Assignment: HW3 [25 points]

Assigned: 2012/02/20
Due: 2012/02/27

P3.1 [4 points]
Find the inverse of each element of the permutation group of 3 labelled objects using the 3×3 matrix representation.

P3.2 [3 points]
Show that topologically speaking, the group $S U(2)$ is a 3 -sphere of unit radius embedded in the real euclidian 4 -dimensional space.

P3.3 $[3+3=6$ points]
A bounded operator P on a Hilbert space \mathcal{H} is a projection operator if

$$
\begin{equation*}
P^{\dagger}=P \quad \text { and } \quad P=P^{2} \tag{1}
\end{equation*}
$$

(a) Show that $(\mathbf{1}-P)$ is also a projection operator (where $\mathbf{1}$ is the identity operator).
(b) Find the eigenvalues of P.

Note: the first condition implies that P is hermitian.

P3.4 [6 points]
Give a pictorial representation of the $S U(3)$ raising and lowering operators $I_{ \pm}, U_{ \pm}$, and $V_{ \pm}$on the t_{3}, t_{8} plane.

P3.5 [6 points]
If a theory is to be invariant under a unitary local gauge (or phase) transformation $\psi^{\prime}=U \psi$, where ψ represents a fermion wave function, then the general expression for the transformation of the gauge field is given by

$$
\begin{equation*}
A^{\mu \prime}=-\frac{i}{g}\left(\partial^{\mu} U\right) U^{-1}+U A^{\mu} U^{-1} \tag{2}
\end{equation*}
$$

Show that this gives the expected answer for the electromagnetic field (i.e. the electromagnetic field tensor $F^{\mu \nu}$ is unaffected by such a transformation), where $U=e^{-i g \theta(x)}$ and $g=-e$.

