an antiquark, but the same gluons (the generator coefficients) mediate the
transitions between the different states within each set.
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