
Chapter 5

Electromagnetic Scattering

In this chapter, we will apply the methods discussed in the preceding chapters
to compute cross sections of some simple electromagnetic processes involving
charged leptons (and photons, of course). We will restrict ourselves to initial
and final states involving no more than two particles, and to the lowest order
in perturbative calculations, (i.e., to tree-level Feynman diagrams only). The
coupling at each vertex is proportional to the electric charge e of the fermion
(we will only deal with charged leptons in this chapter). At low energies, this
is manifested in terms of the fine structure constant

α =
e2

4π
=

1

137
. (5.1)

The value of α depends on the energy at which it is measured. The above value
corresponds to the E → mℓ limit. Moreover, up to energies a few GeV below
MW (=80 GeV) weak interactions can be safely ignored. Strong interactions are
irrelevant in this context since leptons carry no color charge. Each higher order
diagram will make a contribution proportional to α to the matrix element, which
will subsequently have to be squared to get the cross section. Since leading-order
diagrams for 2 → 2 processes involve 2 vertices, our calculations will actually
hold good to a few parts per 10−4 level at low energies.

Before looking at some examples of electromagnetic scattering between two
fermions, let us recall the conserved current density in Eq. 3.33. Putting in the
(free) fermion wave functions given by Eq. 3.43 in the initial and final states,
we see that the transition current at each vertex is

J
µ
fi = −eψ̄fγ

µψi = −eūfγ
µui exp (i(pf − pi) · x), (5.2)

where ui and ūf are the fermion spinors in the initial and final states, respec-
tively. Such a factor at each end of a photon propagator is exactly what one
would get by following the Feynman rules summarized in the last chapter.

It is instructive to note that if we had a scalar (i.e. spin-0) charged particle
instead of the spin- 1

2
fermion, then the transition current could be obtained
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by simply dropping the spinors and the γµ from Eq. 5.2, while retaining the
normalization:

J
µ
fi = −e(pf + pi)

µ exp (i(pf − pi) · x). (5.3)

Operating on the electromagnetic vector field Aµ, such a current would give
the interaction only of the electric charge and the photon. The difference bet-
ween the two transition currents is due to the magnetic moment of the fermion.
Indeed, the lepton-photon interaction at a vertex can be expressed in the form

ūfγ
µui =

1

2m
ūf ((pf + pi)

µ + iσµν(pf − pi)ν)ui, (5.4)

known as the Gordon decomposition (into charge and magnetic moment parts).

5.1 Electron-Muon Scattering

Consider the process e−µ− → e−µ− shown in Fig. 5.1.

e− e−

µ− µ−

Figure 5.1: The Feynman diagram for e−µ− → e−µ−.

The matrix element representing the exchange of a single photon between
the electron and the muon currents is given, as prescribed by the Feynman rules,
by

Mfi = −Jα
e−

gαβ

q2 + iε
J

β

µ−
= −e2

ū(pe−

f )γαu(pe−

i )ū(pµ−

f )γαu(p
µ−

i )

q2 + iε
, (5.5)

where the photon momentum qµ is determined by the momentum conservation
condition

q = pe−

i − pe−

f = p
µ−

f − p
µ−

i . (5.6)

Note that switching the e− and the µ− in the above expression is of no conse-
quence since the direction of the photon-mediated momentum transfer is irrel-
evant and will have to be integrated over to get the cross section anyway.
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For the cross section, we’ll need |Mfi|
2, which can be written as

|Mfi|
2 =

e4

q4
(Le−)αβ(Lµ−)αβ (5.7)

in terms of the tensors

(Lℓ−)αβ ≡
1

e2
(Jℓ−)α(Jℓ−)∗β . (5.8)

Evaluation of these tensors are actually much easier than it may appear at this
point. A general method exists to facilitate such calculations, and it does not
depend on any specific representation of the γ matrices or spinors.

Our task is to evaluate the matrix element ū(p2)Oαu(p1), where Oα is a
4 × 4 matrix, made of momenta and γ matrices, in the spinor space. Here α
represents a collection of Lorentz indices: no index represents a scalar, one a
vector, and so on. Squaring the matrix element we get a tensor, such as those in
Eq. 5.8, which will make up a part of |Mfi|

2, as in Eq. 5.7. Since the complex
conjugate and Hermitian conjugate are the same for a complex number, the
tensor is

(ū(p2)Oαu(p1))(ū(p2)Oβu(p1))
∗ = (ū(p2)Oαu(p1))(u

†(p1)O
†
βγ0u(p2))

= (ū(p2)Oαu(p1))(ū(p1)γ0O
†
βγ0u(p2)).

