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Abstract

This is a first draft of what I hope will someday evolve into reasonable classroom
material for an introductory course on particle physics. As of the latest revision,
the writing is progressing with my second teaching of the course. The contents
are still crude and incomplete. Comments/suggestions to dhiman@fnal.gov are
welcome, but please do not share these notes with anyone without my explicit
permission.
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Chapter 1

Special Relativity

In the far-reaching theory of Special Relativity of Einstein, the homogeneity
and isotropy of the 3-dimensional space are generalized to include the time
dimension as well. The space-time structure embodied in the theory provides
the foundation on which all branches of modern physics are formulated.1

1.1 The geometry of space-time

The basic tenet of the theory of relativity is that there is a fundamental symme-
try between the three space dimensions and the time dimension, as manifested
most directly in the constancy of the velocity of light in all coordinate frames.
In order to formulate this theory mathematically, it is useful to introduce a set
of convenient definitions and notations.

Definition 1.1 (Event): An event, characterised by the spatial coordinates
{xi; i = 1, 2, 3} and the time t, will be denoted by {xµ;µ = 0, 1, 2, 3} where

xµ=0 = ct, xµ=i = xi, (1.1)

and c is the velocity of light in vacuum.2 In particle physics, the natural units
are chosen, whereby c = 1 (by definition). The convention is that Greek indices
refer to space-time in general (hence range over 0 to 3), and Roman indices
refer to 3-space only (hence range over 1 to 3). We shall use the notation x to
indicate a 3-vector.

Definition 1.2 (Coordinate Four-vector, Length of Vectors): Let xµ
1 and xµ

2

represent two events. The separation between the two events defines a coordinate
four-vector xµ

1 = xµ
1 − xµ

2 . The length |x| of a 4-vector x is defined by

|x|2 ≡ (x0)2 − (x)2 = t2 − x · x. (1.2)

1Only in the theory of gravitation is it necessary to generalize the concepts of space-time
beyond the special theory of relativity. The resulting theory of General Relativity is intimately
related to the group of general coordinate transformations. We shall not venture into that
theory in this course.

2In this notation, all four coordinates carry the same scale dimension - the dimension of
length.
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The coordinates xµ of an event can be considered as a 4-vector if we understand
it to mean the difference between the event and the event represented by the
origin (0,0). In this notation, the wave-front of a light signal sent out from the
space origin at t = 0 will satisfy the simple equation, |x| = 0.

In terms of the metric tensor gµν , the definition of the length of a vector x
can be written as

|x|2 = gµνx
µxν , (1.3)

where the implicit summations extend over all 4 components.3

The metric tensor for the space-time vector space is called the Minkowski
metric:

gµν =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









(1.4)

In contrast to the Euclidean metric δµν , the Minkowski metric is not positive
definite. This fact leads to important differences in the representations of the
associated symmetry groups. The principle of special relativity stipulates that
basic laws of physics are invariant with respect to translations in all 4 coordinates
(homogeneity of space-time) and to all homogeneous linear transformations on
the space-time coordinates which leave the length of 4-vectors invariant (isotropy
of space-time).

Definition 1.3 (Homogeneous Lorentz Transformation): Homogeneous Lorentz
Transformations are continuous linear transformations Λ on coordinate compo-
nents given by

xµ → x′µ = Λµ
νx

ν , (1.5)

which preserve the length of 4-vectors, i.e.

|x|2 = |x′|2 (1.6)

Combining Eqs. 1.3-1.6, one can formulate the condition on Lorentz transfor-
mations Λ without referring to any specific 4-vector as either

gµνΛµ
λΛν

σ = gλσ (1.7)

or
Λµ

λΛν
σg

λσ = gµν , (1.8)

where gµν = gµν . This result is an apparent generalization of rotation in 3-
dimensional Euclidean space. Suppressing the indices in Eq. 1.7, we can write
it (in the matrix form) as

Λ−1 = gΛT g−1, (1.9)

3This is known as the Einstein summation convention, whereby whenever an index appears
twice in a product, once as a superscript, once as a subscript, the term is summed over all
allowed values of that index. Since such an index does not represent any particular value, it
is often called a “dummy” index or variable.
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which is to be compared with R−1 = RT for rotation in the 3-dimensional
Euclidean space.

Taking the determinant on both sides of Eq. 1.9, we obtain (det(Λ))2 = 1,
hence det(Λ) = ±1.

An example of a “large” Lorentz transformation with det(Λ) = −1 is

Λµ
ν =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, (1.10)

which just flips the sign of the time coordinate, and is therefore known as time
reversal:

t′ = −t, x′ = x, y′ = y, z′ = z. (1.11)

Another “large” Lorentz transformation is parity, or space, inversion:

Λµ
ν =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









, (1.12)

so that
t′ = t, x′ = −x, y′ = −y, z′ = −z. (1.13)

It was once thought that the laws of physics have to be invariant under these
transformations, until it was shown experimentally in the 1950’s that parity is
violated in the weak interactions, specifically in the weak decays of the 60Co
nucleus and of the K± mesons. Likewise, experiments in the 1960’s on the
decays of K0 mesons showed that time-reversal is violated (at least if very
general properties of quantum mechanics and special relativity are assumed).

However, all experiments up to now are consistent with invariance of the
laws of physics under Lorentz transformations that are continuously connected
to the identity transformation. Such transformations are known as “proper”
Lorentz transformations. So, for these, we must have

det(Λ) = Λ0
µΛ1

νΛ2
λΛ3

σε
µνλσ = 1, (1.14)

where εµνλσ is the 4-dimensional totally antisymmetric unit tensor with ε0123 =
1 (the Levi-Civita tensor).4 This condition can be rewritten as

Λα
µΛβ

νΛγ
λΛδ

σε
µνλσ = εαβγδ, (1.15)

4That is,

εµνλσ =

8

<

:

+1 if µνλσ is an even permutation of 0123,
−1 if µνλσ is an odd permutation of 0123,

0 otherwise.
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We also note that, setting λ = σ = 0 in Eq. 1.7, we obtain the condition

(Λ0
0)

2 −
∑

i

(Λi
0)

2 = 1. (1.16)

This implies (Λ0
0)

2 ≥ 1, hence Λ0
0 ≥ 1 or Λ0

0 ≤ −1. The two solutions
represent disjoint regions of the real axis for Λ0

0. Since Λ0
0 = 1 for the identity

transformation, continuity requires that all proper Lorentz transformations have

Λ0
0 ≥ 1. (1.17)

Obviously, the other branch is associated with time reversal. To summarize,
homogeneous proper Lorentz transformations are linear transformations of 4×4
matrices with Λ0

0 ≥ 1 that leave two special tensors, gµν and εµνλσ invariant.
A general homogeneous proper Lorentz transformation depends on 6 real

parameters. This can be seen as follows: the 4×4 real matrix Λ has 16 elements,
that are subject to 10 independent constraints represented by Eq. 1.7.

Rotations in the 3 spatial dimensions are examples of Lorentz transforma-
tions in this generalized sense. They are of the form

Rµ
ν =









1 0 0 0
0
0 Ri

j

0









, (1.18)

where Ri
j denotes ordinary 3 × 3 rotation matrices. For example, the counter-

clockwse rotation by an angle α in the x, y plane is represented by

Ri
j =





cosα sinα 0
− sinα cosα 0

0 0 1



 , (1.19)

whence we have

t′ = t,

x′ = x cosα+ y sinα,

y′ = −x sinα+ y cosα,

z′ = z.

(1.20)

Of greater interest to us are special Lorentz transformations which mix spa-
tial coordinates with the time coordinate. The simplest of these is a Lorentz
boost along a given coordinate axis, say the x-axis:

L1
µ

ν =









cosh η − sinh η 0 0
− sinh η cosh η 0 0

0 0 1 0
0 0 0 1









, (1.21)
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or,

t′ = t cosh η − x sinh η,

x′ = −t sinh η + x cosh η,

y′ = y,

z′ = z.

(1.22)

Physically, this corresponds to the transformation of a position vector from
the unprimed frame to the primed frame, the latter moving with respect to the
former along the x direction at the speed β = tanh η.5 By defining

γ ≡ 1
√

1 − β2
, (1.23)

we have
sinh η = βγ, cosh η = γ. (1.24)

Thus,

t′ = γ(t− βx),

x′ = γ(−βt+ x),

y′ = y,

z′ = z.

(1.25)

So, a Lorentz boost along the x-axis by the velocity β can be interpreted as
a “rotation” in the t, x plane by the hyperbolic angle η = tanh−1(β), called
rapidity.6

A general Lorentz transformation can be written as the product of spatial
rotations and Lorentz boosts.7

Definition 1.4 (Minkowski Space): The 4-dimensional space-time endowed
with the Minkowski metric, Eq. 1.4, is called the Minkowski space. Any 4-
component object aµ, transforming under Lorentz transformations as the coor-
dinate vector in Eq. 1.5 is said to be a four-vector or a Lorentz vector.

