Assignment: HW2 [40 points]

Assigned: 2009/09/05
Due: 2009/10/12

Solutions

P2.1 $[1+3+3+3+2=12$ points $]$
Let the motion of a point mass be governed by the law

$$
\begin{equation*}
\ddot{\mathbf{r}}=\dot{\mathbf{r}} \times \mathbf{a}, \quad \mathbf{a}=\text { const. } \tag{1}
\end{equation*}
$$

(a) Show that $\dot{\mathbf{r}} \cdot \mathbf{a}$ is constant in time.
(b) Reduce Eq. 1 to an inhomogeneous differential equation of the form $\ddot{\mathbf{r}}+\omega^{2} \mathbf{r}=f(t)$.
(c) Solve the above equation by using a particular function of the form $\mathbf{r}_{p}=\mathbf{c} t+\mathbf{d}$
(d) Express the constants of integration in terms of the initial values $\mathbf{r}(0)$ and $\dot{\mathbf{r}}(0)$.
(e) Describe the curve $\mathbf{r}(t)=\mathbf{r}_{g}(t)+\mathbf{r}_{p}(t)$, where $\mathbf{r}_{g}(t)$ is the solution of the homogeneous equation $\ddot{\mathbf{r}}+\omega^{2} \mathbf{r}=0$.

S2.1 (a)

$$
\begin{equation*}
\frac{d}{d t}(\dot{\mathbf{r}} \cdot \mathbf{a})=\ddot{\mathbf{r}} \cdot \mathbf{a}=(\dot{\mathbf{r}} \times \mathbf{a}) \cdot \mathbf{a}=0 \tag{2}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\frac{d}{d t} \ddot{\mathbf{r}}=\ddot{\mathbf{r}} \times \mathbf{a}=(\dot{\mathbf{r}} \times \mathbf{a}) \times \mathbf{a}=-(\mathbf{a} \cdot \mathbf{a}) \dot{\mathbf{r}}+(\dot{\mathbf{r}} \cdot \mathbf{a}) \mathbf{a} \tag{3}
\end{equation*}
$$

We have shown the second term to be constant. Thus, integrating this equation from 0 to t, we get

$$
\begin{equation*}
\ddot{\mathbf{r}}(t)-\mathbf{r}(0)=-\omega^{2}(\mathbf{r}(t)-\mathbf{r}(0))+(\dot{\mathbf{r}}(0) \cdot \mathbf{a}) \mathbf{a} t \tag{4}
\end{equation*}
$$

where $\omega^{2}=\mathbf{a} \cdot \mathbf{a}=\mathbf{a}^{2}$. Since $\ddot{\mathbf{r}}(0)=\dot{\mathbf{r}}(0) \times \mathbf{a}$, we may write

$$
\begin{equation*}
\ddot{\mathbf{r}}(t)+\omega^{2} \mathbf{r}(t)=(\dot{\mathbf{r}}(0) \cdot \mathbf{a}) \mathbf{a} t+\dot{\mathbf{r}}(0) \times \mathbf{a}+\omega^{2} \mathbf{r}(0) \tag{5}
\end{equation*}
$$

(c) The general solution of the homogeneous differential equation is

$$
\begin{equation*}
\mathbf{r}_{g}(t)=\mathbf{c}_{1} \sin (\omega t)+\mathbf{c}_{2} \cos (\omega t) \tag{6}
\end{equation*}
$$

So, the particular solution is simply the RHS of Eq. 5 divided by ω^{2}, which is of the form

$$
\begin{equation*}
\mathbf{r}_{p}(t)=\mathbf{c} t+\mathbf{d} \tag{7}
\end{equation*}
$$

