
NIU PHYS 600, Fall 2009 Classical Mechanics Solutions for HW2

Assignment: HW2 [40 points]

Assigned: 2009/09/05
Due: 2009/10/12

Solutions

P2.1 [1 + 3 + 3 + 3 + 2 = 12 points]
Let the motion of a point mass be governed by the law

r̈ = ṙ × a, a = const. (1)

(a) Show that ṙ · a is constant in time.

(b) Reduce Eq. 1 to an inhomogeneous differential equation of the form
r̈ + ω2r = f(t).

(c) Solve the above equation by using a particular function of the form
rp = ct + d.

(d) Express the constants of integration in terms of the initial values r(0)
and ṙ(0).

(e) Describe the curve r(t) = rg(t) + rp(t), where rg(t) is the solution of
the homogeneous equation r̈ + ω2r = 0.

S2.1 (a)
d

dt
(ṙ · a) = r̈ · a = (ṙ × a) · a = 0. (2)

(b)
d

dt
r̈ = r̈ × a = (ṙ × a) × a = −(a · a)ṙ + (ṙ · a)a. (3)

We have shown the second term to be constant. Thus, integrating
this equation from 0 to t, we get

r̈(t) − r(0) = −ω2(r(t) − r(0)) + (ṙ(0) · a)at, (4)

where ω2 = a · a = a2. Since r̈(0) = ṙ(0) × a, we may write

r̈(t) + ω2r(t) = (ṙ(0) · a)at + ṙ(0) × a + ω2r(0). (5)

(c) The general solution of the homogeneous differential equation is

rg(t) = c1 sin(ωt) + c2 cos(ωt). (6)

So, the particular solution is simply the RHS of Eq. 5 divided by ω2,
which is of the form

rp(t) = ct + d (7)
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(d) We can get the constants in Eqs. 6 and 7 by comparing them with
the corresponding terms in Eq. 5 and using the initial conditions

c1 =
1

ω3
(a2ṙ(0) − (ṙ(0) · a)a) =

1

ω3
a × (ṙ(0) × a),

c2 =
1

ω2
ṙ(0) × a,

c =
1

ω2
(ṙ(0) · a)a,

d =
1

ω2
ṙ(0) × a + r(0).

(8)

(e) It represents a helix winding around the vector a.

P2.2 [2 + 5 = 7 points]
Use variational calculus to find

(a) The shortest connection between two points (x1, y1) and (x2, y2) on
the 2-dimensional Euclidean plane.

(b) The shape of a line of uniform mass density supported between (x1, y1)
and (x2, y2) in a uniform gravitational field g = gêy.

S2.2 In the general case, where the action functional is the integral of a scalar

function f(y, y′, x), with y′ =
dy

dx
, the Euler-Lagrange equation reads

∂f

∂y
=

d

dx

∂f

∂y′
(9)

Multiplying by y′ and adding the term y′′
∂f

∂y′
to both sides we get

y′
∂f

∂y
+ y′′

∂f

∂y′
=

d

dx

(

y′
∂f

∂y′

)

(10)

If f does not depend explicitly on x, then
∂f

∂x
= 0. Adding

∂f

∂x
to the LHS

of the above equation gives
df(y, y′)

dx
, while the RHS is left unchanged:

df(y, y′)

dx
=

d

dx

(

y′
∂f

∂y′

)

, (11)

or,

y′
∂f

∂y′
− f(y, y′) = const. (12)

(a) We have to minimize the arc length

L =

∫

ds =

∫ x2

x1

√

1 + y′2 dx. (13)

So, f(y, y′) =
√

1 + y′2, and Eq. 12 gives

y′

√
y′

√

1 + y′2
−

√

1 + y′2 = const. or, y′ = const. (14)
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Thus, y = ax + b. Applying the boundary conditions y(x1) = y1,
y(x2) = y2 we get

y(x) =
y2 − y1

x2 − x1

(x − x1) + y1. (15)

(b) Equilibrium under gravity is reached when the y coordinate of the
center of mass is at its lowest point. Thus, we must minimize the
functional

L =

∫

yds =

∫ x2

x1

y
√

1 + y′2 dx. (16)

Once again, we use Eq. 12 with f(y, y′) = y
√

1 + y′2 and get

yy′2

√

1 + y′2
− y

√

1 + y′2 = − y
√

1 + y′2
= C1 = const, (17)

or,
y2

C2

1

− y′2 = 1. (18)

This is a separable differential equation whose general solution is

y(x) = C1 cosh

(

x

C1

+ C2

)

(19)

The constants C1 and C2 are determined by the boundary conditions
y(x1) = y1, y(x2) = y2.