(5.9)
We define Ōβ ≡ γ0O

†γ0.
1 Then, expressing the matrix multiplications in terms

of the element indices, we get

(ū(p2)Oαu(p1))(ū(p2)Oβu(p1))
∗

= ū(p2)i(Oα)iju(p1)j)(ū(p1)k(Ōβ)klγ0u(p2))l

= (u(p2)lū(p2)i)(Oα)ij(u(p1)j ū(p1)k)(Ōβ)kl

(5.10)

2 If we define a matrix whose m,n component is u(p1)mū(p1)n, the above ex-
pression is just the trace of a matrix that is the product of 4 matrices. Thus,
we can write the squared matrix element of Eq. 5.9, without explicit use of the
indices, as

(ū(p2)Oαu(p1))(ū(p2)Oβu(p1))
∗ = Tr(u(p2)ū(p2)Oαu(p1)ū(p1)Ōβ). (5.11)

So, with simple expressions for the 4 × 4 matrix u(p)ū(p), our calculations are
reduced to taking traces using the relations listed in Sec. 3.2.

Now we are ready to handle the summing of spinors in the initial and final
states. Commonly, the incoming beams are unpolarized and the spin polariza-
tion of the outgoing particles are undetermined. In such a case, we must take

1For Oβ = γµ, γµγ5, iγ5, σµν , Ōβ = Oβ .
2Einstein summation is implied, but the Latin indices label the components of the 4-

component Dirac spinor, and hence run from 1 to 4. They have nothing to do with the

components of a Lorentz 4-vector in the Minkowski space. Xi and Xi are one and the same.
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the average of the helicities in the initial state and sum over those in the final
state, which appear only in the 4 × 4 matrices constructed from the spinors.
The matrices Oα, Ōβ do not depend on helicity. The sums can be derived from
the spinors in Eq. 3.48, which simply yield

∑

λ=1,2

u(p, λ)ū(p, λ) = /p+m (5.12)

for fermions, and
∑

λ=1,2

v(p, λ)v̄(p, λ) = /p−m (5.13)

for antifermions, where the helicity λ is now indicated explicitly in the spinor.
Thus, after summing over the helicities of all the spin- 1

2
particles in Eq. 5.11,

we get

(ū(p2)Oαu(p1))(ū(p2)Oβu(p1))
∗ = Tr((/p2 +m2)Oα(/p1 +m1)). (5.14)

For each antiparticle, each /p+m is replaced by /p−m. These expressions appear
repeatedly in calculations involving spin- 1

2
particles in the initial and final states

of a process. They embody the linearity requirement of quantum mechanics,
where Mfi must contain a single power of each spinor leading to a product of
the form u(p)ū(p) in the square of the matrix element.

If the helicity of a spin- 1
2

particle is fixed in the initial state or determined
in the final state, then the matrix element will be a function of its helicity λ.
One could use explicit spinors to calculate this, but an alternative form has
been derived that can be used simply in trace calculations. Consider the spin- 1

2

particle in its rest frame. Define a spin 3-vector in this frame as ~s = χ†~σχ,
where χ is normalized so that χ†χ = 1. We can construct sµ = (0, ~s), which
transforms as a Lorentz 4-vector. So, p · s = 0 is a Lorentz scalar. Using the
spinors in Eq. 3.48, we can show that

u(p, λ)ū(p, λ) = (/p+m)
(1 + γ5/s(λ))

2

v(p, λ)v̄(p, λ) = (/p−m)
(1 + γ5/s(λ))

2
.

(5.15)

Defining ê(λ) as a unit vector along ~p for positive helicity and opposite ~p for
negative helicity,

s =

(

ê(λ) · ~p

m
,
ê(λ)E

m

)

(5.16)

gives s(λ) for the two helicity choices. These spin-dependent expressions become
indispensable in the studies of weak interactions, where parity violation makes
helicity selection a quintessential feature.

Returning to the calculation of e−µ− scattering cross section with unpolar-
ized incoming beams, and no discrimination on helicities of the outgoing parti-
cles, we take the average over the initial helicities (which amounts to summing
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and dividing by 2) and sum over the final ones to get

(Lℓ−)αβ =
1

2
Tr

(

(/p
ℓ−

f +mℓ)γα(/p
ℓ−

i +mℓ)γβ

)

, (5.17)

where ℓ = e, µ.
The expression on the RHS has two terms with an even number of γ matrices,

which can be evaluated by the trace formulae of Sec. 3.2:

(Lℓ−)αβ = 1
2

(

Tr(/pℓ−

f γα/pℓ−

i γβ) +m2
ℓTr(γαγβ)

)

= 2
(

(pℓ−

f )α(pℓ−

i )β + (pℓ−

f )β(pℓ−

i )α − (pℓ−

f · pℓ−

i −m2
ℓ)gαβ

)

.

