
Chapter 10

Interaction of Particles with

Matter

A scattering process at an experimental particle physics facility is called an
event. Stable particles emerging from an event are identified and their momenta
measured by their interactions in the material media of a suitably constructed
detector.1 Unstable particles are identified by adding the 4-momenta of their
daughters, if they can be isolated with sufficient confidence. Particle identifi-
cation can be either a unique assignment, or a broader classification. In this
chapter we shall discuss some fundamental characteristics of how different kinds
of particles interact with different kinds of material. In the next chapter we will
see how this knowledge is utilized to design detectors.

Electromagnetic interactions are most heavily relied upon for particle de-
tection. A charged particles loses energy as it tries to make its way through a
material medium. Several phenomena contribute to this process, and their rel-
ative importance depends on the properties of the particle and of the medium.
For energies of interest to us, the most important phenomenon, for any charged
particle other than electrons, is ionization. In addition to ionization, elec-
trons also lose a significant fraction of their energies by photon emission (a.k.a
bremsstrahlung). Being electrically neutral, photons do not cause ionization, but
at high energies, they transfer their energy to a medium by such electromagnetic
interactions as the photoelectric effect, Compton scattering, and production of
electron-positron pairs. Another important process is the Coulomb scattering
of a charged particle with atomic nuclei, which is responsible for multiple scat-

tering. We will discuss these first.
There are other electromagnetic processes that are used in particle identifi-

cation, but less generally. These include scintillation, Cerenkov radiation, and
transition radiation. These will be discussed separately along with some special

1Here “stable” is defined by the time it takes for a high-energy particle (K.E.>∼1 GeV)
to traverse distances comparable to the dimensions of the detector. Therefore, a high-energy
muon is a stable particle for our purpose.
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applications of the general effects mentioned above. Strong and weak nuclear
interactions of particles in matter will be discussed in subsequent sections.

10.1 Electromagnetic Interaction of Particles with

Matter

A rigorous treatment of electromagnetic interactions based on QED has been
done to a good extent. For subtle effects, empirical parametrizations of extensive
data give reasonably good basis for interpolation. Details of these procedures
are beyond our scope. We will only summarize the key results.

10.1.1 Energy Loss by Ionization

The form of the rate of energy loss by ionization can be seen from a semi-classical
argument. The mean rate of energy loss, or stopping power, of moderately rela-
tivistic charged particles other than electron by ionization and atomic excitation
of a material medium is given by the Bethe-Bloch equation, which follows from
a quantum treatment of energy loss based on a first-order Born approximation,
with some reasonable simplifying assumptions:
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(see “Passage of particle through matter” in http://pdg.lbl.gov for defini-
tions of various terms). The first two terms in the parentheses depend on the
particle velocity β, while the last one reflects a modest density effect.

The Bethe-Bloch formula is a good approximation (accurate to ∼1%) for

particles with βγ =
p

Mc
in the range of about 0.05 to 500. At lower energies

various corrections need to be taken into account, while at higher energies ra-
diative losses dominate. The effect of the sign of the particle’s charge, known as
the “Barkas effect” begins to enter the picture only near the lower boundary of
the Bethe-Bloch region.2 Except in hydrogen, particles of the the same velocity
have similar rates of energy loss in different materials, decreasing at a slow rate
with increasing Z. The stopping power functions are characterized by broad
minima whose position drops from βγ = 3.5 to 3.0 as Z goes from 7 to 100. In
practical cases, most relativistic particles (e.g. cosmic-ray muons) have mean
energy loss rates close to the minimum, and are said to be minimum ionizing
particles, or MIP’s.

Equation 10.1 can be integrated to find the total (or partial) “continuous
slowing-down approximation” (CSDA) range R for a particle which loses energy
only through ionization and atomic excitation. Since for a given medium, dE

dx

depends only on β, R/M is a function of E/M or pc/M in the Bethe-Bloch region

2In principle, one might expect some particle-antiparticle asymmetry, since the detector is
made entirely of matter, with no trace of antimatter.
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Figure 10.1: Stopping power (= 〈−dE/dx〉) for µ+’s in Cu as a function of
βγ = p/Mc ove 9 orders of magnitude in momentum (12 orders in KE). Solid
curves indicate the total stopping power. Vertical bands indicate boundaries
between different approximations.

In practice, range is a useful concept only for low-energy hadrons, for which it
is typically less than the interaction length (defined as the length through which
the probability of the hadron not participating in a strong nuclear interaction
drops by a factor of e), and for muons below a few hundred GeV (above which
radiative effects dominate).

For a particle with mass M and momentum Mβγc, Tmax is given by

Tmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
. (10.2)

The determination of the mean excitation energy is the principal non-trivial
task in the evaluation of the Bethe-Bloch formula. Estimates based on fits to
experimental measurements for various charged particles are used.

