
Chapter 1

Special Relativity

In the far-reaching theory of Special Relativity of Einstein, the homogeneity
and isotropy of the 3-dimensional space are generalized to include the time
dimension as well. The space-time structure embodied in the theory provides
the foundation on which all branches of modern physics are formulated.1

1.1 The geometry of space-time

The basic tenet of the theory of relativity is that there is a fundamental symme-
try between the three space dimensions and the time dimension, as manifested
most directly in the constancy of the velocity of light in all coordinate frames.
In order to formulate this theory mathematically, it is useful to introduce a set
of convenient definitions and notations.

Definition 1.1 (Event): An event, characterised by the spatial coordinates
{xi; i = 1, 2, 3} and the time t, will be denoted by {xµ; µ = 0, 1, 2, 3} where

xµ=0 = ct, xµ=i = xi, (1.1)

and c is the velocity of light in vacuum.2 In particle physics, the natural units
are chosen, whereby c = 1 (by definition). The convention is that Greek indices
refer to space-time in general (hence range over 0 to 3), and Roman indices
refer to 3-space only (hence range over 1 to 3). We shall use the notation x to
indicate a 3-vector.

Definition 1.2 (Coordinate Four-vector, Length of Vectors): Let x
µ
1

and x
µ
2

represent two events. The separation between the two events defines a coordinate
four-vector x

µ
1

= x
µ
1
− x

µ
2
. The length |x| of a 4-vector x is defined by

|x|2 ≡ (x0)2 − (x)2 = t2 − x · x. (1.2)

1Only in the theory of gravitation is it necessary to generalize the concepts of space-time
beyond the special theory of relativity. The resulting theory of General Relativity is intimately
related to the group of general coordinate transformations. We shall not venture into that
theory in this course.

2In this notation, all four coordinates carry the same scale dimension - the dimension of
length.
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The coordinates xµ of an event can be considered as a 4-vector if we understand
it to mean the difference between the event and the event represented by the
origin (0,0). In this notation, the wave-front of a light signal sent out from the
space origin at t = 0 will satisfy the simple equation, |x| = 0.

In terms of the metric tensor gµν , the definition of the length of a vector x

can be written as
|x|2 = gµνxµxν , (1.3)

where the implicit summations extend over all 4 components.3

The metric tensor for the space-time vector space is called the Minkowski
metric:

gµν =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









(1.4)

In contrast to the Euclidean metric δµν , the Minkowski metric is not positive
definite. This fact leads to important differences in the representations of the
associated symmetry groups. The principle of special relativity stipulates that
basic laws of physics are invariant with respect to translations in all 4 coordinates
(homogeneity of space-time) and to all homogeneous linear transformations on
the space-time coordinates which leave the length of 4-vectors invariant (isotropy
of space-time).

Definition 1.3 (Homogeneous Lorentz Transformation): Homogeneous Lorentz
Transformations are continuous linear transformations Λ on coordinate compo-
nents given by

xµ → x′µ = Λµ
νxν , (1.5)

which preserve the length of 4-vectors, i.e.

|x|2 = |x′|2 (1.6)

Combining Eqs. 1.3-1.6, one can formulate the condition on Lorentz transfor-
mations Λ without referring to any specific 4-vector as either

gµνΛµ
λΛν

σ = gλσ (1.7)

or
Λµ

λΛν
σgλσ = gµν , (1.8)

where gµν = gµν . This result is an apparent generalization of rotation in 3-
dimensional Euclidean space. Suppressing the indices in Eq. 1.7, we can write
it (in the matrix form) as

Λ−1 = gΛT g−1, (1.9)

3This is known as the Einstein summation convention, whereby whenever an index appears
twice in a product, once as a superscript, once as a subscript, the term is summed over all
allowed values of that index. Since such an index does not represent any particular value, it
is often called a “dummy” index or variable.
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which is to be compared with R−1 = RT for rotation in the 3-dimensional
Euclidean space.

Taking the determinant on both sides of Eq. 1.9, we obtain (det(Λ))2 = 1,
hence det(Λ) = ±1.