Definition 1.5 (Scalar Product): The scalar product of two 4-vectors aµ and
bµ is defined as

a · b ≡ gµνa
µbν = a0b0 − a · b. (1.26)

Definition 1.6 (Covariant and Contravariant Components): By convention,
the ordinary components of a Lorentz vector {aµ} are referred to as the con-
travariant components. An alternative way to represent the same vector is by

5Of course, the two frames must coincide for β = 0.
6Note: 0 ≤ |β| ≤ 1, 1 ≤ γ.
7The set of all proper Lorentz transformations {Λ} satisfying the conditions of Eqs. 1.7,

1.15 and 1.17 forms the Proper Lorentz Group or, in short, the Lorentz Group. The group
consists of all special “orthogonal” 4 × 4 matrices - the quotation marks here call attention
to the non-Euclidean signature of the invariant metric gµν , (1,−1,−1,−1). Thus, Λ-matrices
for Lorentz boosts are not unitary like the rotation matrices.
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its covariant components {aµ} defined as

aµ ≡ gµνa
ν . (1.27)

So, a0 = a0, and ai = −ai, i = 1, 2, 3. With these definitions, we can simplify
the definition of the scalar product, Eq. 1.26 to

a · b = aµbµ = aµb
µ. (1.28)

The covariant components of a 4-vector a transform under proper Lorentz trans-
formations as

aµ → a′µ = aν(Λ−1)ν
µ. (1.29)

This result displays the transformation property of aµ in the form which most
explicitly indicates why aµaµ is an invariant. There is a natural covariant 4-
vector, the 4-gradient ∂µ defined as

∂µ ≡ ∂

∂xµ
= (

∂

∂t
, ~∇). (1.30)

We can verify that

∂µ → ∂′µ =
∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν
= (Λ−1)ν

µ

∂

∂xν
. (1.31)

With respect to an arbitrarily chosen coordinate origin, space-time is divided
into three distinct regions separated by the light-cone which is defined by the
equation

τ2 ≡ xµxµ = t2 − x · x = 0. (1.32)

The future consists of all points with τ 2 > 0 and x0 > 0. These points can be
reached by the “world line” of an event at the origin. The past consists of all
points with τ2 > 0 and x0 < 0. Events at any of these points can, in principle,
evolve through the origin. By a suitable Lorentz transformation, the coordinates
of any point in these two regions can be transformed into the form (t′,0); hence
these coordinate vectors are said to be time-like. The region outside the light-
cone are characterized by τ 2 < 0. For any given point in this region, there
exists some Lorentz transformation which transforms the components of the
coordinate vector into the form (0,x′). Hence these coordinate vectors are said
to be space-like and the entire region is called the space-like region (with respect
to the origin). No world-line from the space-like region can evolve through the
origin and vice versa. When τ 2 = 0, the point is said to be light-like since only
world lines of a light signal (a photon) connect such points to the origin. By
analogy to the coordinates, an arbitrary 4-vector is said to be time-like, space-
like, or light-like depending on whether aµaµ is less than, greater than, or equal
to 0.

For two events occuring at xµ and xµ+dµ, the scalar product of their 4-vector
coordinate difference with itself,

(dτ)2 ≡ dµdµ = (dt)2 − (dx)2 − (dy)2 − (dz)2 (1.33)
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is called the proper interval (squared) between the two events. The proper
interval is, of course, independent of the choice of Lorentz frame. If two events
A and B have (dτ)2 < 0, then the separation between them is space-like (i.e.they
are not within each other’s light cone). Their time-ordering is frame-dependent
and, therefore, they cannot be causally connected. Note, however, that both
can still be within the light cone of, and therefore, causally connected to, a third
event C if C is either in the absolute past, or in the absolute future, of both A
and B.

For two frames with a relative Lorentz boost ~β, Eq. 1.33 gives us the proper
interval between the space origins at time dt. For convenience, let us choose the
4-coordinate origins to coincide, with x and x′ axes oriented along the boost,
so that the 3-velocity of the space origin of the frame moving along the positive

x-axis of the other is
dx

dt
= (β, 0, 0). Then, dividing both sides of Eq. 1.33 by

(dt)2, we get
dτ

dt
=
√

1 − β2 =
1

γ
, (1.34)

or,
dt = γdτ. (1.35)

This result is sometimes referred to as time dilation. It is as a consequence
of this, that high-energy muons (⇒ traveling near the speed of light, as we
shall soon see) created in collisions between high-energy cosmic ray particles
(primarily protons) and atomic nuclei in Earth’s upper atmosphere frequently
traverse distances of O(10 km) to reach the surface of earth even though the
proper interval between the creation and decay of a muon is typically less than
2 µs, during which even light can travel no more than 600 m. This is possible
because, while a muon may live only ∼2 µs in its own rest frame, to an observer
on earth, the time interval between the production and decay of a cosmic-ray
muon appears much longer owing to the very high speed at which the particle
is moving.8 This poses no contradiction to the observer in the muon’s rest
frame either. The ∼2 µs that he sees the muon before it decays is enough for
it to travel to Earth because the thickness of the Earth’s atmosphere, which is
measured at, say 30 km, by a terrestrial observer, appears much less to him:

dx′ =
1

γ
dx (1.36)

This effect is sometimes referred to as length contraction.
In Newtonian mechanics, t is an external (and universal) parameter. There-

fore, β ≡ v ≡ dx

dt
is a 3-vector, i.e. it transforms like x in the 3-dimensional

Euclidean space. Not so in the 4-dimensional Minkowski space, where t itself is

8The proper interval between the production and decay of an unstable particle X follows

an exponential distribution: NX(t) = NX(0)e
− t

τX , where NX(t) is the number of particles
at time t. τX is a property, called the lifetime, of the particle. τµ ≈ 2.2 µs.
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a coordinate. Therefore, vµ ≡ dxµ

dt
=
dµ

d0
is not a Lorentz 4-vector. However,

uµ ≡ dµ

dτ
= γ

dµ

dt
= γvµ (1.37)

is a Lorentz 4-vector, and is called the relativistic velocity. It can be easily
shown that uµuµ = 1.

Since v0 = 1, u0 = γ. Thus, expressed in terms of the relativistic 4-velocity
uµ (with u2 = u3 = 0), instead of the non-realtivistic 3-velocity ~β, the Lorentz
transformation of Eq. 1.25 reduces to a simpler, more intuitive form:

t′ = u0t− u1x,

x′ = −u1t+ u0x,

y′ = y,

z′ = z,

(1.38)

which is reminiscent of the Galilean transformation, except for the fact that
space and time coordinates now mix in a symmetric manner.

1.2 Relativistic kinematics

The momentum 4-vector of a particle is

pµ = (E,p), (1.39)

where E is the energy of the particle, and p its Euclidean 3-momentum.
In free space (i.e. in the absence of any external field interacting with the

particle), the momentum is all-kinetic.9 For a free particle with a non-zero
mass m, the momentum is simply the product of its mass and velocity, just as
in Newtonian mechanics:

pµ = muµ (1.40)

Thus,
pµpµ = m2. (1.41)

Equation 1.41 holds for massless particles, such as photons, as well. Of course,
for a given pµ, uµ → ∞ as m → 0. For m = 0, u0 and at least one ui

are undefined, but pµ are finite. For a particle at rest, u0 = 1, and we get
E = m(c2 = 1), the equation that most people readily associate with Einstein.

In a closed system of particles, homogeneity of space-time ensures that the
4-momentum is conserved in any interaction (scattering, decay, annihilation):

∑

i

pµ =
∑

f

pµ, (1.42)

9When the total momentum is different from the kinetic momentum, the latter is sometimes
denoted by πµ.
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where the summation on the LHS runs over all particles in the initial state
(before an ineraction) and the summation on the RHS runs over all particles
in the final state (after an ineraction). Equations 1.42 are by far the most
important (and often the only) ingredient in the study of particle interactions,
especially from the experimental perspective.

Consider a process ab→ cd. From the 4-momenta of the 4 particles, we can
form 10 Lorentz-invariant scalar products: pµ

ap
µ
a , p

µ
ap

µ
b , p

µ
ap

µ
c , etc. However, these

are subject to the following 8 constraints: first, conservation of 4-momentum
results in the 4 equations

pµ
a + pµ

b = pµ
c + pµ

d , (1.43)

and second, pµ
i p

µ
i = m2

i for i = a, b, c, d. Thus, there must be two indepen-
dent variables that describe the process. In non-relativistic mechanics, they are
usually chosen to be the energy and the scattering angle. In particle physics,
frame-independent quantities prove to be more convenient. Following the above
arguments it is natural to define the following Lorentz scalars that are quadratic
in the momenta:

s = (pa + pb)
2 = (pc + pd)

2, (1.44)

t = (pc − pa)2 = (pd − pb)
2, (1.45)

u = (pd − pa)2 = (pc − pb)
2. (1.46)

These are called Mandelstam variables.
Clearly, the Mandelstam variables are invariant under time reversal. Also,

“crossing” of processes merely results in the interchange of the Mandelstam
variables. It is customary to denote the main physical process, i.e. ab → cd in
this case, as the s channel since

√
s is the total CM energy. In the cross process

ac̄→ b̄d, the CM energy would be what we now have as t, hence it is called the
t channel. Similarly, ac̄→ b̄d would be the u channel.