The simplifying assumptions used in the derivation of Eq. 10.1 begin to lead
us astray in regions of low energy. Atomic shell corrections are necessary when
the velocity of the incident particle becomes comparable to the velocity of the
bound electrons. Above the upper boundary of the Bethe-Bloch region, it is
necessary to account for radiation, kinematics, and the structure of the incident
particle.

The energy transferred to electrons increases with the incident particle en-
ergy. Secondary “knock-on” electrons with T � I are known as δ rays. The
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number of δ rays produced with energy greater than T0 in a thickness x is

N(T ≥ T0) =

∫ Tmax

T0

ξ
dT

T 2
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(
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−
1
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)

, (10.3)

where

ξ =
2πneZ

2e4

Mβ2
x. (10.4)

So, for T0 � Tmax, the number of energetic δ rays falls off inversely with the
energy and that the parameter ξ is the energy above which there will be, on
average, one δ ray produced. As such, it represents a “typical” value of energy
loss in the material.

Usually, δ rays of appreciable energy are rare, but occassionally they can
carry energies of O(1 GeV), sufficient to start a process that requires indepen-
dent treatment. A δ ray with kinetic energy Te and corresponding momentum
pe is produced at an angle θ given by

cos θ =
Te

pe

pmax

Tmax

, (10.5)

where pmax is the momentum of an electron with the maximum possible energy
transfer Tmax.

Several other processes, such as Cerenkov radiation, transition radiation,
brensstrahlung, and pair-production also become important at high energies.

10.1.2 Fluctuations in Ionization Energy Loss

Equation 10.1 only gives the mean energy lost by a charged particle per unit
thickness of matter (absorber). The actual amount of energy lost by a charged
particle that has traversed a given thickness of absorber will vary due to the
stochastic nature of the process. For moderatly relativistic incident charged
particles, collisions with small energy transfers are much more likely than those
with large transfers. As a result, the single-collision spectrum is highly skewed
and the dE

dx
distribution has a long tail on the high energy side. The proba-

bility density function f(∆; βγ, x) describing the distribution of energy loss ∆
in absorber thickness x is called the “Landau distribution”. If χ(W, x)dW is
the probability that a particle loses an energy between W and W + dW after
crossing a thickness x of the absorber, then

χ(W, x)dW =
1

ξ
fL(λ), (10.6)

where

λ = 1

ξ
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,
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(1 − β2)I2

2mv2
+ β2,

CE = 0.577 (Euler’s constant).

(10.7)

97



The quantity ε′ is the low energy cutoff of possible energy losses, chosen by
Landau so that the mean energy loss agreed with the Bethe-Bloch theory. The
function fL(λ) can be expressed as

fL(λ) =
1

π

∫

∞

0

exp (−u(ln u + λ)) sin (πu)du. (10.8)

The most probable value of the energy loss is given by

WMP = ξ

(

ln
ξ

ε′
+ 0.198 + δ

)

. (10.9)

The full width at half maximum (FWHM) of the distribution is 4.02ξ.
The Landau formula an approximation based on the assumptions that suc-

cessive collisions are statistically independent, that the absorber medium is ho-
mogeneous, and that the total energy loss is small compared to the incident
particle’s energy. Experimental energy loss distributions in gases are broader
than predicted by the Landau formula. Still, pulse height spectra of high-energy
charged particles in gaseous proportional chambers follow the general form of
the distribution. More elaborate “straggling” functions that provide a better
fit are available, but the Landau distribution often serves well enough. When
ξ/Emax is O(0.01) or less, the number of δ rays with energies near Emax is small,
and single large energy loss events give an asymmetric high-energy tail to the
energy loss distribution. The distribution approaches a Gaussian for ξ/Emax of
O(1) or more, when the number of δ rays with energies near Emax is large.

Physicists often relate total energy loss to the number of ion pairs produced
near the particle’s track. This relation becomes complicated for extremely rel-
ativistic particles due to the wandering of energetic δ rays whose ranges exceed
the dimensions of the fiducial volume. The mean local energy dissipation per
ion-pair produced, W , is essentially constant for moderately relativistic parti-
cles, but increases at slower particle speeds. For gases, W can be highly sensitive
to trace amounts of contaminants or dopants. Also, ionization yields in practical
cases may be influences by such factors as subsequent recombination.

Because of fluctuations in energy loss, a beam of particles of fixed energy will
have a distribution of ranges in a thick absorber. This is another manifestation
of the straggling phenomenon. The two fluctuations are related by

〈(E − Ē)2〉 =

(

dE

dx

)2

〈(R − R̄)2〉. (10.10)

The range distributions of moderately relativistic hadrons in metals are nearly
Gaussian. For a pure, monoenergetic beam of particles, the fractional strag-
gling σR/R increases with Z of the absorber. The fractional straggling in a
given absorber decreases with increasing kinetic energy and approaches a value
σR/R ≈ 1

2

√

me/M at high energy, where M is the mass of the incident particle.
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