An example of a “large” Lorentz transformation with det(Λ) = −1 is

Λµ
ν =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, (1.10)

which just flips the sign of the time coordinate, and is therefore known as time
reversal:

t′ = −t, x′ = x, y′ = y, z′ = z. (1.11)

Another “large” Lorentz transformation is parity, or space, inversion:

Λµ
ν =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









, (1.12)

so that
t′ = t, x′ = −x, y′ = −y, z′ = −z. (1.13)

It was once thought that the laws of physics have to be invariant under these
transformations, until it was shown experimentally in the 1950’s that parity is
violated in the weak interactions, specifically in the weak decays of the 60Co
nucleus and of the K± mesons. Likewise, experiments in the 1960’s on the
decays of K0 mesons showed that time-reversal is violated (at least if very
general properties of quantum mechanics and special relativity are assumed).

However, all experiments up to now are consistent with invariance of the
laws of physics under Lorentz transformations that are continuously connected
to the identity transformation. Such transformations are known as “proper”
Lorentz transformations. So, for these, we must have

det(Λ) = Λ0
µΛ1

νΛ2
λΛ3

σεµνλσ = 1, (1.14)

where εµνλσ is the 4-dimensional totally antisymmetric unit tensor with ε0123 =
1 (the Levi-Civita tensor).4 This condition can be rewritten as

Λα
µΛβ

νΛγ
λΛδ

σεµνλσ = εαβγδ, (1.15)

4That is,

εµνλσ =

8

<

:

+1 if µνλσ is an even permutation of 0123,

−1 if µνλσ is an odd permutation of 0123,

0 otherwise.
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We also note that, setting λ = σ = 0 in Eq.1.7, we obtain the condition

(Λ0
0)

2 −
∑

i

(Λi
0)

2 = 1. (1.16)

This implies (Λ0
0)

2 ≥ 1, hence Λ0
0 ≥ 1 or Λ0

0 ≤ −1. The two solutions
represent disjoint regions of the real axis for Λ0

0. Since Λ0
0 = 1 for the identity

transformation, continuity requires that all proper Lorentz transformations have

Λ0
0 ≥ 1. (1.17)

Obviously, the other branch is associated with time reversal. To summarize,
homogeneous proper Lorentz transformations are linear transformations of 4×4
matrices with Λ0

0 ≥ 1 that leave two special tensors, gµν and εµνλσ invariant.
A general homogeneous proper Lorentz transformation depends on 6 real

parameters. This can be seen as follows: the 4×4 real matrix Λ has 16 elements,
that are subject to 10 independent constraints represented by Eq. 1.7.

Rotations in the 3 spatial dimensions are examples of Lorentz transforma-
tions in this generalized sense. They are of the form

Rµ
ν =









1 0 0 0
0
0 Ri

j

0









, (1.18)

where Ri
j denotes ordinary 3 × 3 rotation matrices. For example, the counter-

clockwse rotation by an angle α in the x, y plane is represented by

Ri
j =





cosα sin α 0
− sinα cosα 0

0 0 1



 , (1.19)

whence we have

t′ = t,

x′ = x cosα + y sin α,

y′ = −x sinα + y cosα,

z′ = z.

(1.20)

Of greater interest to us are special Lorentz transformations which mix spa-
tial coordinates with the time coordinate. The simplest of these is a Lorentz
boost along a given coordinate axis, say the x-axis:

L1
µ

ν =









cosh η − sinh η 0 0
− sinh η cosh η 0 0

0 0 1 0
0 0 0 1









, (1.21)
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or,

t′ = t cosh η − x sinh η,

x′ = −t sinh η + x cosh η,

y′ = y,

z′ = z.

(1.22)

Physically, this corresponds to the transformation of a position vector from
the unprimed frame to the primed frame, the latter moving with respect to the
former along the x direction at the speed β = tanh η.5 By defining

γ ≡ 1
√

1 − β2
, (1.23)

we have
sinh η = βγ, cosh η = γ. (1.24)

Thus,

t′ = γ(t − βx),

x′ = γ(−βt + x),

y′ = y,

z′ = z.

