
NIU PHYS 600, Fall 2009 Classical Mechanics Solutions for HW3

Assignment: HW3 [40 points]

Assigned: 2009/10/19
Due: 2009/10/26

Solutions

P3.1 [7 points]
A smooth rod of length ℓ rotates in a plane with a constant angular velocity
ω about an axis fixed at one end of the rod and perpendicular to the plane
of motion. A bead of mass m, free to move along the rod, is initially
positioned at the fixed end of the rod and given a slight push such that
its initial speed directed towards the other end of the rod is ωℓ. Using
Lagrange’s method, find the time it takes the bead to reach the other end
of the rod.

S3.1 Let {r, θ} denote the polar coordinates of the bead in the frame whose
origin is at the fixed point on the rod (θ = 0 is arbitrary). Then, its kinetic
energy is

T =
m

2
(ṙ2 + r2θ̇2) =

m

2
(ṙ2 + r2ω2) (1)

and potential energy
U = 0. (2)

Thus, the Lagrangian is

L = T − U =
m

2
(ṙ2 + r2ω2). (3)

And the Euler-Lagrange equation gives

d

dt

∂L

∂ṙ
− ∂L

∂r
= 0 ⇒ r̈ − ω2r = 0 (4)

The general solution to this equation of motion is

r(t) = Aeωt + Be−ωt (5)

to which we apply the initial conditions:

r(0) = 0 ⇒ A + B = 0 (6)

and
ṙ(0) = ℓω ⇒ A − B = ℓ. (7)

Solving Eqs. 6 and 7, we get

A =
ℓ

2
; B = − ℓ

2
. (8)

So,

r(t) =
ℓ

2

(

eωt − e−ωt
)

. (9)

If τ is the time the bead takes to reach the other end, then

r(τ) = ℓ ⇒ 1

2

(

eωτ − e−ωτ
)

= 1, (10)
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or,

τ =
1

ω
ln
(√

2 + 1
)

. (11)

P3.2 [7 points]
Using Lagrange’s method, find the two-dimensional equation of motion of
a pendulum of mass m suspended at the end of a massless rod of length ℓ
in a gravitational field of uniform acceleration g, whose point of support
is executing a simple harmonic motion in the direction perpendicular to
gravity, as shown in the figure below, i.e., the coordinates of the point of
support are given as functions of time by

xs(t) = x0 cos (ωt); ys(t) = 0.

(0, 0) s x

y

θ
ℓ

m

g

Use θ, the angle between the pendulum and the direction of gravity, as
the generalized coordinate, and express your answer in terms of θ (and its
time derivatives). Assume θ to be small and use the corresponding approx-
imations to simplify your answer. Compare your result to the equation of
motion of a forced harmonic oscillator.

S3.2 The Cartesian coordinates and velocities of the bob are

x = xs + ℓ sin θ = x0 cos (ωt) + ℓ sin θ, y = ℓ cos θ

⇒ ẋ = −x0ω sin (ωt) + ℓθ̇ cos θ, ẏ = −ℓθ̇ sin θ.
(12)

So, the kinetic energy is

T =
m

2
(ẋ2 + ẏ2) =

m

2
[x2

0ω
2 sin2 (ωt) − 2x0ωℓθ̇ sin (ωt) cos θ + ℓ2θ̇2], (13)

and the potential energy

U = −mgy = −mgℓ cos θ, (14)

and the Lagrangian (we omit m which would eventually drop out anyway
when we write the equation of motion)

L = T−V =
1

2
[x2

0ω
2 sin2 (ωt)−2x0ωℓθ̇ sin (ωt) cos θ+ℓ2θ̇2]+gℓ cos θ. (15)

∂L

∂θ
= x0ωℓθ̇ sin (ωt) sin θ − gℓ sin θ, (16)
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∂L