(5.18)
Multiplying the tensors for the electron and the muon, we get finally the unpo-
larized result for |Mfi|

2, summed over final spins:

1

4

∑

spins

|Mfi|
2 =

8e4

q4
((pe−

f · pµ−

f )(pe−

i · pµ−

i ) + (pe−

f · pµ−

i )(pe−

i · pµ−

f )

−m2
e(p

µ−

i · pµ−

f ) −m2
µ(pe−

i · pe−

f ) + 2m2
em

2
µ).

(5.19)
This final result is a Lorentz invariant that is symmetric under the exchange
e− ↔ µ−.

In the extreme relativistic limit, the terms involving the particle masses can
be neglected. This leads to the approximation

∑

spins

|Mfi|
2 ≈

8e4

(pe−

i − pe−

f )4
((pe−

f ·pµ−

f )(pe−

i ·pµ−

i )+(pe−

f ·pµ−

i )(pe−

i ·pµ−

f )). (5.20)

Also, in this limit, the Mandelstam variables of Eqs. 1.44, 1.45, and 1.46 become

s = (pe−

i + p
µ−

i )2 = (pe−

f + p
µ−

f )2 ≈ 2pe−

i · pµ−

i ≈ 2pe−

f · pµ−

f ,

t = (pe−

f − pe−

i )2 = (pµ−

f − p
µ−

i )2 ≈ −2pe−

i · pe−

f ≈ −2pµ−

i · pµ−

f ,

u = (pµ−

f − pe−

i )2 = (pe−

f − p
µ−

i )2 ≈ −2pµ−

f · pe−

i ≈ −2pe−

f · pµ−

i .

(5.21)

Thus, for scattering of unpolarized electrons and muons at E ≫ mµ(≈ 200me),
we have a compact expression for the squared matrix element:

∑

spins

|Mfi|
2 ≈ 2e4

(s2 + u2)

t2
. (5.22)

Note that this diverges in the limit of t→ 0 (no momentum transfer).
What remains in the calculation of the cross section is the integration over

the phase space. For final states consisting of any two given particles, the only
spatial variable is the scattering angle (evaluated in the center of mass, unless
otherwise specified.) The differential cross section is obtained by substituting
the above |Mfi|

2 in Eq. 4.21.

52



5.2 e
+
e
− annihilation to µ

+
µ
−

The Feynman diagram for the process e+e− → µ+µ− is shown in Fig. 5.2.

e+

e−

µ−

µ+

Figure 5.2: The Feynman diagram for e+e− → µ+µ−.

The squared matrix element can be obtained simply by “crossing” the result
for e−µ− → e−µ−, which amounts to the interchange s↔ t in Eq. 5.22. Thus,

∑

spins

|Mfi|
2 ≈ 2e4

(t2 + u2)

s2
, (5.23)

where now e+e− → µ+µ− is the s-channel process.
We can calculate s, t, and u in terms of the center-of-mass energy ECM and

the scattering angle θ between the outgoing muons and the incoming electrons
(Exercise: derive these relations.)

s = E2
CM,

t =
1

2
E2

CM(1 − cos θ),

u =
1

2
E2

CM(1 + cos θ).

(5.24)

Therefore,
∑

spins

|Mfi|
2 ≈ e4(1 + cos2 θ), (5.25)

and the differential cross section is

dσ

dΩCM
=

2e4

64π2s

(

1

2
(1 + cos2 θ)

)

=
α2

4s
(1 + cos2 θ), (5.26)

where we have made the substitution α =
e2

4π
. Note that, unlike e−µ− → e−µ−,

this cross section shows only a mild peaking in the forward direction.
The total interaction cross section can be obtained by integrating over θ:

σ(e+e− → µ+µ−) =
4πα2

3s
. (5.27)
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It falls as the inverse-square of the CM energy.
This result has been verified by experimental data at ECM’s up to several

tens of GeV, until effects of weak interaction become significant. Up to that
point, the error incurred by ignoring higher order terms in the perturbative
calculations (corresponding Feynman diagrams have multiple iternal lines) is
much smaller than the experimental resolution.
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