(1.25)

So, a Lorentz boost along the x-axis by the velocity β can be interpreted as
a “rotation” in the t, x plane by the hyperbolic angle η = tanh−1(β), called
rapidity.6

A general Lorentz transformation can be written as the product of spatial
rotations and Lorentz boosts.7

Definition 1.4 (Minkowski Space): The 4-dimensional space-time endowed
with the Minkowski metric, Eq. 1.4, is called the Minkowski space. Any 4-
component object aµ, transforming under Lorentz transformations as the coor-
dinate vector in Eq. 1.5 is said to be a four-vector or a Lorentz vector.

Definition 1.5 (Scalar Product): The scalar product of two 4-vectors aµ and
bµ is defined as

a · b ≡ gµνaµbν = a0b0 − a · b. (1.26)

Definition 1.6 (Covariant and Contravariant Components): By convention,
the ordinary components of a Lorentz vector {aµ} are referred to as the con-
travariant components. An alternative way to represent the same vector is by

5Of course, the two frames must coincide for β = 0.
6Note: 0 ≤ |β| ≤ 1, 1 ≤ γ.
7The set of all proper Lorentz transformations {Λ} satisfying the conditions of Eqs. 1.7,

1.15 and 1.17 forms the Proper Lorentz Group or, in short, the Lorentz Group. The group
consists of all special “orthogonal” 4 × 4 matrices - the quotation marks here call attention
to the non-Euclidean signature of the invariant metric gµν , (1,−1,−1,−1). Thus, Λ-matrices
for Lorentz boosts are not unitary like the rotation matrices.
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its covariant components {aµ} defined as

aµ ≡ gµνaν . (1.27)

So, a0 = a0, and ai = −ai, i = 1, 2, 3. With these definitions, we can simplify
the definition of the scalar product, Eq. 1.26 to

a · b = aµbµ = aµbµ. (1.28)

The covariant components of a 4-vector a transform under proper Lorentz trans-
formations as

aµ → a′

µ = aν(Λ−1)ν
µ. (1.29)

This result displays the transformation property of aµ in the form which most
explicitly indicates why aµaµ is an invariant. There is a natural covariant 4-
vector, the 4-gradient ∂µ defined as

∂µ ≡ ∂

∂xµ
= (

∂

∂t
, ~∇). (1.30)

We can verify that

∂µ → ∂′

µ =
∂

∂x′µ
=

∂xν

∂x′µ

∂

∂xν
= (Λ−1)ν

µ

∂

∂xν
. (1.31)

With respect to an arbitrarily chosen coordinate origin, space-time is divided
into three distinct regions separated by the light-cone which is defined by the
equation

τ2 ≡ xµxµ = t2 − x · x = 0. (1.32)

The future consists of all points with τ 2 > 0 and x0 > 0. These points can be
reached by the “world line” of an event at the origin. The past consists of all
points with τ2 > 0 and x0 < 0. Events at any of these points can, in principle,
evolve through the origin. By a suitable Lorentz transformation, the coordinates
of any point in these two regions can be transformed into the form (t′,0); hence
these coordinate vectors are said to be time-like. The region outside the light-
cone are characterized by τ 2 < 0. For any given point in this region, there
exists some Lorentz transformation which transforms the components of the
coordinate vector into the form (0,x′). Hence these coordinate vectors are said
to be space-like and the entire region is called the space-like region (with respect
to the origin). No world-line from the space-like region can evolve through the
origin and vice versa. When τ 2 = 0, the point is said to be light-like since only
world lines of a light signal (a photon) connect such points to the origin. By
analogy to the coordinates, an arbitrary 4-vector is said to be time-like, space-
like, or light-like depending on whether aµaµ is less than, greater than, or equal
to 0.