(d) We can get the constants in Eqs. 6 and 7 by comparing them with the corresponding terms in Eq. 5 and using the initial conditions

$$
\begin{align*}
& \mathbf{c}_{1}=\frac{1}{\omega^{3}}\left(\mathbf{a}^{2} \dot{\mathbf{r}}(0)-(\dot{\mathbf{r}}(0) \cdot \mathbf{a}) \mathbf{a}\right)=\frac{1}{\omega^{3}} \mathbf{a} \times(\dot{\mathbf{r}}(0) \times \mathbf{a}) \\
& \mathbf{c}_{2} \tag{8}\\
& =\frac{1}{\omega^{2}} \dot{\mathbf{r}}(0) \times \mathbf{a} \\
& \mathbf{c} \\
& =\frac{1}{\omega^{2}}(\dot{\mathbf{r}}(0) \cdot \mathbf{a}) \mathbf{a} \\
& \mathbf{d} \\
& \mathbf{d} \\
& \frac{1}{\omega^{2}} \dot{\mathbf{r}}(0) \times \mathbf{a}+\mathbf{r}(0)
\end{align*}
$$

(e) It represents a helix winding around the vector a.

P2.2 $[2+5=7$ points]
Use variational calculus to find
(a) The shortest connection between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the 2-dimensional Euclidean plane.
(b) The shape of a line of uniform mass density supported between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in a uniform gravitational field $\mathbf{g}=g \hat{\mathbf{e}}_{y}$.

S2.2 In the general case, where the action functional is the integral of a scalar function $f\left(y, y^{\prime}, x\right)$, with $y^{\prime}=\frac{d y}{d x}$, the Euler-Lagrange equation reads

$$
\begin{equation*}
\frac{\partial f}{\partial y}=\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}} \tag{9}
\end{equation*}
$$

Multiplying by y^{\prime} and adding the term $y^{\prime \prime} \frac{\partial f}{\partial y^{\prime}}$ to both sides we get

$$
\begin{equation*}
y^{\prime} \frac{\partial f}{\partial y}+y^{\prime \prime} \frac{\partial f}{\partial y^{\prime}}=\frac{d}{d x}\left(y^{\prime} \frac{\partial f}{\partial y^{\prime}}\right) \tag{10}
\end{equation*}
$$

If f does not depend explicitly on x, then $\frac{\partial f}{\partial x}=0$. Adding $\frac{\partial f}{\partial x}$ to the LHS of the above equation gives $\frac{d f\left(y, y^{\prime}\right)}{d x}$, while the RHS is left unchanged:

$$
\begin{equation*}
\frac{d f\left(y, y^{\prime}\right)}{d x}=\frac{d}{d x}\left(y^{\prime} \frac{\partial f}{\partial y^{\prime}}\right) \tag{11}
\end{equation*}
$$

or,

$$
\begin{equation*}
y^{\prime} \frac{\partial f}{\partial y^{\prime}}-f\left(y, y^{\prime}\right)=\text { const. } \tag{12}
\end{equation*}
$$

(a) We have to minimize the arc length

$$
\begin{equation*}
L=\int d s=\int_{x_{1}}^{x_{2}} \sqrt{1+y^{\prime 2}} d x \tag{13}
\end{equation*}
$$

So, $f\left(y, y^{\prime}\right)=\sqrt{1+y^{\prime 2}}$, and Eq. 12 gives

$$
\begin{equation*}
y^{\prime} \frac{\sqrt{y^{\prime}}}{\sqrt{1+y^{\prime 2}}}-\sqrt{1+y^{\prime 2}}=\text { const. } \quad \text { or, } \quad y^{\prime}=\text { const. } \tag{14}
\end{equation*}
$$

Thus, $y=a x+b$. Applying the boundary conditions $y\left(x_{1}\right)=y_{1}$, $y\left(x_{2}\right)=y_{2}$ we get

$$
\begin{equation*}
y(x)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)+y_{1} . \tag{15}
\end{equation*}
$$

(b) Equilibrium under gravity is reached when the y coordinate of the center of mass is at its lowest point. Thus, we must minimize the functional

$$
\begin{equation*}
L=\int y d s=\int_{x_{1}}^{x_{2}} y \sqrt{1+y^{\prime 2}} d x \tag{16}
\end{equation*}
$$