Any two of the three Mandelstam variables completely determines the third.
A little algebra leads to the relation

s+ t+ u = m2
a +m2

b +m2
c +m2

d (1.47)

Although only two are independent, we define all three for the sake of symmetry.
Since s, t, u are Lorentz scalars, they can be evaluated in any frame and used
without change in any other. We shall deal mostly with symmetric colliders
where the laboratory center-of-mass (CM) frame is stationary in the laboratory.
By convention, we choose a coordinate system such that one of the particles is
moving along the z-axis.10 Thus, we have for the colliding particles

pµ
a = (Ea, 0, 0, p) (1.48)

pµ
b = (Eb, 0, 0,−p) (1.49)

10It makes good practical sense for this to lie in a horizontal plane, resulting in the choice
of the perpendicular horizontal direction for x and the vertical as y to form a right-handed
rectangular coordinate system for a particle detector.
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and for the particles emerging out of the collision,

pµ
c = (Ec,p

′) (1.50)

pµ
d = (Ed,−p′) (1.51)

Let us take the liberty to rotate our frame about the z-axis so that p′ lies in
the zx plane:

p = (p′ sin θ, 0, p′ cos θ), (1.52)

where θ is the scattering angle in the usual 3-dimensional sense.
Then, in the CM system

s = (Ea +Eb)
2 =

(

√

m2
a + p2 +

√

m2
b + p2

)2

, (1.53)

which can be solved for p,

p2 =

(

s− (ma +mb)
2
) (

s− (ma −mb)
2
)

4s
. (1.54)

A little more algebra gives

Ea =
s+m2

a −m2
b

2
√
s

(1.55)

And similarly for Eb, Ec, Ed.
For the scattering angle, we have

t = m2
c −m2

a − 2pµ
c p

µ
a

= m2
c −m2

a − 2EcEa − 2p′ · p
= m2

c −m2
a − 2EcEa − 2p′p cos θ

(1.56)

and
u = m2

d −m2
a − 2EdEa − 2p′p cos θ (1.57)

For a process where the masses are negligible compared to the energies involved
(as is most often the case in high-energy particle physics),

Ea = Eb = p = Ec = Ed = p′ =

√
s

2
(1.58)

,

t = −s
2
(1 − cos θ) (1.59)

u = −s
2
(1 + cos θ) (1.60)

Like velocity, ordinary force, defined as the time derivative of momentum, is
not a 4-vector. But the quantity

fµ ≡ dpµ

dτ
(1.61)
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is the force 4-vector in the Minkowski space.
Define 4 four-vectors which in a particular frame are given by the infinitesi-

mal differentials

Aµ = (dt, 0, 0, 0),

Bµ = (0, dx, 0, 0),

Cµ = (0, 0, dy, 0),

Dµ = (0, 0, 0, dz).

(1.62)

Then the 4-dimensional volume element

d4x ≡ dx0dx1dx2dx3 = AµBνCλDσεµνλσ (1.63)

is Lorentz invariant (since the RHS has no uncontracted 4-vector index). It
follows that if F (x) is a Lorentz scalar function of xµ, then the integral

I [F ] =

∫

d4xF (x) (1.64)

is invariant under Lorentz transformations. Lagrangians in particle physics
theories are defined in terms of such action integrals.

1.3 Maxwell’s equations and the electromagnetic
field

To formulate and solve Maxwell’s equations in the framework of special rel-
ativity, we need to introduce two new 4-vectors: the charge-current density
Jµ = (ρ,J),and the electromagnetic potential Aµ = (φ,A).

In the non-relativistic framework, Maxwell’s equations are written as

~∇ ·E = ρ,

~∇×B − ∂E

∂t
= J,

~∇ ·B = 0,

~∇×E +
∂B

∂t
= 0.

(1.65)

Adding the
∂

∂t
of the first of the above equations to the divergence of the

second, we get (since the divergence of a curl vanishes identically) the continuity
equation

∂ρ

∂t
+ ~∇ · J = 0, (1.66)
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which guarantees the local conservation of electric charge. The solutions to
Maxwell’s equations in terms of the scalar and vector potentials are

E = −~∇V − ∂A

∂t
, (1.67)

B = ~∇×A. (1.68)

In 4-vector notation, the continuity equation Eq. 1.66 readily simplifies to

∂µJ
µ = 0. (1.69)

The electric and magnetic fields can be written as components of the antisym-
metric electromagnetic field tensor

Fµν ≡ ∂µAν − ∂νAµ =









0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0









(1.70)

So, unlike in the 3-dimensional Euclidean space, the electric and magnetic
fields are not vectors, but components of a tensor:

F0i = ∂0Ai − ∂iA0 = −Ei, (1.71)

Fij = ∂iAj − ∂jAi = εijkB
k, (1.72)

where εijk is the Levi-Civita tensor in 3-dimensions.
Now the first two of Maxwell’s equations become the relativistic wave equa-

tion
∂µF

µν = Jν , (1.73)

or, equivalently,
∂µ∂

µAν − ∂ν∂µA
µ = Jν , (1.74)

while the last two follow from the identity

∂λFµν + ∂µFνλ + ∂νFλµ = 0. (1.75)

The continuity equation Eq. 1.69 follows directly from Eq. 1.73: since the
partial derirvatives commute and F µν and is antisymmtric, ∂µJ

µ = ∂µ∂νF
µν = 0.

Note that F µν is explicitly invariant under a transformation

Aµ → Aµ + ∂µλ(x), (1.76)

where λ(x) is any scalar function of space-time. Since only the electromagnetic
fields are physically manifested, any two 4-potentials that differ only by the
4-gradient of an arbitrary scalar function of space-time are equally valid for
describing a physical process. This is a particular example of a general class of
symmetry, called “gauge symmetry”, that play a central role in the formulation
of particle interactions within the standard model (electromagnetic, weak and
strong interactions) and beyond.
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Chapter 2

Symmetries, Groups, and
Conservation Laws

The dynamical properties and interactions of a system of particles and fields are
derived from the principle of least action, where the action is a 4-dimensional
Lorentz-invariant integral of the corresponding Lagrangian density. The general
theorem called Noether’s theorem dictates that to every symmetry of the La-
grangian there is a conserved current. It is a key ingredient in the construction
of theories in particle physics. Symmetries appear in many ways in the stud-
ies of particle interactions: gauged (local) and global symmetries, exact and
approximate symmetries, explicitly realized and spontaneously broken symme-
tries. The branch of mathematics devoted to the study of symmetries is called
Group theory. It will be useful to familiarize ourselves with some basic concepts
of group theory.

2.1 Groups and Representations

Definitions A group is a set G on which a law of composition “ · ” is defined
with the following properties:

1. Closure: if x1 and x2 are in G, so is x1 · x2;

2. Identity: there is an identity element e in G such that x · e = e · x = x for
any x in G;

3. Inverse: for every x in G, there is an inverse element x−1 in G such that
x · x−1 = x−1 · x = e;

4. Associativity: for every x1, x2, and x3 in G, (x1 · x2) · x3 = x1 · (x2 · x3).

A group is said to be commutative or Abelian if x1 ·x2 = x2 ·x1 for all x1, x2

in G. Otherwise, it is non-Abelian.
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A group may have a finite or infinite number of elements. For example,
the set of all real numbers form a continuous Abelian group with an infinite
number of elements under the composition law of arithmetic addition. The set
of all possible permutations of 3 labelled objects is an example of a discrete
non-Abelian group with a finite number of elements:

( ) : (a, b, c) → (a, b, c),
(12) : (a, b, c) → (b, a, c),
(23) : (a, b, c) → (a, c, b),
(31) : (a, b, c) → (c, b, a),

(123) : (a, b, c) → (c, a, b) (cyclic permutation),
(321) : (a, b, c) → (b, c, a).

(2.1)

The permutation group is an example of a transformation group on a physical
system. In quantum mechanics, a transformation of the system is associated
with a unitary operator in the Hilbert space.1 Thus, a transformation group of
a quantum mechanical system is associated with a mapping of the group into a
set of unitary operators. So, for each x in G there is a D(x) which is a unitary
(linear) operator. Furthermore, the mapping must preserve the composition law

D(x1)D(x2) = D(x1 · x2) (2.2)

for all x1, x2 in G. A mapping which satisfies Eq. 2.2 is called a representation
of the group G.2 For example, the mapping

D(x) = e−ipx, (2.3)

is a representation of the additive group of real numbers because

e−ipx1e−ipx2 = e−ip(x1+x2). (2.4)

The following mapping is a representation of the permutation group on 3 labelled
objects:

D( ) =





1 0 0
0 1 0
0 0 1



 , D(12) =





0 1 0
1 0 0
0 0 1



 ,

D(23) =





1 0 0
0 0 1
0 1 0



 , D(31) =





0 0 1
0 1 0
1 0 0



 ,

D(123) =





0 0 1
1 0 0
0 1 0



 , D(321) =





0 1 0
0 0 1
1 0 0



 .