For two events occuring at xµ and xµ+dµ, the scalar product of their 4-vector
coordinate difference with itself,

(dτ)2 ≡ dµdµ = (dt)2 − (dx)2 − (dy)2 − (dz)2 (1.33)
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is called the proper interval (squared) between the two events. The proper
interval is, of course, independent of the choice of Lorentz frame. If two events
A and B have (dτ)2 < 0, then the separation between them is space-like (i.e.they
are not within each other’s light cone). Their time-ordering is frame-dependent
and, therefore, they cannot be causally connected. Note, however, that both
can still be within the light cone of, and therefore, causally connected to, a third
event C if C is either in the absolute past, or in the absolute future, of both A

and B.
For two frames with a relative Lorentz boost ~β, Eq. 1.33 gives us the proper

interval between the space origins at time dt. For convenience, let us choose the
4-coordinate origins to coincide, with x and x′ axes oriented along the boost,
so that the 3-velocity of the space origin of the frame moving along the positive

x-axis of the other is
dx

dt
= (β, 0, 0). Then, dividing both sides of Eq. 1.33 by

(dt)2, we get
dτ

dt
=

√

1 − β2 =
1

γ
, (1.34)

or,
dt = γdτ. (1.35)

This result is sometimes referred to as time dilation. It is as a consequence
of this, that high-energy muons (⇒ traveling near the speed of light, as we
shall soon see) created in collisions between high-energy cosmic ray particles
(primarily protons) and atomic nuclei in Earth’s upper atmosphere frequently
traverse distances of O(10 km) to reach the surface of earth even though the
proper interval between the creation and decay of a muon is typically less than
2 µs, during which even light can travel no more than 600 m. This is possible
because, while a muon may live only ∼2 µs in its own rest frame, to an observer
on earth, the time interval between the production and decay of a cosmic-ray
muon appears much longer owing to the very high speed at which the particle
is moving.8 This poses no contradiction to the observer in the muon’s rest
frame either. The ∼2 µs that he sees the muon before it decays is enough for
it to travel to Earth because the thickness of the Earth’s atmosphere, which is
measured at, say 30 km, by a terrestrial observer, appears much less to him:

dx′ =
1

γ
dx (1.36)

This effect is sometimes referred to as length contraction.
In Newtonian mechanics, t is an external (and universal) parameter. There-

fore, β ≡ v ≡ dx

dt
is a 3-vector, i.e. it transforms like x in the 3-dimensional

Euclidean space. Not so in the 4-dimensional Minkowski space, where t itself is

8The proper interval between the production and decay of an unstable particle X follows

an exponential distribution: NX(t) = NX(0)e
−

t

τX , where NX(t) is the number of particles
at time t. τX is a property, called the lifetime, of the particle. τµ ≈ 2.2 µs.
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a coordinate. Therefore, vµ ≡ dxµ

dt
=

dµ

d0
is not a Lorentz 4-vector. However,

uµ ≡ dµ

dτ
= γ

dµ

dt
= γvµ (1.37)

is a Lorentz 4-vector, and is called the relativistic velocity. It can be easily
shown that uµuµ = 1.

Since v0 = 1, u0 = γ. Thus, expressed in terms of the relativistic 4-velocity
uµ (with u2 = u3 = 0), instead of the non-realtivistic 3-velocity ~β, the Lorentz
transformation of Eq. 1.25 reduces to a simpler, more intuitive form:

t′ = u0t − u1x,

x′ = −u1t + u0x,

y′ = y,

z′ = z,

(1.38)

which is reminiscent of the Galilean transformation, except for the fact that
space and time coordinates now mix in a symmetric manner.

1.2 Relativistic kinematics

The momentum 4-vector of a particle is

pµ = (E,p), (1.39)

where E is the energy of the particle, and p its Euclidean 3-momentum.
In free space (i.e. in the absence of any external field interacting with the

particle), the momentum is all-kinetic.9 For a free particle with a non-zero
mass m, the momentum is simply the product of its mass and velocity, just as
in Newtonian mechanics:

pµ = muµ (1.40)

Thus,
pµpµ = m2. (1.41)

Equation 1.41 holds for massless particles, such as photons, as well. Of course,
for a given pµ, uµ → ∞ as m → 0. For m = 0, u0 and at least one ui

are undefined, but pµ are finite. For a particle at rest, u0 = 1, and we get
E = m(c2 = 1), the equation that most people readily associate with Einstein.

