
3.3 Lagrangian and symmetries for a spin-1
2 field

The Lagrangian for the free spin- 1

2
field is

L = ψ̄(i/∂µ −m)ψ. (3.31)

The corresponding Hamiltonian density is

H = ψ̄(~γ · ~p+m)ψ. (3.32)

The Lagrangian has a global gauge symmetry, since ψ → ψ′ = eiθψ leaves the
field equations unchanged. Thus we expect a conserved current density

Jµ = eψ̄γµψ, (3.33)

which saisfies the continuity equation ∂µJ
µ = 0.

What is the relativistic extension for the angular momentum? By commuting
~x × ~p with H = γ0(~γ · ~p + m), we can try to determine what must be added
to the orbital angular momentum to make a conserved quantity. It turns out
that the simplest extension of the nonrelativistic expression works. Defining the
4 × 4 matrices

Σj =

(

σj 0
0 σj

)

, (3.34)

~J = ~x× ~p+ 1

2
~Σ satisfies [H, ~J ] = 0.

The plane wave fields we are using are eigenstates of ~p. They are not eigen-
states of ~J since [ ~J, ~p] 6= 0 because [~x, ~p] 6= 0, and that affects the orbital
component of the total spin. If we can isolate the spin operator alone in an
expression that commutes with H , then we can get a quantity that does com-
mute with the momentum. Taking ~J · ~p, the term (~x × ~p) · ~p vanishes, leaving
1

2
~Σ ·~p. This helicity operator now commutes with H and ~p and can therefore be

simultaneously diagonalized. The resulting states are helicity states. Note that
this works because the intrinsic spin operator is independent of position, as is
the resulting spin-dependent factor in the amplitude of the plane wave solution.
This argument holds just as well for particles for other values of the spin.

As an example of interaction that can be added to the free-particle La-
grangian, let us consider electromagnetism. In classical electrodynamics, the
minimal substitution into the basic equations of motion of a particle with charge
−q, caused by the presence of an electromagnetic field, is pµ → pµ + qAµ. In
the quantum case, the replacement pµ → i∂µ leads to the modified Lagrangian

L = ψ̄γµ(i∂µ + qAµ)ψ −mψ̄ψ. (3.35)

To include the photon field, we need to add the term 1

4
FµνFµν . The local gauge

transformation now is

ψ → eiqθψ and Aµ → Aµ + ∂µθ, (3.36)

which leaves the L unchanged.
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The function θ(xµ) is an arbitrary function of space-time. So, the field
transformations must be carefully coordinated. The interaction term arises
directly out of the modification to the free field Lagrangian if we add the local
gauge symmetry requirement.1 Thus, the interaction term in Eq. 3.35 is

LInt = eAµψ̄γµψ. (3.37)

Comparing this expression with Eq. 2.71 we see that the conserved electromag-
netic current is still Jµ = eψ̄γµψ: the expression for the conserved current is not
modified in the presence of an electromagnetic field (that is, when going from
a global to a local gauge symmetry) for the Dirac field. This is a consequence
of the derivative not explicitly appearing in the expression for the free particle
current for spin- 1

2
.2 For other spins, e.g. spin-0, the expression for the current

is modified. This will bear on the treatment of symmetry breaking.
Other interactions can be introduced to the Lagrangian in an analogous way.

For example, the interaction with a hypothetical scalar particle will add a term

LInt = −gφψ̄ψ, (3.38)

where φ is the scalar field. This interaction also leaves the expression for the
conserved current unchanged provided φ is real and unchanged under the gauge
transformations. Physically, φ → φ under a gauge transformation implies that
φ carries no charge. Only particles of the ψ field, i.e. the fermions, are charged.
Note also that g has to be a real number since LInt is hermitian.

3.4 Explicit plane-wave solutions

Let us start with the simplest case of a free particle at rest. The Dirac equation
then reduces to

(

iγ0

∂

∂t
−m

)

ψ = 0. (3.39)

In this case, since γ0 is diagonal, the equations do not mix the 4 components of
ψ (of Eq. 3.4):

i
∂ψ1

∂t
−mψ1 = 0, i

∂ψ2

∂t
−mψ2 = 0,

i
∂ψ3

∂t
+mψ3 = 0, i

∂ψ4

∂t
+mψ4 = 0.

(3.40)

Taking a solution of the form e−iEt, we get E = m for ψ1 and ψ2. However,
for ψ3 and ψ4, this would give E = −m. This dilemma is resolved by taking a

1The Dirac equation (Eq. 3.17) does not have a local gauge symmetry.
2All terms involving space-time derivatives are modified because of the minimal substitu-

tion used to introduce the electromagnetic interaction.
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solution of the form eiEt and transfering the minus sign to t in order to keep E
positive.3 Consequently, ψ3 and ψ4 represent the antiparticle states.