Once again, we use Eq. 12 with $f\left(y, y^{\prime}\right)=y \sqrt{1+y^{\prime 2}}$ and get

$$
\begin{equation*}
\frac{y y^{\prime 2}}{\sqrt{1+y^{\prime 2}}}-y \sqrt{1+y^{\prime 2}}=-\frac{y}{\sqrt{1+y^{\prime 2}}}=C_{1}=\text { const } \tag{17}
\end{equation*}
$$

or,

$$
\begin{equation*}
\frac{y^{2}}{C_{1}^{2}}-y^{\prime 2}=1 \tag{18}
\end{equation*}
$$

This is a separable differential equation whose general solution is

$$
\begin{equation*}
y(x)=C_{1} \cosh \left(\frac{x}{C_{1}}+C_{2}\right) \tag{19}
\end{equation*}
$$

The constants C_{1} and C_{2} are determined by the boundary conditions $y\left(x_{1}\right)=y_{1}, y\left(x_{2}\right)=y_{2}$.

P2.3 $[2+3=5$ points]
If a conservative force field in 3-dimensional space is axially symmetric, and we choose the z axis of a cylindrical coordinate system $\{r, \phi, z\}$ along the axis of symmetry, then show that
(a) The corresponding potential has the form $U=U(r, z)$,
(b) The force always lies in a plane containing the z axis.

S2.3 (a) A general conservative force in 3 dimensions can be expressed as

$$
\begin{equation*}
\nabla U(r, \phi, z)=\frac{\partial U}{\partial r} \hat{\mathbf{e}}_{r}+\frac{1}{r} \frac{\partial U}{\partial \phi} \hat{\mathbf{e}}_{\phi}+\frac{\partial U}{\partial z} \hat{\mathbf{e}}_{z} \tag{20}
\end{equation*}
$$

Since the force is axially symmetric, the coefficient of $\hat{\mathbf{e}}_{\phi}$ must be zero:

$$
\begin{equation*}
\frac{\partial U}{\partial \phi}=0 \quad \Longrightarrow \quad U=U(r, z) \tag{21}
\end{equation*}
$$

(b) The force lies in the plane spanned by the unit vectors $\hat{\mathbf{e}}_{r}$ and $\hat{\mathbf{e}}_{z}$, which always contains the z axis.
$\underline{\text { P2.4 }}[3+2=5$ points $]$
In Problem P1.4 (see Homework assignment 1), is

$$
\begin{equation*}
H \equiv \dot{\theta} \frac{\partial L}{\partial \dot{\theta}}-L \tag{22}
\end{equation*}
$$

conserved? Evaluate H and compare it to the energy $E \equiv T+V$.

S2.4 Recall the Lagrangian

$$
\begin{equation*}
L=\frac{m}{2}\left(R^{2} \dot{\theta}^{2}+R^{2} \Omega^{2} \sin ^{2} \theta\right)+m g R \cos \theta \tag{23}
\end{equation*}
$$

and note that it is time-independent. Hence, H is conserved. Direct calculation yields

$$
\begin{equation*}
H\left(\theta, p_{\theta}\right)=\frac{m}{2}\left(\frac{p^{2}}{m R^{2}}-R^{2} \Omega^{2} \sin ^{2} \theta\right)-m g R \cos \theta \tag{24}
\end{equation*}
$$

This is not the energy. The energy E is

$$
\begin{equation*}
E \equiv T+V=\frac{m}{2}\left(R^{2} \dot{\theta}^{2}+R^{2} \Omega^{2} \sin ^{2} \theta\right)-m g R \cos \theta=H+m R^{2} \Omega^{2} \sin ^{2} \theta \tag{25}
\end{equation*}
$$

Since H is constant in time, but θ may vary, E is not constant in time. Energy must enter and leave the system to keep the hoop rotating at a constant speed, and the term $m R^{2} \Omega^{2} \sin ^{2} \theta$ represents this varying amount of energy.

P2.5 $[3+6+2=11$ points $]$
The Lagrangian for a particle of mass m and electric charge e moving in the $x y$ plane is given by

$$
L=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+e E y-\frac{e B}{c} y \dot{x}
$$

This describes the motion of the particle in a uniform electric field E in the y direction and a uniform magnetic field B in the z direction. c is the speed of light.
(a) Write down the Euler-Lagrange equations.
(b) Find the Hamiltonian. Simplify the expression (eliminating \dot{x} by making use of a first integral of motion). What can you say about the general allowed motions in $y(t)$?
(c) At $t=0, x=y=0$. What critical value v_{c} must $\dot{x}(0)$ take in order for the particle to go in a uniform motion? What is the corresponding value of \dot{y} ? (You can either make use of the results in part (a) or that in part (b).)