(2.5)

1We will ignore the possibility of antiunitary operators, which are irrelevant in our context.
2Unitarity is not required in the definition of representation.
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For example, the composition (12) · (23) = (123) is mapped into the matrix
multiplication





0 1 0
1 0 0
0 0 1









1 0 0
0 0 1
0 1 0



 =





0 0 1
1 0 0
0 1 0



 . (2.6)

Thus, in any representation of a group, the composition law is realized by mul-
tiplication of (finite- or infinite-dimensional) matrices that the group elements
map into. Such a mapping is not necessarily one-to-one. When it is, we call it
the fundamental representation.

Group theory makes it possible to determine many properties of any rep-
resentation from the abstract properties of the group. It is convenient to view
representations both as abstract linear operators and as matrices. The connec-
tion is as follows: let |i〉 be an orthonormal basis in the space on which D(g)
acts as a linear operator. then

D(g)ij = 〈i|D(g)|j〉. (2.7)

So,

D(g)|i〉 =
∑

j

|j〉〈j|D(g)|i〉 =
∑

j

|j〉D(g)ji. (2.8)

Two representations are equivalent if they are related by a similarity trans-
formation

D2(x) = SD1(x)S
−1, (2.9)

with a fixed operator S for all x in G.
A representation is reducible if it is equivalent to a representation D′ with

block-diagonal form:

D′(x) = SD(x)S−1 =

(

D′
1(x) 0
0 D′

2(x)

)

, (2.10)

whence the vector space on which D′ acts breaks up into two orthogonal sub-
spaces, each of which is mapped into itself by all the operators in D′(x). The
representation D′ is said to be the direct sum of D′

1 and D′
2,

D′ = D′
1 ⊕D′

2. (2.11)

A representation is irreducible if it is not reducible, that is if it cannot be put into
a block-diagonal form by any similarity transformation. Any finite dimensional
representation of a finite group is completely reducible into a direct sum of
irreducible representations.

Group elements are rarely dealt with as abstract mathematical objects. In-
stead, a representation is used to obtain the composition table which is, in a
sense, the group. For the groups of our interest (in the realm of quantum the-
ories of particles and fields), all irreducible representations are equivalent to
representations by unitary operators.
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A Lie group is a group of unitary operators that are labeled by a set of
continuous real parameters with a composition law that depends smoothly on
the parameters. If the volume of the parameter space of a Lie group is finite,
then it is called a compact Lie group. Any element of a compact Lie group can
be obtained from the identity element by continuous changes in the parameters
and can be expressed as eiαaXa , where αa (a = 1 . . . n) are real parameters
and Xa are linearly independent hermitian operators (a sum over the repeated
index a is implied). The Xa are a basis of a vector space spanned by the linear
combinations αaXa, called the generators of the group. Any function of the
generators that commutes with all generators of a Lie group is called a Casimir
operator of that group.

Note that the space of the group generators is different from the space on
which the generators act, which is some as yet unspecified Hilbert space. For the
compact Lie groups, the space on which the generators act are finite dimensional,
so the Xa can be expressed as finite hermitian matrices.

Generators have two nice features. First, since the generators form a vec-
tor space, unlike the group elements, they can be multiplied by numbers and
added to obtain other generators. Second, they satisfy simple commutation re-
lations which determine (almost) the full structure of the group. Consider the
composition

eiλXbeiλXae−iλXbe−iλXa = 1 + λ2[Xa, Xb] + · · ·

Because of the properties of group composition, the result corresponds to an-
other group element and can be written as eiβcXc . As λ → 0, we must have
λ2[Xa, Xb] → iβcXc. Writing βc = λ2fabc, we get

[Xa, Xb] = ifabcXc. (2.12)

The constants fabc are called the structure constants of the group. The structure
constants reflect the group composition law. This can be seen as follows. It is
always possible to define

eiαaXaeiβbXb ≡ eiδcXc , (2.13)

where δc is determined by α, β and f :

δc = αc + βc −
1

2
fabcαaβb + · · · (2.14)

The generators also satisfy the Jacobi identity:

[Xa, [Xb, Xc]] + cyclic permutations = 0. (2.15)

This is obvious for the representation, since then theXa are just linear operators,
but in fact it is true for the abstract group generators. In terms of the structure
constants, the Jacobi identity becomes

fbcdfade + fabdfcde + fcadfbde = 0. (2.16)
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If we define a set of matrices Ta

(Ta)bc ≡ −ifabc, (2.17)

Then, after simular definitions for Tb and Tc, Eq. 2.16 can be rewritten as

[Ta, Tb] = ifabcTc. (2.18)

In other words, the structure constants themselves generate a representation of
the algebra. The representation generated by the structure constants is called
the adjoint representation. The dimension of a representation is the dimension of
the vector space on which it acts. The dimension of the adjoint representation is
just the number of generators, which is the number of real parameters necessary
to describe a group element.

The generators and the commutation relations define the Lie algebra associ-
ated with the Lie group. Every representation of the group defines a representa-
tion of the algebra. The generators in the representation, when exponentiated,
give the operators of the group representation. The definitions of equivalence,
reducibility and irreducibility can be transferred unchanged from the group to
the algebra.

Spacetime symmetries like rotations in an Euclidean space are particularly
obvious examples of transformation groups. Other important transformation
groups include the Lorentz group of special relativity and the Poincaré group
(Lorentz boost plus translations and rotations). However, these are not compact
groups. The nature of their representations is different from that of the groups
which involve changes in particle identities, with no connection to the structure
of space and time. These groups are associated with internal symmetries, and
are the primary objects of our interest.

The structure constants depend on the choice of bases in the vector space
of the generators. For the treatment of internal symmetries in this course, we
will deal with unitary unimodular groups called SU(n).3 They belong to a class
called compact semisimple Lie groups, for which one can choose a basis such
that

Tr(TaTb) = λδab (2.21)

for some positive real number λ. In this basis, the structure constants are
completely antisymmetric, because one can write

fabc = −iλ−1Tr([Ta, Tb], Tc), (2.22)

3The unitary group U(n) is the subgorup consisting of those elements A of the general linear
group GL(n,C), represented by n × n complex matrices, such that AA† = 1. The special
unitary group SU(n) is that subgroup of U(n) for which detA = 1. The latter condition
requires the generators to be traceless since

for ψ → ψ′ = Uψ with U = exp

 

i

2

X

a

αaXa

!

, (2.19)

detU = exp(Tr(logU)) = exp(
i

2
Tr(αaXa)). (2.20)

Since αa are arbitrary numbers, detU = 1 ⇒ Tr(Xa) = 0.
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whence the antisymmetry of the RHS is ensured by the cyclic property of the
trace. Also in this basis, the generators in the adjoint representation are her-
mitian matrices. In fact, it can be shown that for compact Lie groups (as for
finite groups) any representation is equivalent to a representation by hermitian
operators and all irreducible representations are finite hermitian matrices. The
SU(n) group has n2 − 1 generators (one less than the U(n)), of which n− 1 can
be simultaneously diagonalized.

2.2 The Group SU(2)

The simplest non-Abelian Lie algebra consists of three generators Ja; a = 1, 2, 3,
with fabc = εabc, resulting in the commutation relations

[J1, J2] = iJ3, [J2, J3] = iJ1, [J3, J1] = iJ2. (2.23)

This is the angular momentum algebra obeyed by the generators of the rotation
group in 3 dimensions. They determine the properties of SU(2), the unimodular
unitary group that is the most frequently appearing symmetry in particle phy-
sics, as it describes not only spin, but also isospin symmetry, e.g. that between
the proton and the neutron, and of the three charged states of the pion.

The SU(2) matrices are complex 2 × 2 matrices

U = exp

(

i

3
∑

k=1

φkJk

)

=

(

u1
1 u1

2

u2
1 u2

2

)

(2.24)

with the constraints
U † = U−1, detU = 1. (2.25)

In the fundamental representation, the SU(2) algebra is realized by

Ji =
1

2
σi, (2.26)

where the σi, are the Pauli matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (2.27)

The operator U operates on a complex two-component spinor ψ = (ψ2, ψ2),
which transforms under SU(2) as

ψ′ = Uψ or, (ψ′)i =

2
∑

j=1

ui
jψ

j . (2.28)

The metric tensor is the two-dimensional Levi-Civita tensor εij = εij . Using
this metric, covariant spinors can be obtained from contravariat spinors and
vice-versa:

ψi = εijψ
j , ψi = εijψj . (2.29)
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The invariance of the inner product of two spinors (ψ1, ψ2) and (φ1, φ2)

φ1∗ψ1 + φ2∗ψ2 ≡ φi∗ψi, (2.30)

implies that the contravariant complex conjugate ψ∗ transforms the same way
as the covariant ψ:

ψi∗ ∼ εijψ
j = ψi. (2.31)

This property is called the reality of SU(2). It means that the complex conjugate
ψi∗ does not introduce any new representation.

