
NIU PHYS 600, Fall 2009 Classical Mechanics Solutions for HW5

Assignment: HW5 [40 points]

Assigned: 2009/11/10
Due: 2009/11/16

Solutions

P5.1 [10 points]
A simple plane pendulum has a mass m hanging at the end of a massless
string of length ℓ in a field of constant gravitational acceleration ~g. While
the pendulum is in motion, the length of the string is changed at a con-
stant rate ℓ̇ = v0. Find the Lagrangian and the Hamiltonian, determine
whether or not T +V and H are conserved, and comment on the physical
interpretation of your results. This is a rather famous problem discussed
by Einstein, Lorentz, and others at the 1911 Solvay Conference.
Hint: Since ℓ is not an independent generalized coordinate, but is con-

strained to be a simple linear function of time, the system only has one

degree of freedom.

S5.1 Let θ be the angle between the string and ~g. The kinetic and potential
energies are

T =
m

2
(ℓ̇2 + ℓ2θ̇2) and V = −mgℓ cos θ. (1)

So, the Lagrangian is

L = T − V =
m

2
(ℓ̇2 + ℓ2θ̇2) + mgℓ cos θ. (2)

This is a valid expression for the Lagrangian even though ℓ is not an in-
dependent generalized coordinate, but is constrained to be a simple linear
function of time, i.e.,

ℓ = ℓ0 + v0t. (3)

In the Hamiltonian H = piq̇i − L, the implied sum piq̇i contributes only

pθ θ̇ =
∂L

∂θ̇
θ̇ = mℓ2θ̇2 =

p2
θ

mℓ2
. (4)

Hence,

H =
p2

θ

mℓ2
−

m

2

(

v2
0 +

p2
θ

m2ℓ2

)

− mgℓ cos θ

=
p2

θ

2mℓ2
−

m

2
v2
0 − mgℓ cos θ

=
p2

θ

2m(ℓ0 + v0t)2
−

m

2
v2
0 − mg(ℓ0 + v0t) cos θ

(5)

It can be seen that
∂H

∂t
6= 0. Hence, the Hamiltonian is not conserved.

Moreover, T + V = H + mv2
0 . So, the mechanical energy T + V is not

conserved either. Physically, the nonconservation of both H and T + V

results from the energy flowing between the system and the external agent
that drives the length of the string.
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P5.2 [2 + 4 + 4 = 10 points]
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Figure 5.1

A lawn-mower engine contains a piston of mass m that moves along ẑ in a
field of constant gravitational acceleration ~g = gẑ. The center of mass of
the piston is connected to a flywheel of moment of intertia I at a distance
R from its center by a rigid and massless rod of length ℓ, as shown in
Fig. 5.1. The system has only one degree of freedom but two natural
coordinates, φ and z.

(a) Express the Lagrangian in terms of q1 = z, q2 = φ and write the
constraint equation that connects the two coordinates.

(b) From the above results, write down the two coupled equations of mo-
tion using the method of “undetermined multiplier”s. Then eliminate
the undetermined multiplier to obtain a single equation of motion (it
can still involve both coordinates).

(c) Find pφ(z, φ, φ̇).

S5.2 (a) Let us take the origin to be at the center of the flywheel.

T =
m

2
ż2+

I

2
φ̇2; V = mgz ⇒ L = T −V =

m

2
ż2+

I

2
φ̇2−mgz.

(6)
The constraint equation is

z2 + R2 − 2Rz cos φ = ℓ2. (7)

(b) A constraint equation of the form C = 0 leads to Lagrange equa-
tion(s) of motion

d

dt

(

∂L

∂qi

)

−
∂L

∂qi

− λ
∂C

∂qi

= 0, (8)

where λ(~q, t) is the undetermined multiplier. Thus, in our case, the
equations of motion are

d

dt
(mż) = −mg − λ(2z − 2R cos φ) (9)
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and
d

dt

(

Iφ̇
)

= −2λRz sin φ. (10)

Eliminating λ from Eqs. 9 and 10 we find that z and φ satisfy the
differential equation

mz̈ +

(

cot φ

z
−

csc φ

R

)

Iφ̈ + mg = 0. (11)

(c) Differentiating the constraint equation w.r.t. t we get

ż(z − R cos φ) + Rzφ̇ sinφ = 0,

or, ż = −
Rz sin φ

z − R cos φ
φ̇.

(12)

Differentiating further w.r.t. φ̇ we get

∂ż

∂φ̇
(z − R cos φ) + Rz sin φ = 0,

or,
∂ż

∂φ̇
= −

Rz sin φ

z − R cos φ
.

(13)

Thus, using Eqs. 6, 12, and 13,

pφ(z, φ, φ̇) ≡
∂L

∂φ̇
= Iφ̇ + mż

∂ż

∂φ̇
=

[

I + m

(

Rz sinφ

z − R cos φ

)2
]

φ̇. (14)

P5.3 [4 + 4 + 2 = 10 points]
Liouville’s Theorem gives information about the statistical properties of
systems containing a very large number of particles. The theorem can be
expressed as Ḋ = 0, where D is the phase space density of possible systems
in that region of phase space. There is no equivalent theorem that can be
expressed in terms of quantities in configuration space. Thus, problems
in statistical mechanics are important examples where the Hamiltonian
approach offers a solution while the Lagrangian approach does not.

