
Chapter 3

Quantum Electrodynamics

We now turn to spin- 1

2
particles. Let us study the electron as a specific example.

The electron is a spin- 1

2
particle, which implies that each momentum state has

two possible helicities, λ = + 1

2
or λ = − 1

2
. The states in the particle rest frame

can be determined using the spin- 1

2
representation of the rotation group, SU(2).

We can describe the two spin choices in terms of the base states:

χ+ =

(

1
0

)

and χ− =

(

0
1

)

(3.1)

These states, called spinors, correspond to spins + 1

2
and − 1

2
, respectively, along

a chosen space axis, which we take to be the 3-axis (z).
The spin operator in the fermion rest frame is given in the basis above by

~S =
~σ

2
, (3.2)

where ~σ is the Pauli spin matrix whose components are given by Eq. 2.27. In
addition, we now define the identity matrix as the 0th component of the spin
matrix. matrix:

σ0 =

(

1 0
0 1

)

. (3.3)

3.1 The Dirac Equation

Dirac’s primary objective in deriving the field equations for fermions was to
linearize the Klein-Gordon equation (Eq. 2.84) which, being quadratic in E,
opened doors to solutions with negative energy that needed to be explained.
Originally, Dirac handled the problem of preventing all fermions from falling
into negative energy states without a lower bound by postulating that all such
states are already full. This made for the possibility of an electron in a negative
energy state making an occassional transition to a positive energy state, which
would create a hole in the sea of negative energy state. Dirac called these “hole”s
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positrons. Experimental confirmation of the existence of positrons is counted
among the greatest triumphs in theoretical physics. Later, Feynman came up
with an alternative interpretation of positrons as electrons traveling backward in
time. This led to great simplification of the theory, which came to be known as
quantum electrodynamics. So, to modify the Klein-Gordon equation to describe
spin- 1

2
particles, each energy two (+ve and -ve) energy states in its solution must

be allowed two spin states. That is, the general wave function will have 2×2 = 4
components:

|ψ〉 =









ψ1

ψ2

ψ3

ψ4









(3.4)

The linear equation should then take the form

Hψ = i
∂

∂t
ψ = (~α · ~p+ βm)ψ = (~α · i∇ + βm)ψ, (3.5)

where β and αi (i = 1, 2, 3) are 4 × 4 matrices. They can be determined by
comparing Eq. 2.84 with the H2 expressed in terms of the RHS of Eq. 3.5:

∂2

∂t2
=

(

−αjαk∂j∂k − im(αjβ + βαj)∂j + β2m2
)

ψ (3.6)

Since the partial derivatives commute, we can write

αjαk∂j∂k =
1

2
(αjαk + αkαj)∂j∂k (3.7)

Then, for Eq. 3.6 to be consistent with Eq. 2.84 we must have

β2 = 1, (3.8)

{αj, β} = αjβ + βαj = 0, (3.9)

{αj , αk} = αjαk + αkαj = 2δjk, (3.10)

The solution to these can be wrirtten in terms of the Pauli matrices:

β = γ0 ≡

(

σ0 0
0 −σ0

)

, αj =

(

0 σj

σj 0

)

. (3.11)

Note that the representation is not unique. The one above is known as the
Dirac-Pauli representation. Another possibility, known as the Weyl- or chiral
representation is

β = γ0 ≡

(

0 σ0

σ0 0

)

, αj =

(

−σj 0
0 σj

)

. (3.12)

Most of the formulae are independent of the representation. We will use the
Pauli-Dirac representation.

Equation 3.5 is known as the Dirac equation and the 4-component wave
function, a Dirac spinor.
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3.2 The γ matrices and trace theorems

The Dirac equation can be written in a simpler form by multiplying it on the
left by β and defining

γµ = (β, β~α), (3.13)

or, explicitly,

γ0 =

(

σ0 0
0 −σ0

)

, γj =

(

0 σj

−σj 0

)

. (3.14)

These are known as the Dirac γ matrices. The result is

(iγµ∂µ −m)ψ = 0. (3.15)

It is useful to define the Feynman slash notation:

γµaµ = /a, (3.16)

so the Dirac equation takes the compact form

(i/∂ −m)ψ = 0. (3.17)

In practice, one almost never needs to know the explicit forms of the γ

matrices. The following relations satisfied by them suffice for most calculations:

γµ† = γ0γµγ0, (⇒ γ0† = γ0, γj† = −γj), (3.18)

{γµ, γν} = γµγν + γνγµ = 2gµν, (⇒ γµγµ = 4), (3.19)

γµ/aγµ = −2/a (3.20)

γµ/a/bγµ = 4a · b (3.21)

γµ/a/b/cγµ = −2/c/b/a (3.22)

For reasons that will become clear soon, it is useful to define

γ5 ≡ iγ0γ1γ2γ3. (3.23)

The following trace theorems often come in handy:

The trace of an odd number of γµ’s vanish. (3.24)

Tr(γµγν) = 4gµν . (3.25)

Tr(/a/b) = 4a · b, (3.26)

Tr(/a/b/c/d) = 4((a · b)(c · d) − (a · c)(b · d) + (a · d)(b · c), (3.27)

Tr(γ5) = 0, (3.28)

Tr(γ5/a/b) = 0, (3.29)

Tr(γ5/a/b/c/d) = 4iεµνρσa
µbνcρdσ, (3.30)

where εµνρσ is the completely antisymmetric Levi-Civita tensor in 4 dimensions.
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