The basis for the fundamental representation of SU(2) is conventionally
chosen to be the eigenvalues of J3, that is, the column vectors

(

1
0

)

and

(

0
1

)

describing a spin- 1
2 particle of spin projection up and spin projection down along

the 3-axis, respectively. The other two spin components combine to form raising
and lowering operators

J± ≡ 1√
2
(J1 ± iJ2) (2.32)

so called because when they act on an eigenstate of J3, they raise or lower the
eigenvalue by one unit (up to the highest or down to the lowest possible value).
This is easily seen from the commutation relations

[J3, J
±] = ±J±

[J+, J−] = J3

(2.33)

So, if
J3|m〉 = m|m〉, (2.34)

then
J3J

±|m〉 = J±J3|m〉 ± J±|m〉 = (m± 1)J±|m〉. (2.35)

Suppose that a set of |m〉 forms an M -dimensional representation. The eigen-
values m are called weights. Let j be the highest weight. Then, by definition,

J+|j〉 = 0. (2.36)

applying the lowering operator to |m〉, we find

J−|m〉 = Nm|m− 1〉, (2.37)

where Nm is a normalization constant which is determined as follows. From Eq.
2.37, we find

〈m− 1|J−|m〉 = Nm ⇔ 〈m|J+|m− 1〉 = N∗
m. (2.38)
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By suitably choosing the phase of Nm, we have

J−|m〉 = Nm|m− 1〉; J+|m− 1〉 = Nm|m〉. (2.39)

Taking the square of Eq. 2.37, we get

N2
m = 〈m|J+J−|m〉

= 〈m|J−J+|m〉 +m

= N2
m+1 +m.

(2.40)

Solving this recursion formula for Nm under the initial condition N2
j = j we get

Nm =

√

1

2
(j +m)(j −m+ 1). (2.41)

There are 2j coefficients that are non-zero and real for −(j−1) ≤ m ≤ j. From
Eq. 2.37, Nm appears when a state |m − 1〉 is created from |m〉 by applying
J−. Starting from |j〉, they are |j − 1〉, |j − 2〉, . . . | − j〉. Adding to these the
initial state |j〉, the total number of states is M = 2j + 1. This completes the
M -dimensional representation of SU(2), with j corresponding to the total spin
and m to the 3rd component of the spin. In the above we have not used the
properties of the only Casimir operator

J2 = J1
2 + J2

2 + J3
2 (2.42)

for the rotation group. There is an alternative way to derive the same result by
using the commutation relations

[J2, Ji] = 0. (2.43)

The method shown here can be extended to SU(3).

2.3 The Group SU(3)

Another symmetry group that has many manifestations in particle physics is
SU(3), the group of 3× 3 unitary unimodular matrices. Its generators are 3× 3
hermitian traceless matrices.4 The standard basis in physics literature consists

4The tracelessness is a consequence of the condition that the determinant be 1.
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of the 8 (= 32 − 1) Gell-Mann λ matrices:

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 ,

λ3 =





1 0 0
0 −1 0
0 0 0



 , λ4 =





0 0 1
0 0 0
1 0 0



 ,

λ5 =





0 0 −i
0 0 0
i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0



 ,

λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 = 1√
3





1 0 0
0 1 0
0 0 −2



 .

(2.44)

The generators are

Ta =
1

2
λa, (2.45)

normalized by Eq. 2.21 and satisfying the commutation relations

[Ta, Tb] = ifabcTc. (2.46)

Clearly, T1, T2, and T3 generate a SU(2) subgroup of SU(3). It is called
the isospin subgroup, because in the physical application of uds (quark) flavor
SU(3), it represents isospin.

The structure constants of SU(3) in the λi basis of Eq. 2.44 are fully an-
tisymmetric under any pairwise interchange of indices, and the non-vanishing
values are permutations of

f123 = 1,

f458 = f678 =
√

3
2 ,

f147 = f165 = f246 = f257 = f345 = f376 = 1
2 .

(2.47)

Just as in SU(2), the fundamental representation of SU(3) is based on the
transformation

ψ′ = Uψ or, ψ′i =

3
∑

j=1

ui
jψ

j , (2.48)

but with ui
j as the components of the 3 × 3 special unitary matrix

U = eiαaT a

(2.49)

However, unlike the SU(2) case, the SU(3) representation (ψi) is not real, i.e.
the complex conjugate transforms as

ψ′∗i = ui
j
∗
ψ′∗j (2.50)
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which is independent of Eq. 2.49. This is because the metric tensor is εijk ,
which means the complex conjugate behaves as

ψ′∗i = εijkψ
jψk. (2.51)

Among the 8 generators of SU(3), two can be diagonalized simultaneously.5

In the fundamental representation of Eq. 2.44, they are already given by T3

and T8. Therefore, SU(3) states are labeled by eigenvalues of T3 and T8. For a
given simultaneous eigenstate, two eigenvalues define a point on a 2-dimensional
(t3, t8) plane. The remaining generators combine to form the raising or lowering
operators that shift one state to another:

I± = 1√
2
(T1 ± iT2),

V± = 1√
2
(T4 ± iT5),

U± = 1√
2
(T6 ± iT7).

(2.52)

Each of these matrices has a single non-zero element, which is, of course, off-
diagonal, so as to transform one (T3, T8) eigenstate to another. The following
commutation relations follow:

[T3, I±] = ±I±, [T8, I±] = 0,

[T3, V±] = ± 1
2V±, [T8, V±] = ±

√
3

2 V±,

[T3, U±] = ∓ 1
2U±, [T8, U±] = ±

√
3

2 U±.

(2.53)

These imply that I±, U±, and V± raise or lower the values of t3 and t8 by
the coefficients on the right-hand sides. Therefore, they are expressed by 2-
dimensional vectors, which point from the origin to one of the vertices of a
regular hexagon.

In a fashion similar to the one demonstrated for SU(2), it is possible to
construct the SU(3) representation. The simultaneous eigenvectors of T3 and
T8 are

ψ1 =





1
0
0



 , ψ2 =





0
1
0



 , ψ3 =









0
0
1









. (2.54)

We see that

T3ψ
1 = 1

2ψ
1

T8ψ
1 =

√
3

6 ψ
1

⇒ ~µ1
1 = | 12 ,

√
3

6 〉,

T3ψ
2 = − 1

2ψ
2

T8ψ
2 =

√
3

6 ψ
2

⇒ ~µ2
1 = | − 1

2 ,
√

3
6 〉,

T3ψ
3 = 0

T8ψ
3 = −

√
3

3 ψ
3

⇒ ~µ3
1 = |0,−

√
3

3 〉,

(2.55)

5Hence, SU(3) has a rank 2.
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where we have introduced three 2-dimensional vectors, called weight vectors ~µ1
i ,

to represent the states ψi. The superscript 1 for the ~µ is to distinguish it from
another set tof weights ~µ2

i which will be introduced shortly. The weight vectors
form a unit equilateral triangle centered at the origin of the t3, t8 plane.

The three states of the fundamental representation are related to each other
through the raising and lowering oprators. For instance, it is easy to check in
the 3-component vector form that

ψ1 = V+ψ
3. (2.56)

In terms of weight vectors, this is expressed as

~µ1
1 = ~α1 + ~µ1

3, (2.57)

where the root vector

~α1 = |1
2
,

√
3

2
〉 (2.58)

relates two weights additively and increases a weight by the “unit ~α1”. Similarly,
one can consider another root

~µ1
2 = ~α2 + ~µ1

2, (2.59)

which raises a weight by another unit

~α2 = |1
2
,−

√
3

2
〉. (2.60)

The root vectors ~α1 and ~α2 are independent. In general, all weight vectors are
related by

~µ′ = ~µ+ l~α1 +m~α2, (2.61)

where l and m are some integers.
Notice the correspondence between the root vectors and lowering and raising

operators:
~α1 ∼ V+, ~α2 ∼ U−. (2.62)

In principle, one could choose any two independent operators out of the six: I±,
U±, V±. In the particular choice above, the two roots are called simple roots.

In SU(3) there is another fundamental representation which is the complex
conjugate ψ′∗i (see Eq. 2.51). Complex conjugation of the commutation relations
in Eq. 2.46 leads to

[−Ta
∗, Tb

∗] = ifabcTc
∗, (2.63)

implying −Ta
∗ = − 1

2λa
∗ can be another representation. The diagonal genera-

tors T3 and T8 are replaced simply by the negatives of the original ones, and,
therefore, the weight vectors change their signs. In other words,

ψ1∗ → ~µ1
2 = | − 1

2 ,−
√

3
6 〉,

ψ2∗ → ~µ2
2 = | 12 ,−

√
3

6 〉,
ψ3∗ → ~µ3

2 = |0,
√

3
3 〉,

(2.64)
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which form another triangle, rotated by π w.r.t. the first one. Notice that
the new states represented by the new triangle are still connected by the same
simple root vectors. In the SU(3) of strong interactions, one representation
represents the color states of a quark, while the other represents the color states
of an antiquark, but the same gluons (the generator coefficients) mediate the
transitions between the different states within each set.
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2.4 Parity transformation

An extremely simple group is one that has only two elements: {e, P}. Obviously,
P−1 = P , so P 2 = e, with e represented by the unit n × n matrix in an n-
dimensional representation. Thus, if |ψ〉 is an eigenstate of P , then

P |ψ〉 = ±|ψ〉 (2.65)

We could represent P as a phase-changing operator P = einπ, where n is an
integer. Such a phase would be additive for a composite system. However,
the common practice is just to keep track of the sign, which then becomes a
multiplicative quantum number.