S2.5 (a) The Euler-Lagrange equations are

$$
\begin{equation*}
\frac{\partial L}{\partial x}-\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}=0 \quad \Rightarrow \quad \frac{d}{d t}\left(m \dot{x}-\frac{e B}{c} y\right)=0 \quad \Rightarrow \quad \ddot{x}=\frac{e B}{m c} \dot{y} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial L}{\partial y}-\frac{d}{d t} \frac{\partial L}{\partial \dot{y}}=0 \quad \Rightarrow \quad \frac{d}{d t}(m \dot{y})=e E-\frac{e B}{c} \dot{x} \quad \Rightarrow \quad \ddot{y}=-\frac{e B}{m c} \dot{x}+\frac{e E}{m} . \tag{27}
\end{equation*}
$$

(b)

$$
\begin{equation*}
p_{x}=\frac{\partial L}{\partial \dot{x}}=m \dot{x}-\frac{e B}{c} y \quad \Rightarrow \quad \dot{x}=\frac{p_{x}}{m}+\frac{e B}{m c} y . \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
p_{y}=\frac{\partial L}{\partial \dot{y}}=m \dot{y} \quad \Rightarrow \quad \dot{y}=\frac{p_{y}}{m} . \tag{29}
\end{equation*}
$$

Hence, the Hamiltonian is

$$
\begin{align*}
H= & \dot{x} p_{x}+\dot{y} p_{y}-L \\
= & \frac{p_{x}^{2}}{m}+\frac{e B}{m c} p_{x} y+\frac{p_{y}^{2}}{m}-\frac{m}{2}\left[\left(\frac{p_{x}}{m}+\frac{e B}{m c} y\right)^{2}+\left(\frac{p_{y}}{m}\right)^{2}\right] \\
& -e E y+\frac{e B}{c} y\left(\frac{p_{x}}{m}+\frac{e B}{m c} y\right) \tag{30}\\
= & \frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)+\left(\frac{e B}{m c} p_{x}-e E\right) y+\frac{e^{2} B^{2}}{2 m c^{2}} y^{2} .
\end{align*}
$$

Since x does not explicitly appear in the Hamiltonian, the corresponding momentum p_{x} must be conserved:

$$
\begin{equation*}
\dot{p_{x}}=-\frac{\partial H}{\partial x}=0 \quad \Rightarrow \quad p_{x}=\text { const. } \tag{31}
\end{equation*}
$$

Using Eqs. 28 and 29 in another Hamilton's equation,

$$
\begin{equation*}
\ddot{y}=\frac{\dot{p_{y}}}{m}=-\frac{1}{m} \frac{\partial H}{\partial y}=-\frac{e B}{m^{2} c} p_{x}+\frac{e E}{m}-\frac{e^{2} B^{2}}{m^{2} c^{2}} y \tag{32}
\end{equation*}
$$

or,

$$
\begin{equation*}
\ddot{y}+\frac{e^{2} B^{2}}{m^{2} c^{2}} y=\frac{e}{m}\left(E-\frac{p_{x}}{m c} B\right)=\text { const. } \tag{33}
\end{equation*}
$$

Equation 33 represents a simple harmonic oscillator along y, with a characteristic frequency $\omega_{0}=\frac{e B}{m c}$, acted on by a constant driving force. Note that the same equation could be obtained by integrating both sides of Eq. 26 once with respect to t to get \dot{x} and substituting it in Eq. 27.
(c) Uniform motion $\Rightarrow \quad \ddot{x}=0 ; \ddot{y}=0$. By Eqs. 27 and 26, this means

$$
\begin{equation*}
v_{c}=\dot{x}=\frac{c E}{B} \quad \text { and } \quad \dot{y}=0 \tag{34}
\end{equation*}
$$