Let us now try to tackle particles in motion by generalizing the solution to
the form e±ipµxµ = e±ip·x which reduce to e±mt as ~p→ 0. Then we have

iγµ∂µe
±ip·x = γµpµe

±ip·x = /pe±ip·x (3.41)

with

/p =





E −~σ · ~p
~σ · ~p −E



 , where ~σ · ~p =





p3 p1 − ip2

p1 + ip2 p3



 . (3.42)

Explicitly, the four solutions are

ψ1 = u1e
−ip·x, ψ2 = u2e

−ip·x, ψ3 = v1e
ip·x, ψ4 = v2e

ip·x. (3.43)

For ~p = 0, we’ve already found the four solutions, which can be written as

u(0) =

(

χ

0

)

, v(0) =

(

0
χ

)

, where χ =

(

1
0

)

or

(

0
1

)

. For the more

general situation, we have

(/p−m)u = 0, and (/p+m)v = 0. (3.44)

The general solution can be obtained by noting that (/p−m)(/p+m) = p2 −m2 = 0,
so we can take

u(p) = (/p+m)u(0), v(p) = (/p−m)v(0). (3.45)

We can now choose u(0) and v(0) as above to get u(p) and v(p).
The normalization condition for the spinors is

ψ̄ψ = 2m, (3.46)

which is equivalent to requiring the current ψ̄γ0ψ = ψ†ψ (the number of particles
per unit volume) to be 2E. Thus, for the particle at rest we have

u(0) =

(

χ

0

)

, v(0) =

(

0
χ

)

. (3.47)

These lead to the general results

u =
√
E +m





χ

~σ·~p
E+m

χ



 , v =
√
E +m





~σ·~p
E+m

χ

χ



 . (3.48)

~σ · ~p is the operator proportional to the helicity of the two-component spinor χ.

If ~p = pẑ, then taking χ =

(

1
0

)

or

(

0
1

)

will yield two helicity eigenstates

for u or v. For an arbitrary ~p, we can rotate

(

1
0

)

and

(

0
1

)

using the 2× 2

rotation operators to generate helicity eigenstates along ~p.

3This applies to all fields irrespective of spin, as can be seen in the Klein-Gordon equation.
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Bilinear operator O Transformation property of ψ̄Oψ No. of operators
1 Scalar 1
γµ Vector 4
σµν ≡ i

2
[γµ, γν] Antisymmetric tensor 6

γ5γµ Pseudovector 4
γ5 Pseudoscalar 1

Table 3.1: Hermitian bilinear operators for the spin- 1

2
field.

3.5 Bilinear Covariants

Operators O for which ψ̄Oψ is hermitian and has well-defined properties under
Lorentz transformations are of special interest since these are legitimate candi-
dates to appear in L for terms involving only fields and no derivatives. We have
encountered O = 1 (scalar) and O = γµ already, but there are others. In the
Dirac-Pauli representation,

γ5 =

(

0 σ0

σ0 0

)

=









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









, (3.49)

while in general,

γ5† = γ5, , {γ5, γµ} = 0, and (γ5)2 = 1. (3.50)

The full list of hermitian operators for the spin- 1

2
field is given in Table 3.1

3.6 Massless Fermions

In the (highly relativistic) limit E ≫ m, we can put m = 0 in the Dirac equation
to get two decoupled equations for the two-component spinors. For χ+ along ~p
and χ− opposite ~p,

Eχ− = −~σ · ~p χ− and Eχ+ = +~σ · ~p χ+, (3.51)

so the first one represents a left-handed neutrino of energy E and momentum
~p. Then the helicity states have simple representations:

u± =
√
E

(

χ±

±χ±

)

and v± =
√
E

(

±χ±

χ±

)

. (3.52)

In this limit, the operators

PR ≡ 1

2
(1 + γ5) and PL ≡ 1

2
(1 − γ5) (3.53)
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act as right- and left-hand projection operators, so that

PR,Lu
± = u±, PR,Lv

± = v±, PR,Lu
∓ = 0, PR,Lv

∓ = 0. (3.54)

PL and PR satisfy the usual relations between projection operators:

P 2
i = Pi, PL + PR = 1, PLPR = 0. (3.55)

The γ5 is thus called the chirality operator. It is diagonal in the Weyl represen-
tation. Consequently, in the Weyl representation, helicity is diagonalized in the
extreme relativistic limit.

The chirality operator is very useful for keeping the Dirac spinor notation
when writing a L that differentiates between right- and left-handed fermions. A
good example is the charged current weak interaction between a charged lepton
ℓ and its SU(2) partner neutrino νℓ, where, in contrast to the V (vector) form
of the electromagnetic current, we have the V −A form of the weak current:

Jµ = ψ̄ℓγ
µ 1

2
(1 − γ5)ψνℓ

. (3.56)

This ensures that parity is maximally violated in such intereactions, because

1

2
(1 − γ5)uν =

(

σ0 0
0 0

) (

χ−

−χ−

)

=

(

χ−

0

)

. (3.57)

So, only the νL (and ν̄R) are projected out: only the left-handed neutrinos
and right-handed antineutrinos couple to their charged counterparts by weak
interactions. Of course, if the neutrino mass is not strictly zero, then it is
possible to perform a Lorentz transformation to change a νL to a a νR.4

4Even if neutrinos are not exactly massless, it is possible to ensure that the weak interac-
tions couple only to νL and ν̄R by requiring that the neutrinos be their own antiparticles.
Such neutrinos are known as Majorana neutrinos. Such neutrinos are best treated on a basis
of Majorana spinors, which are structured differently than Dirac spinors.
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