The most familiar example of a multiplicative quantum number is parity, or
space inversion, given by the Lorentz transformation in Eq. 1.12. Since both
x and p change sign under a parity transformation, J = r × p does not. Since
[P, p] 6= 0, momentum eigenstates of particles in motion are not eigenstates of P ,
but one would expect stationary systems described as eigenstates of H and J 2,
J3 to be. Indeed, it had been known that parity is conserved in electromagnetic
and strong interactions. However, to everyone’s suprise, it was found in the
1950’s that parity is violated (i.e. [P,H ] 6= 0) in weak interactions. Indeed, it
is a maximal violation: in the limit of a massless neutrino, which can only be
produced in weak interactions, its spin 3-vector always points opposite to its
momentum 3-vector, i.e. in a left-handed helicity state.6

It is useful to know how fields transform under parity. Since the single
particle states are obtained by applying the field operator to the vacuum, this
tells us the parity transformation properties of the state. For integral spin, if
the transformation of the field is the same as that of a spatial tensor of the
same rank (e.g. a scalar or a vector), then the field is said to have natural spin-
parity. If the field transforms with an extra minus sign (e.g. a pseudoscalar or
a pseudovector), then it is said to have unnatural spin-parity. The photon has
natural spin-parity since the polarization vectors are ordinary 4-vectors. For
spin- 1

2 there is no analogy to space tensors, but we can (and will, in the next
chapter) examine how the current behaves under parity transformation. We
state, without proof for now, that we must assign opposite intrinsic parities to
the fermions and antifermions. Thus, in the massless limit, all antineutrinos
produced in weak interactions are right-handed.

One of the clearest manifestation of the maximal parity violation can be seen
in the decay of charged pions, which is a weak process. Even though energy-wise
a larger phase space is open for the decay π− → e−ν̄e than π− → µ−ν̄µ, the for-
mer is exceedingly rare: B(π− → e−ν̄e) = 1.23× 10−4 vsB(π− → µ−ν̄µ) = 0.999877
(No other 2-body decay is kinematically feasible)! This is explained by the fact
that for spin (=0 for pions) to be conserved in the process, the `− and the ν̄`

must have the same helicity. This is harder to achieve in the e−ν̄e channel since
the electron, being ∼200 times lighter than the muon, gets a much higher boost
in the π− rest frame. Consequently, the phase space is severly squeezed in the

6The helicity of a massive particle is not absolute - it can be flipped by a Lorentz boost.

27



e−ν̄e channel because the boost needed for a frame to observe the e− and the
ν̄e in the opposite helicity states is much larger than for the µ− and the ν̄µ.

2.5 Charge Conjugation

Charge conjugation is an operation that converts a particle to its antiparticle:

C|ψ〉 = |ψ̄〉, (2.66)

resulting in the inversion of all internal quantum numbers, i.e. electric charge,
isospin, color, lepton number, baryon number, . . . , without alterning mass, mo-
mentum, and spin. This is another example of a group with only two elements,
with

C2|ψ〉 = |ψ〉, (2.67)

so the eigenvalues of C are ±1. Unlike P , however, only particles that are their
own antiparticles are eigenstates of C.

Classical electrodynamics is invariant under charge conjugation. The poten-
tials and fields all change their signs so as to leave the forces unaffected. Since
the field changes its sign, its quantum, the photon, has a charge conjugation
eigenvalue of −1. In general, a fermion-antifermion system with orbital angular
momentum l and total spin s constitutes an eigenstate of C with eigenvalue
(−1)l+s. This is the basis of classification of mesons, which are quark-antiquark
bound states, in terms of JPC .

Like P , C is a multiplicative quantum number that is conserved in the
strong and electromagnetic interactions, but not in weak interactions. This can
be readily seen as a consequence of parity violation in weak processes: applying
C to any process involving a (massless left-handed) neutrino will result in one
with a left-handed antineutrino, which does not exist. It was once argued by
some that charge conjugation should be considered an integral part of a more
general definition of “parity” amounting to CP by our definitions, which would
be conserved in weak interactions. But a superbly reasoned prediction followed
by a landmark experiment on mixing of the neutral kaon with its own antiparti-
cle (∆S = 2) established CP violation in weak processes, albeit extremely mild
compared to C or P violations separately. Subsequent studies of semileptonic
decays of K0

L, the longer-lived (near-symmetric) admixture of the two pseu-
doscalar CP eigenstates, showed even more dramatic evidence of CP violation
through a slight imbalance in the decay fractions to π+e−ν̄e and π−e+νe. This
is a process that makes an absolute distinction between matter and antimatter,
and provides an unambiguous, convention-free definition of positive charge: it
is the charge carried by the lepton preferentially produced in the decay of K0

L.7

7However, the level of CP violation within the standard model seems to fall far short of
explaining the observed degree of preponderance of matter over antimatter in today’s universe.
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2.6 Lagrangian Density, Field Equations, and
Conserved Currents

A particle theory is set up by defining the dynamical variables φj(x
µ) that are

functions of space-time. These fields are described by the Lagrangian density,
which is a function of the fields and their first derivatives only

L = L(φj , ∂µφj), (2.68)

where j = 1, 2, . . . , n label the fields and/or different components of a field. The
variational principle contends that the action integral

S =

∫

L(φ(x))d4x (2.69)

is stationary with respect to any changes in φ that vanish on the boundary.
Then, in a manner analogous to the one in classical mechanics where the La-
grangian is a function of space-time directly, it can be shown that the variational
principle leads to the equations of motion

∂µ

∂L
∂(∂µφj)

− ∂L
∂φj

= 0. (2.70)

The elementary particles of a theory appear as the solutions of the field equations
resulting from the associated Lagrangian.8 For example, in quantum electro-
dynamics, the photon is the quantum of the electromagnetic field, represented
by the vector potential Aµ. The electron is represented by the fermion field
ψ. The Lagrangian contains the fundamental interactions of the theory. For
electrodynamics, that is the JµA

µ term in the Lagrangian

L = −1

4
FµνF

µν − JµA
µ. (2.71)

(Exercise: show that Maxwell’s equations follow from this Lagrangian).
It is the potential energy parts of the Lagrangian that specify the theory. The

kinetic energy parts are general and only depend on the spins of the particles.
The potential energy terms specify the forces. These terms are collectively called
the interaction Lagrangian.

Consider an infinitesimal change δφj in fields φj that is a symmetry of L in
the the sense that

L(φj + δφj) = L(φj). (2.72)

8Composite objects may appear as bound states of the elementary particles.

29



We can then write using Eq. 2.70,

0 = δL(φ) = L(φj + δφj) −L(φj) =
∂L
∂φj

δφj +
∂L

∂(∂µφj)
δ(∂µφj)

= ∂µ

(

∂L
∂(∂µφj)

)

δφj +
∂L

∂(∂µφj)
∂µδφj

= ∂µ

(

∂L
∂(∂µφj)

δφj

)

.

(2.73)

Thus the conserved current is

Jµ =
∂L

∂(∂µφj)
δφj . (2.74)

We will be particularly interested in transformations of the φ fields that are
homogeneous, linear, and unitary. Such a symmetry takes the form

δφ = iεaT
aφ, (2.75)

where the T a are a set of n× n Hermitian matrices accting on the space of the
φ’s and the εa are infinitesimal parameters. Equation 2.75 is the infinitesimal
form of a unitary transformation

φ → φ′ = exp(iεaT
a)φ ' (1 + iεaT

a)φ. (2.76)

Let us consider for the moment only global symmetries, in which the param-
eters εa are independent of x, but otherwise arbitrary. Then the following is
true:

δ(∂µφ) = iεaT
a∂µφ, (2.77)

which looks just like Eq. 2.75. We say ∂µφ transforms (under the symmetry
operation) like φ.

In this case, the conserved currents take a particularly simple form. Taking
out the infinitesimal parameters, we can write the conserved currents as

Ja
µ = −i ∂L

∂(∂µφ)
T aφ. (2.78)

So far we have not put the quantum into the quantum field theory. When
we do, the fields φj and their conjugate momenta

Πj =
∂L

∂(∂0φj)
(2.79)

satisfy the equal time (anti-)commutation relations for (fermion) boson fields:

[φj(x), φk(y)]ET
± = [Πj(x),Πk(y)]ET

± = 0

[φj(x),Πk(y)]
ET
± = iδjkδ

(3)(x − y),
(2.80)
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where “ET”stands for equal time, x0 = y0; and [A,B]± = AB ±BA.
We will deal with situations where the matrices are organized into an algebra

that closes under commutation relations of Eq. 2.18. The time components of
the currents are related to charges

Qa =

∫

d3xJa
0 (x), (2.81)

which satisfy Eq. 2.18. It follows after some algebra that

[Qa, Qb] = ifabcQc. (2.82)

The existence of these charges and their associated currents is an important
consequence of the symmetry. Note that nothing in the derivation requires the
interpretation to be in terms of electric charge. Indeed, particles have a number
of charges, of which at least some can be related to conserved currents. Let us
examine a few examples.