In a closed system of particles, homogeneity of space-time ensures that the
4-momentum is conserved in any interaction (scattering, decay, annihilation):

∑

i

pµ =
∑

f

pµ, (1.42)

9When the total momentum is different from the kinetic momentum, the latter is sometimes
denoted by πµ.
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where the summation on the LHS runs over all particles in the initial state
(before an ineraction) and the summation on the RHS runs over all particles
in the final state (after an ineraction). Equations 1.42 are by far the most
important (and often the only) ingredient in the study of particle interactions,
especially from the experimental perspective.

Consider a process ab → cd From the 4-momenta of the 4 particles, we can
form 10 Lorentz-invariant scalar products: pµ

apµ
a , pµ

ap
µ
b , pµ

apµ
c , etc. However, these

are subject to the following 8 constraints: first, onservation of 4-momentum
results in the 4 equations

pµ
a + p

µ
b = pµ

c + p
µ
d , (1.43)

and second, p
µ
i p

µ
i = m2

i for i = a, b, c, d. Thus, there must be two indepen-
dent variables that describe the process. In non-relativistic mechanics, they are
usually chosen to be the energy and the scattering angle. In particle physics,
frame-independent quantities prove to be more convenient. Following the above
arguments it is natural to define the following Lorentz scalars that are quadratic
in the momenta:

s = (pa + pb)
2 = (pc + pd)

2, (1.44)

t = (pc − pa)2 = (pd − pb)
2, (1.45)

u = (pd − pa)2 = (pc − pb)
2. (1.46)

These are called Mandelstam variables.
Clearly, the Mandelstam variables are invariant under time reversal. Also,

“crossing” of processes merely results in the interchange of the Mandelstam
variables. It is customary to denote the main physical process, i.e. ab → cd in
this case, as the s channel since

√
s is the total CM energy. In the cross process

ac̄ → b̄d, the CM energy would be what we now have as t, hence it is called the
t channel. Similarly, ac̄ → b̄d would be the u channel.

Any two of the three Mandelstam variables completely determines the third.
A little algebra leads to the relation

s + t + u = m2

a + m2

b + m2

c + m2

d (1.47)

Although only two are independent, we define all three for the sake of symmetry.
Since s, t, u are Lorentz scalars, they can be evaluated in any frame and used
without change in any other. We shall deal mostly with symmetric colliders
where the laboratory center-of-mass (CM) frame is stationary in the laboratory.
By convention, we choose a coordinate system such that one of the particles is
moving along the z-axis.10 Thus, we have for the colliding particles

pµ
a = (Ea, 0, 0, p) (1.48)

p
µ
b = (Eb, 0, 0,−p) (1.49)

10It makes good practical sense for this to lie in a horizontal plane, resulting in the choice
of the perpendicular horizontal direction for x and the vertical as y to form a right-handed
rectangular coordinate system for a particle detector.
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and for the particles emerging out of the collision,

pµ
c = (Ec,p

′) (1.50)

p
µ
d = (Ed,−p′) (1.51)

Let us take the liberty to rotate our frame about the z-axis so that p′ lies in
the zx plane:

p = (p′ sin θ, 0, p′ cos θ), (1.52)

where θ is the scattering angle in the usual 3-dimensional sense.
Then, in the CM system

s = (Ea + Eb)
2 =

(

√

m2
a + p2 +

√

m2

b + p2

)2

, (1.53)

which can be solved for p,

p2 =

(

s − (ma + mb)
2
) (

s − (ma − mb)
2
)

4s
. (1.54)

A little more algebra gives

Ea =
s + m2

a − m2

b

2
√

s
(1.55)

And similarly for Eb, Ec, Ed.
For the scattering angle, we have

t = m2

c − m2

a − 2pµ
c pµ

a

= m2

c − m2

a − 2EcEa − 2p′ · p
= m2

c − m2

a − 2EcEa − 2p′p cos θ

(1.56)

and
u = m2

d − m2

a − 2EdEa − 2p′p cos θ (1.57)