Now consider the example of a beam of identical charged particles with
momentum P , produced by an accelerator. Suppose that in the plane
perpendicular to the incident direction, the beam initially has a uniformly
populated circular cross section of radius r1 in configuration space, and
a uniformly populated circular cross section of radius p1 in momentum
space. A pair of quadrupole magnets with appropriate relative orientation
can focus a beam of charged particles, i.e., can reduce the transverse radius
from r1 to r2, where r2 < r1.

(a) What does Liouville’s theorem tell us about the consequences of this
focusing operation?

(b) Suppose that the beam pipe has an internal radius R. At what
maximum distance downstream from the focus must another focus-
ing element be located in order to avoid some of the beam particles
scraping the pipe?
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(c) A collimator (an absorber with a hole in it) could also be used to
produce a beam with radius r2. Contrast the consequences of using
a focusing element vis-a-vis a collimator.

S5.3 (a) The focusing element (the magnetic field of the quadrupoles) does
not alter the number of particles in the beam. In the context of
this problem, Liouville’s theorem then tells us that the phase space
volume V occupied by the beam is not changed. In this problem, two
dimensions of the general 6d phase space are irrelevant: the spatial
and momentum dimensions along the beam direction. Therefore, we
can denote the phase space volume of the beam by

V ∝ πr2πp2 = kr2p2, (15)

where r and p are the radii of the beam in the transverse configuration
and momentum directions, respectively, and k is a constant. Thus,
by Liouville’s theorem,

p2 = p1

r1

r2

, (16)

i.e., squeezing of the cross section of the beam into a narrower span of
configuration space necessarily makes the cross section of the beam
in momentum space swell up.

(b) As a result of focusing down to a radius r2, the beam will diverge at
an angle α such that

tan α =
p2

P
=

p1

P

r1

r2

. (17)

At a distance d downstream, the maximum spatial radius of the beam
will grow to

r(d) = r2 + d tan α. (18)

We are asked to find dmax such that r(dmax) = R. Thus,

dmax = (R − r2)
P

p1

r2

r1

. (19)

(c) If loss of particles is not a consideration, the spatial cross section of
a particle beam can be made smaller by passing it through a colli-
mator, without any obvious effect on the properties of the beam in
momentum space. In terms of the notation above, such collimation
obviously leads to V2 < V1. Liouville’s theorem is not violated, how-
ever, since the number of particles also decreases in a way so as to
leave the phase space density D unaltered.

P5.4 [3 + 3 + 4 = 10 points]
For a three-particle system with masses mi, coordinates ~ri, and canonical
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momenta ~pi (i = 1, 2, 3), we introdce the following (Jacobian) coordinates:

~ρ1 ≡ ~r2 − ~r1 (the coordinate of particle 2 relative to 1),

~ρ2 ≡ ~r3 −
m1~r1 + m2~r2

m1 + m2

(the coordinate of particle 3 relative to the c.m. of 1 and 2),

~ρ3 ≡
m1~r1 + m2~r2 + m3~r3

m1 + m2 + m3

(the c.m. of the three particles),

~π1 ≡
m1~p2 − m2~p1

m1 + m2

,

~π2 ≡
(m1 + m2)~p3 − m3(~p1 + ~p2)

m1 + m2 + m3

,

~π3 ≡ ~p1 + ~p2 + ~p3.

(20)

Assume that the canonical momenta ~pi are the same as the kinetic mo-
menta (i.e., ~pi = mi~̇ri).

(a) What are the physical interpretatiton of the momenta ~πi?

(b) How could we define such (Jacobian) coordinates and momenta for
any arbitrary number of particles?

(c) Show that the transformation

{~r1, ~r2, ~r3, ~p1, ~p2, ~p3} → {~ρ1, ~ρ2, ~ρ3, ~π1, ~π2, ~π3} (21)

is canonical.

Hint: Use reduced masses.

S5.4 (a) The reduced mass of the two-body system of the mass points 1 and
2 is

µ1 =
m1m2

m1 + m2

. (22)

The reduced mass of the mass point 3 and the center-of-mass of the
mass points 1 and 2 is

µ2 =
(m1 + m2)m3

m1 + m2 + m3

. (23)

Then, we have
~π1 = µ1~̇ρ1; ~π2 = µ2~̇ρ2. (24)

This explains the meaning of these two momenta.

(b) Let us defifne

Mj ≡

j
∑

i=1

mi, (25)
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so Mj is the total mass of the first j particles considered. Then we
can write

~ρj = ~rj+1 −
1

Mj

j
∑

i=1

mi~ri, (j = 1, 2, . . . , N − 1),

~ρN =
1

MN

N
∑

i=1

mi~ri,

~πj =
1

Mj+1

j
∑

i=1

(

Mj~pj+1 − mj+1

j
∑

i=1

~pi

)

, (j = 1, 2, . . . , N − 1),

~πN =
N
∑

i=1

~pi.

(26)

(c) From the Poisson bracket relation {qi,a, pj,b} = δijδab, were a, b de-
note the particle index and i, j the cartesian coordinate indices, it
follows that {ρi,a, πj,b} = δijδab. For instance,

{ρ1,1, π1,1} =

(

m1

m1 + m2

+
m2

m1 + m2

)

= 1,

{ρ2,1, π1,1} =

(

m3

m1 + m2 + m3

−
m3

m1 + m2 + m3

)

= 0,

(27)

etc.
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