∂θ̇
= −x0ωℓ sin (ωt) cos θ + ℓ2θ̇, (17)

d

dt

∂L

∂θ̇
= −x0ω

2ℓ cos (ωt) cos θ + x0ωℓθ̇ sin (ωt) sin θ + ℓ2θ̈, (18)

Hence, the Euler-Lagrange equation of motion gives

∂L

∂θ
− d

dt

∂L

∂θ̇
= 0 ⇒ −gℓ sin θ + x0ω

2ℓ cos (ωt) cos θ − ℓ2θ̈ = 0 (19)

If θ is small, so all terms containing θ2 or higher powers of θ can be
neglected, then sin θ ≈ θ, cos θ ≈ 1, and Eq. 19 reduces to

θ̈ + ω2
0θ =

x0

ℓ
ω2 cos (ωt) (20)

where ω0 =

√

g

l
. Equation 20 represents a simple harmonic oscillator

driven by a sinusoidal force (no damping).

P3.3 [6+3 = 9 points]

(a) Obtain the Hamiltonian and the canonical equations for a particle in
a central force field (in 3 dimensions).

(b) Take two of the initial conditions to be pφ(0) = 0 and φ(0) = 0 (this
is essentially the choice of a particular spherical coordinate system).
Discuss the resulting simplification of the canonical equations.

S3.3 (a) The Lagrangian is

L =
m

2

(

ṙ2 + r2θ̇2 + (r2 sin2 θ)φ̇2

)

− U(r), (21)

where the first of the two terms on the right hand side is the kinetic
energy T , and U(r) is the potential energy. The conjugate momenta
are

pr ≡ ∂L

∂ṙ
=mṙ,

pθ ≡ ∂L

∂θ̇
=mr2θ̇,

pφ ≡ ∂L

∂φ̇
=m(r2 sin2 θ)φ̇,

(22)

which give us the generalized velocities in terms of the generalized
momenta:

ṙ =
pr

m
,

θ̇ =
pθ

mr2
,

φ̇ =
pφ

mr2 sin2 θ
.

(23)
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The Hamiltonian is

H = piq̇i − L =
p2

r

2m
+

p2
θ

2mr2
+

p2
φ

2mr2 sin2 θ
+ U(r) ≡ T + U. (24)

Hamilton’s canonical equations in these variables are

ṙ ≡ ∂H

∂pr

=
pr

m
, ṗr ≡ −∂H

∂r
=

1

mr3

(

p2
θ +

p2
φ

sin2 θ

)

− ∂U

∂r
;

θ̇ ≡ ∂H

∂pθ

=
pθ

mr2
, ṗθ ≡ −∂H

∂θ
=

p2
φ cos θ

mr2 sin3 θ
;

φ̇ ≡ ∂H

∂pφ

=
pφ

mr2 sin2 θ
, ṗφ ≡ −∂H

∂φ
= 0.

(25)
Notice that the three equations on the left follow immediately from
the definitions of the generalized momenta. This is always the case
with Hamilton’s canonical equations: by studying their derivation
it becomes clear that half of them are simply inversions of those
definitions.

(b) If pφ(0) = 0, the last of the canonical equations implies that pφ(t) = 0
for all t. Then the canonical equations become

ṙ =
pr

m
, ṗr =

p2
θ

mr3
− ∂U

∂r
;

θ̇ =
pθ

mr2
, ṗθ = 0;

φ̇ = 0, ṗφ = 0.

(26)

From φ(0) = 0 and these equations it follows that φ(t) = 0 for
all t, i.e., the motion is confined to the φ = 0 plane. The result
is a system with two degrees of freedom described by the first four
canonical equations, the last of which implies that pθ, i.e., the angular
momentum in the φ = 0 plane, is a constant of the motion.

P3.4 [5 + 5 = 10 points]
The 3-dimensional motion of a particle of mass m is described by the
Lagrangian function

L =
m

2
ẋ2

i + ωl3, (27)

where l3 represents the third (z) component of the angular momentum,
and ω is the corresponding constant angular velocity.