P2.3 [2 + 3 = 5 points]
If a conservative force field in 3-dimensional space is axially symmetric,
and we choose the z axis of a cylindrical coordinate system {r, φ, z} along
the axis of symmetry, then show that

(a) The corresponding potential has the form U = U(r, z),

(b) The force always lies in a plane containing the z axis.

S2.3 (a) A general conservative force in 3 dimensions can be expressed as

∇U(r, φ, z) =
∂U

∂r
êr +

1

r

∂U

∂φ
êφ +

∂U

∂z
êz (20)

Since the force is axially symmetric, the coefficient of êφ must be
zero:

∂U

∂φ
= 0 =⇒ U = U(r, z). (21)

(b) The force lies in the plane spanned by the unit vectors êr and êz,
which always contains the z axis.

P2.4 [3 + 2 = 5 points]
In Problem P1.4 (see Homework assignment 1), is

H ≡ θ̇
∂L

∂θ̇
− L (22)

conserved? Evaluate H and compare it to the energy E ≡ T + V .
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S2.4 Recall the Lagrangian

L =
m

2
(R2θ̇2 + R2Ω2 sin2 θ) + mgR cos θ (23)

and note that it is time-independent. Hence, H is conserved. Direct
calculation yields

H(θ, pθ) =
m

2

(

p2

mR2
− R2Ω2 sin2 θ

)

− mgR cos θ. (24)

This is not the energy. The energy E is

E ≡ T + V =
m

2
(R2θ̇2 + R2Ω2 sin2 θ) − mgR cos θ = H + mR2Ω2 sin2 θ.

(25)
Since H is constant in time, but θ may vary, E is not constant in time.
Energy must enter and leave the system to keep the hoop rotating at a
constant speed, and the term mR2Ω2 sin2 θ represents this varying amount
of energy.

P2.5 [3 + 6 + 2 = 11 points]
The Lagrangian for a particle of mass m and electric charge e moving in
the xy plane is given by

L =
m

2
(ẋ2 + ẏ2) + eEy − eB

c
yẋ.

This describes the motion of the particle in a uniform electric field E in
the y direction and a uniform magnetic field B in the z direction. c is the
speed of light.

(a) Write down the Euler-Lagrange equations.

(b) Find the Hamiltonian. Simplify the expression (eliminating ẋ by mak-
ing use of a first integral of motion). What can you say about the
general allowed motions in y(t)?

(c) At t = 0, x = y = 0. What critical value vc must ẋ(0) take in order for
the particle to go in a uniform motion? What is the corresponding
value of ẏ? (You can either make use of the results in part (a) or
that in part (b).)

S2.5 (a) The Euler-Lagrange equations are

∂L

∂x
− d

dt

∂L

∂ẋ
= 0 ⇒ d

dt

(

mẋ − eB

c
y

)

= 0 ⇒ ẍ =
eB

mc
ẏ

(26)
and

∂L

∂y
− d

dt

∂L

∂ẏ
= 0 ⇒ d

dt
(mẏ) = eE−eB

c
ẋ ⇒ ÿ = −eB

mc
ẋ+

eE

m
.

(27)

(b)

px =
∂L

∂ẋ
= mẋ − eB

c
y ⇒ ẋ =

px

m
+

eB

mc
y. (28)

4



NIU PHYS 600, Fall 2009 Classical Mechanics Solutions for HW2

py =
∂L

∂ẏ
= mẏ ⇒ ẏ =

py

m
. (29)

Hence, the Hamiltonian is

H = ẋpx + ẏpy − L

=
p2

x

m
+

eB

mc
pxy +

p2

y

m
− m

2

[

(

px

m
+

eB

mc
y

)2

+
(py

m

)2

]

− eEy +
eB

c
y

(

px

m
+

eB

mc
y

)

=
1

2m
(p2

x + p2

y) +

(

eB

mc
px − eE

)

y +
e2B2

2mc2
y2.

(30)

Since x does not explicitly appear in the Hamiltonian, the correspon-
ding momentum px must be conserved:

ṗx = −∂H

∂x
= 0 ⇒ px = const. (31)

Using Eqs. 28 and 29 in another Hamilton’s equation,

ÿ =
ṗy

m
= − 1

m

∂H

∂y
= − eB

m2c
px +

eE

m
− e2B2

m2c2
y (32)

or,

ÿ +
e2B2

m2c2
y =

e

m

(

E − px

mc
B

)

= const. (33)

Equation 33 represents a simple harmonic oscillator along y, with a

characteristic frequency ω0 =
eB

mc
, acted on by a constant driving

force. Note that the same equation could be obtained by integrating
both sides of Eq. 26 once with respect to t to get ẋ and substituting
it in Eq. 27.

(c) Uniform motion ⇒ ẍ = 0; ÿ = 0. By Eqs. 27 and 26, this means

vc = ẋ =
cE

B
and ẏ = 0. (34)
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