Example 1

The simplest example is that of a real scalar (i.e., a spinless) field φ of mass m,
described by the Lagrangian density

L =
1

2
(∂µφ∂

µφ−m2φ2), (2.83)

which leads to the Klein-Gordon wave equation

∂µ∂µφ = m2φ. (2.84)

Identifying the free-particle 4-momentum with the 4-gradient in space-time

pµ = ∂µ =
∂

∂xµ

, we see that this is merely the relativistic rendition of the

Schrödinger equation. The solution (the field amplitude), except for a normali-
zation constant, is given by

φ(xµ) = e−ipµxµ . (2.85)

Interactions of the field with other particles requires the introduction of a
source term into the field equations. The simplest example modifies the field
equations as follows:

(∂µ∂µ −m2)φ = ρ. (2.86)

Since φ is a Lorentz scalar, ρ must be so as well. If the source is localized, static
and unperturbed by the interactions (a very heavy particle at rest would be a
good approximation), then choosing the origin at the source,

ρ = gδ3(x). (2.87)
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Since ρ is not time dependent, Eq. 2.86 becomes

(−∇2 −m2)φ = gδ3(x). (2.88)

Writing

φ(x) =
1

(2π)
3

2

∫

d3keik·xφ̃(k) (2.89)

and the inverse Fourier transform

φ̃(k) =
1

(2π)
3

2

∫

d3xe−ik·xφ(x) (2.90)

yields (since ∇2 → −k2)

(k2 +m2)φ̃(k) =
g

2π
3

2

. (2.91)

Substituting this into Eq. 2.89, we get

φ(x) =
1

(2π)
3

2

∫

d3k
eik·x

k2 +m2
. (2.92)

Evaluation of the integral yields the time-independent solution

φ(r) =
g

4π

e−mr

r
, (2.93)

which is called the Yukawa potential. We see that the strength of the potential
at a given point is determined by the coupling constant g, and m. A large value
of m is gives a short range of interaction. This is the reason, in fact, of the
weakness of the weak interactions. It is an example of a general result that
high-mass physics is hard to see at low energies, since it corresponds only to
phenomena at very short distances.

If we had removed the constraint that the source be time-independent, the
denominator in the integrand on the RHS of Eq. 2.92 would simply be modified
to m2 − k2, where k2 = kµkµ. Indeed, such a denominator appears as a propa-
gator whenever a particle is exchanged in an interaction. This conforms to the
general interpretation, in a quantum field theory, that all interactions are due
to the exchange of field quanta. The concepts of force and of interaction are
used interchangeably. Usually the matrix elements are written in the momen-
tum space. Then from Eq. 2.92, the momentum space quantity representing
the exchanged particle of mass m is

1

k2 −m2
. (2.94)

This is called a propagator, which will show up whenever we write the matrix
element. The complete propagator also has a phase factor and a numerator that
depends on the spin of the exchanged particle, but for most calculation these
can be considered as technical details that do not affect the qualitative results.
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Example 2

Some interesting physics emerges if we consider a system of two real scalar
fields, φ1 and φ2, that have the same mass m. Then we can expect from Eq.
2.83 that

L =
1

2
(∂µφ1∂

µφ1 −m2φ2
1) +

1

2
(∂µφ2∂

µφ2 −m2φ2
2). (2.95)

We can combine φ1 and φ2 into a single complex scalar field φ by writing

φ =
1√
2
(φ1 + iφ2). (2.96)

Then

φ∗ =
1√
2
(φ1 − iφ2). (2.97)

So, the Lagrangian can be rewritten as

L = ∂µφ
∗∂µφ−m2φ∗φ. (2.98)

Note that φ has the same mass m as φ1 and φ2, and φ and φ∗ are normalized
to the same total amplitude as φ1 and φ2 are.

The current density is

Jµ = i(φ∗∂µφ− φ∂µφ∗), (2.99)

satisfying the continuity equation

∂µJ
µ = 0. (2.100)

The field (wave) equations are

(∂µ∂µ −m2)φ = (∂µ∂µ −m2)φ∗ = 0. (2.101)

Example 3

If there were an Abelian vector (spin-1) field Bµ, like the electromagnetic
field, but massive, the Lagrangian given in Eq. 2.71 would acquire an additional
term

1

2
m2BµBµ, (2.102)

to accommodate a mass term will in the wave equation. If we see a term BµBµ

appear in a Lagrangian, we can identify its coefficient as
m2

2
. Such a term

explicitly violates gauge symmetry. Thus, the gauge symmetry forbids a non-
zero mass for the photon.
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Chapter 3

Quantum Electrodynamics

We now turn to spin- 1
2 particles. Let us study the electron as a specific example.

The electron is a spin- 1
2 particle, which implies that each momentum state has

two possible helicities, λ = + 1
2 or λ = − 1

2 . The states in the particle rest frame
can be determined using the spin- 1

2 representation of the rotation group, SU(2).
We can describe the two spin choices in terms of the base states:

χ+ =

(

1
0

)

and χ− =

(

0
1

)

(3.1)

These states, called spinors, correspond to spins + 1
2 and − 1

2 , respectively, along
a chosen space axis, which we take to be the 3-axis (z).

The spin operator in the fermion rest frame is given in the basis above by

~S =
~σ

2
, (3.2)

where ~σ is the Pauli spin matrix whose components are given by Eq. 2.27. In
addition, we now define the identity matrix as the 0th component of the spin
matrix. matrix:

σ0 =

(

1 0
0 1

)

. (3.3)

3.1 The Dirac Equation

Dirac’s primary objective in deriving the field equations for fermions was to
linearize the Klein-Gordon equation (Eq. 2.84) which, being quadratic in E,
opened doors to solutions with negative energy that needed to be explained.
Originally, Dirac handled the problem of preventing all fermions from falling
into negative energy states without a lower bound by postulating that all such
states are already full. This made for the possibility of an electron in a negative
energy state making an occassional transition to a positive energy state, which
would create a hole in the sea of negative energy state. Dirac called these “hole”s
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positrons. Experimental confirmation of the existence of positrons is counted
among the greatest triumphs in theoretical physics. Later, Feynman came up
with an alternative interpretation of positrons as electrons traveling backward in
time. This led to great simplification of the theory, which came to be known as
quantum electrodynamics. So, to modify the Klein-Gordon equation to describe
spin- 1

2 particles, each energy two (+ve and -ve) energy states in its solution must
be allowed two spin states. That is, the general wave function will have 2×2 = 4
components:

|ψ〉 =









ψ1

ψ2

ψ3

ψ4









(3.4)

The linear equation should then take the form

Hψ = i
∂

∂t
ψ = (~α · ~p+ βm)ψ = (~α · i∇ + βm)ψ, (3.5)

where β and αi (i = 1, 2, 3) are 4 × 4 matrices. They can be determined by
comparing Eq. 2.84 with the H2 expressed in terms of the RHS of Eq. 3.5:

∂2

∂t2
=
(

−αjαk∂j∂k − im(αjβ + βαj)∂j + β2m2
)

ψ (3.6)

Since the partial derivatives commute, we can write

αjαk∂j∂k =
1

2
(αjαk + αkαj)∂j∂k (3.7)

Then, for Eq. 3.6 to be consistent with Eq. 2.84 we must have

β2 = 1, (3.8)

{αj , β} = αjβ + βαj = 0, (3.9)

{αj , αk} = αjαk + αkαj = 2δjk, (3.10)

The solution to these can be wrirtten in terms of the Pauli matrices:

β = γ0 ≡
(

σ0 0
0 −σ0

)

, αj =

(

0 σj

σj 0

)

. (3.11)

Note that the representation is not unique. The one above is known as the
Dirac-Pauli representation. Another possibility, known as the Weyl- or chiral
representation is

β = γ0 ≡
(

0 σ0

σ0 0

)

, αj =

(

−σj 0
0 σj

)

. (3.12)

Most of the formulae are independent of the representation. We will use the
Pauli-Dirac representation.

Equation 3.5 is known as the Dirac equation and the 4-component wave
function, a Dirac spinor.
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3.2 The γ matrices and trace theorems

The Dirac equation can be written in a simpler form by multiplying it on the
left by β and defining

γµ = (β, β~α), (3.13)

or, explicitly,

γ0 =

(

σ0 0
0 −σ0

)

, γj =

(

0 σj

−σj 0

)

. (3.14)

These are known as the Dirac γ matrices. The result is

(iγµ∂µ −m)ψ = 0. (3.15)

It is useful to define the Feynman slash notation:

γµaµ = /a, (3.16)

so the Dirac equation takes the compact form

(i/∂ −m)ψ = 0. (3.17)

In practice, one almost never needs to know the explicit forms of the γ
matrices. The following relations satisfied by them suffice for most calculations:

γµ† = γ0γµγ0, (⇒ γ0† = γ0, γj† = −γj), (3.18)

{γµ, γν} = γµγν + γνγµ = 2gµν , (⇒ γµγµ = 4), (3.19)

γµ/aγµ = −2/a (3.20)

γµ/a/bγµ = 4a · b (3.21)

γµ/a/b/cγµ = −2/c/b/a (3.22)

For reasons that will become clear soon, it is useful to define

γ5 ≡ iγ0γ1γ2γ3. (3.23)

The following trace theorems often come in handy:

The trace of an odd number of γµ’s vanish. (3.24)

Tr(γµγν) = 4gµν . (3.25)

Tr(/a/b) = 4a · b, (3.26)

Tr(/a/b/c/d) = 4((a · b)(c · d) − (a · c)(b · d) + (a · d)(b · c), (3.27)

Tr(γ5) = 0, (3.28)

Tr(γ5/a/b) = 0, (3.29)

Tr(γ5/a/b/c/d) = 4iεµνρσa
µbνcρdσ , (3.30)

where εµνρσ is the completely antisymmetric Levi-Civita tensor in 4 dimensions.
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3.3 Lagrangian and symmetries for a spin-1
2 field

The Lagrangian for the free spin- 1
2 field is

L = ψ̄(i/∂µ −m)ψ. (3.31)

The corresponding Hamiltonian density is

H = ψ̄(~γ · ~p+m)ψ. (3.32)

The Lagrangian has a global gauge symmetry, since ψ → ψ′ = eiθψ leaves the
field equations unchanged. Thus we expect a conserved current density

Jµ = eψ̄γµψ, (3.33)

which saisfies the continuity equation ∂µJ
µ = 0.