For a process where the masses are negligible compared to the energies involved
(as is most often the case in high-energy particle physics),

Ea = Eb = p = Ec = Ed = p′ =

√
s

2
(1.58)

,

t = −s

2
(1 − cos θ) (1.59)

u = −s

2
(1 + cos θ) (1.60)

Like velocity, ordinary force, defined as the time derivative of momentum, is
not a 4-vector. But the quantity

fµ ≡ dpµ

dτ
(1.61)
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is the force 4-vector in the Minkowski space.
Define 4 four-vectors which in a particular frame are given by the infinitesi-

mal differentials

Aµ = (dt, 0, 0, 0),

Bµ = (0, dx, 0, 0),

Cµ = (0, 0, dy, 0),

Dµ = (0, 0, 0, dz).

(1.62)

Then the 4-dimensional volume element

d4x ≡ dx0dx1dx2dx3 = AµBνCλDσεµνλσ (1.63)

is Lorentz invariant (since the RHS has no uncontracted 4-vector index). It
follows that if F (x) is a Lorentz scalar function of xµ, then the integral

I [F ] =

∫

d4xF (x) (1.64)

is invariant under Lorentz transformations. Lagrangians in particle physics
theories are defined in terms of such action integrals.

1.3 Maxwell’s equations and the electromagnetic

field

To formulate and solve Maxwell’s equations in the framework of special rel-
ativity, we need to introduce two new 4-vectors: the charge-current density
Jµ = (ρ,J),and the electromagnetic potential Aµ = (φ,A).

In the non-relativistic framework, Maxwell’s equations are written as

~∇ ·E = ρ,

~∇×B − ∂E

∂t
= J,

~∇ ·B = 0,

~∇×E +
∂B

∂t
= 0.

(1.65)

Adding the
∂

∂t
of the first of the above equations to the divergence of the

second, we get (since the divergence of a curl vanishes identically) the continuity
equation

∂ρ

∂t
+ ~∇ · J = 0, (1.66)
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which guarantees the local conservation of electric charge. The solutions to
Maxwell’s equations in terms of the scalar and vector potentials are

E = −~∇V − ∂A

∂t
, (1.67)

B = ~∇×A. (1.68)

In 4-vector notation, the continuity equation Eq. 1.66 readily simplifies to

∂µJµ = 0. (1.69)

The electric and magnetic fields can be written as components of the antisym-
metric electromagnetic field tensor

Fµν ≡ ∂µAν − ∂νAµ =









0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0









(1.70)

So, unlike in the 3-dimensional Euclidean space, the electric and magnetic
fields are not vectors, but components of a tensor:

F0i = ∂0Ai − ∂iA0 = −Ei, (1.71)

Fij = ∂iAj − ∂jAi = εijkBk, (1.72)

where εijk is the Levi-Civita tensor in 3-dimensions.
Now the first two of Maxwell’s equations become the relativistic wave equa-

tion
∂µF µν = Jν , (1.73)

or, equivalently,
∂µ∂µAν − ∂ν∂µAµ = Jν , (1.74)

while the last two follow from the identity

∂λFµν + ∂µFνλ + ∂νFλµ = 0. (1.75)

The continuity equation Eq. 1.69 follows directly from Eq. 1.73: since the
partial derirvatives commute and F µν and is antisymmtric, ∂µJµ = ∂µ∂νF µν = 0.

Note that F µν is explicitly invariant under a transformation

Aµ → Aµ + ∂µλ(x), (1.76)

where λ(x) is any scalar function of space-time. Since only the electromagnetic
fields are physically manifested, any two 4-potentials that differ only by the
4-gradient of an arbitrary scalar function of space-time are equally valid for
describing a physical process. This is a particular example of a general class of
symmetry, called “gauge symmetry”, that play a central role in the formulation
of particle interactions within the standard model (electromagnetic, weak and
strong interactions) and beyond.
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