(a) Find the equations of motion, write them in terms of the complex
variable u ≡ x1 + ix2, and of x3, and solve them.

(b) Find the kinetic and canonical momenta, and construct the Hamilto-
nian. Show that the particle has only kinetic energy, and that the
canonical momenta are conserved.
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S3.4 (a)
u̇u̇∗ = ẋ2

1 + ẋ2
2. (28)

l3 = m(x1ẋ2 − x2ẋ1) =
m

2i
(u̇u∗ − uu̇∗). (29)

So,

L(u, x3, u̇, ẋ3) =
m

2

(

(u̇u̇∗ + ẋ2
3) − iω(u̇u∗ − uu̇∗)

)

. (30)

The equations of motion are

ü∗ − iωu̇∗ = 0; and ẍ3 = 0. (31)

So,

u̇∗ = eiωt, or, u =
i

ω
e−iωt + C, (32)

where C is a complex constant. The solutions for x1 and x2 follow:

x1 =
1

ω
sin (ωt) + C1, x2 =

1

ω
cos (ωt) + C2, (33)

where C1 = Re(C), C2 = Im(C). Also,

x3 = C3t + C4, (34)

where C3 and C4 are real constants.

(b) The canonically conjugate momenta are obtained as
∂L

∂q̇i

:

p1 = m(ẋ1 − ωx2), p2 = m(ẋ2 − ωx1), p3 = mẋ3, (35)

while the kinetic momenta are given by πi = mẋi. In order to con-
struct the Hamiltonian, we first express the velocities in terms of the
canonical momenta

ẋ1 =
p1

m
+ ωx2, ẋ2 =

p2

m
− ωx1, ẋ3 =

p3

m
. (36)

When we substitute these into L and in the Hamiltonian

H = piẋi − L, (37)

all position-dependent terms cancel, leaving

H =
1

2m
(p2

1 + p2
2 + p2

3). (38)

Thus, the particle has only kinetic energy, and the canonical momenta

pi are conserved (since ṗi =
∂H

∂xi

= 0).

P3.5 [3 + 4 = 7 points]
Invariance under time translations and Noether’s theorem. The theorem
of E. Noether can be applied to the case of translations in time by means of
the following procedure. Make t a coordinate-like variable by parametriz-
ing both q and t as functions of a common independent variable τ :

qi = qi(τ) (i = 1, . . . , n); t = t(τ), (39)

and by defining a new Lagrangian function in terms of the old one:

L̃

(

qi, t,
dqi

dτ
,
dt

dτ

)

≡ L

(

qi,
1
dt
dτ

dqi

dτ
, t

)

dt

dτ
(40)
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(a) Show that Hamilton’s variational principle applied to L̃ yields the
same equations of motion as it does for L.

(b) Assume L to be invariant under time translations:

hs(qi, t) = (qi, t + s). (41)

Apply Noether’s theorem to L̃ and find the constant of motion cor-
responding to the invariance.

S3.5 (a) Hamilton’s variational principle, when applied to L̃, requires

S̃ ≡
∫ τ2

τ1

L̃dτ (42)

to be an extremum. Now, since

∫ τ2

τ1

L̃dτ =

∫ t2

t1

Ldt, with t1 = t1(τ1), t2 = t2(τ2), (43)

The action integral S̃ is extremal if and only if the Lagrangian equa-
tions that follow from L are fulfilled.

(b) Treating t as another generalized co-ordinate, with the correspon-
dence between all coordinates marked by a common independent
parameter τ , we have t = qn+1(τ). The corresponding generalized
momentum is given by

pn+1 =
∂L̃

∂(dt/dτ)
= L +

n
∑

i=1

∂L

∂q̇i

(

− 1

(dt/dτ)2

)

∂L

∂q̇i

dqi

dt
. (44)

Since L̃ does not depend explicitly on t (according to the stated
invariance under time translation), Noether’s theorem dictates that
pn+1 be conserved. Note that except for a sign, the RHS is just the
expression for the total energy.
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