What is the relativistic extension for the angular momentum? By commuting
~x × ~p with H = γ0(~γ · ~p + m), we can try to determine what must be added
to the orbital angular momentum to make a conserved quantity. It turns out
that the simplest extension of the nonrelativistic expression works. Defining the
4 × 4 matrices

Σj =

(

σj 0
0 σj

)

, (3.34)

~J = ~x× ~p+ 1
2
~Σ satisfies [H, ~J ] = 0.

The plane wave fields we are using are eigenstates of ~p. They are not eigen-
states of ~J since [ ~J, ~p] 6= 0 because [~x, ~p] 6= 0, and that affects the orbital
component of the total spin. If we can isolate the spin operator alone in an
expression that commutes with H , then we can get a quantity that does com-
mute with the momentum. Taking ~J · ~p, the term (~x × ~p) · ~p vanishes, leaving
1
2
~Σ ·~p. This helicity operator now commutes with H and ~p and can therefore be

simultaneously diagonalized. The resulting states are helicity states. Note that
this works because the intrinsic spin operator is independent of position, as is
the resulting spin-dependent factor in the amplitude of the plane wave solution.
This argument holds just as well for particles for other values of the spin.

As an example of interaction that can be added to the free-particle La-
grangian, let us consider electromagnetism. In classical electrodynamics, the
minimal substitution into the basic equations of motion of a particle with charge
−q, caused by the presence of an electromagnetic field, is pµ → pµ + qAµ. In
the quantum case, the replacement pµ → i∂µ leads to the modified Lagrangian

L = ψ̄γµ(i∂µ + qAµ)ψ −mψ̄ψ. (3.35)

To include the photon field, we need to add the term 1
4F

µνFµν . The local gauge
transformation now is

ψ → eiqθψ and Aµ → Aµ + ∂µθ, (3.36)

which leaves the L unchanged.
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The function θ(xµ) is an arbitrary function of space-time. So, the field
transformations must be carefully coordinated. The interaction term arises
directly out of the modification to the free field Lagrangian if we add the local
gauge symmetry requirement.1 Thus, the interaction term in Eq. 3.35 is

LInt = eAµψ̄γµψ. (3.37)

Comparing this expression with Eq. 2.71 we see that the conserved electromag-
netic current is still Jµ = eψ̄γµψ: the expression for the conserved current is not
modified in the presence of an electromagnetic field (that is, when going from
a global to a local gauge symmetry) for the Dirac field. This is a consequence
of the derivative not explicitly appearing in the expression for the free particle
current for spin- 1

2 .2 For other spins, e.g. spin-0, the expression for the current
is modified. This will bear on the treatment of symmetry breaking.

Other interactions can be introduced to the Lagrangian in an analogous way.
For example, the interaction with a hypothetical scalar particle will add a term

LInt = −gφψ̄ψ, (3.38)

where φ is the scalar field. This interaction also leaves the expression for the
conserved current unchanged provided φ is real and unchanged under the gauge
transformations. Physically, φ → φ under a gauge transformation implies that
φ carries no charge. Only particles of the ψ field, i.e. the fermions, are charged.
Note also that g has to be a real number since LInt is hermitian.

3.4 Explicit plane-wave solutions

Let us start with the simplest case of a free particle at rest. The Dirac equation
then reduces to

(

iγ0
∂

∂t
−m

)

ψ = 0. (3.39)

In this case, since γ0 is diagonal, the equations do not mix the 4 components of
ψ (of Eq. 3.4):

i
∂ψ1

∂t
−mψ1 = 0, i

∂ψ2

∂t
−mψ2 = 0,

i
∂ψ3

∂t
+mψ3 = 0, i

∂ψ4

∂t
+mψ4 = 0.

(3.40)

Taking a solution of the form e−iEt, we get E = m for ψ1 and ψ2. However,
for ψ3 and ψ4, this would give E = −m. This dilemma is resolved by taking a

1The Dirac equation (Eq. 3.17) does not have a local gauge symmetry.
2All terms involving space-time derivatives are modified because of the minimal substitu-

tion used to introduce the electromagnetic interaction.
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solution of the form eiEt and transfering the minus sign to t in order to keep E
positive.3 Consequently, ψ3 and ψ4 represent the antiparticle states.

Let us now try to tackle particles in motion by generalizing the solution to
the form e±ipµxµ = e±ip·x which reduce to e±mt as ~p→ 0. Then we have

iγµ∂µe
±ip·x = γµpµe

±ip·x = /pe±ip·x (3.41)

with

/p =





E −~σ · ~p
~σ · ~p −E



 , where ~σ · ~p =





p3 p1 − ip2

p1 + ip2 p3



 . (3.42)

Explicitly, the four solutions are

ψ1 = u1e
−ip·x, ψ2 = u2e

−ip·x, ψ3 = v1e
ip·x, ψ4 = v2e

ip·x. (3.43)

For ~p = 0, we’ve already found the four solutions, which can be written as

u(0) =

(

χ
0

)

, v(0) =

(

0
χ

)

, where χ =

(

1
0

)

or

(

0
1

)

. For the more

general situation, we have

(/p−m)u = 0, and (/p+m)v = 0. (3.44)

The general solution can be obtained by noting that (/p−m)(/p+m) = p2 −m2 = 0,
so we can take

u(p) = (/p+m)u(0), v(p) = (/p−m)v(0). (3.45)

We can now choose u(0) and v(0) as above to get u(p) and v(p).
The normalization condition for the spinors is

ψ̄ψ = 2m, (3.46)

which is equivalent to requiring the current ψ̄γ0ψ = ψ†ψ (the number of particles
per unit volume) to be 2E. Thus, for the particle at rest we have

u(0) =

(

χ
0

)

, v(0) =

(

0
χ

)

. (3.47)

These lead to the general results

u =
√
E +m





χ

~σ·~p
E+m

χ



 , v =
√
E +m





~σ·~p
E+m

χ

χ



 . (3.48)

~σ · ~p is the operator proportional to the helicity of the two-component spinor χ.

If ~p = pẑ, then taking χ =

(

1
0

)

or

(

0
1

)

will yield two helicity eigenstates

for u or v. For an arbitrary ~p, we can rotate

(

1
0

)

and

(

0
1

)

using the 2× 2

rotation operators to generate helicity eigenstates along ~p.

3This applies to all fields irrespective of spin, as can be seen in the Klein-Gordon equation.
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Bilinear operator O Transformation property of ψ̄Oψ No. of operators
1 Scalar 1
γµ Vector 4
σµν ≡ i

2 [γµ, γν ] Antisymmetric tensor 6
γ5γµ Pseudovector 4
γ5 Pseudoscalar 1

Table 3.1: Hermitian bilinear operators for the spin- 1
2 field.

3.5 Bilinear Covariants

Operators O for which ψ̄Oψ is hermitian and has well-defined properties under
Lorentz transformations are of special interest since these are legitimate candi-
dates to appear in L for terms involving only fields and no derivatives. We have
encountered O = 1 (scalar) and O = γµ already, but there are others. In the
Dirac-Pauli representation,

γ5 =

(

0 σ0

σ0 0

)

=









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









, (3.49)

while in general,

γ5† = γ5, , {γ5, γµ} = 0, and (γ5)2 = 1. (3.50)

The full list of hermitian operators for the spin- 1
2 field is given in Table 3.1

3.6 Massless Fermions

In the (highly relativistic) limit E � m, we can put m = 0 in the Dirac equation
to get two decoupled equations for the two-component spinors. For χ+ along ~p
and χ− opposite ~p,

Eχ− = −~σ · ~p χ− and Eχ+ = +~σ · ~p χ+, (3.51)

so the first one represents a left-handed neutrino of energy E and momentum
~p. Then the helicity states have simple representations:

u± =
√
E

(

χ±

±χ±

)

and v± =
√
E

(

±χ±

χ±

)

. (3.52)

In this limit, the operators

PR ≡ 1

2
(1 + γ5) and PL ≡ 1

2
(1 − γ5) (3.53)
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act as right- and left-hand projection operators, so that

PR,Lu
± = u±, PR,Lv

± = v±, PR,Lu
∓ = 0, PR,Lv

∓ = 0. (3.54)

PL and PR satisfy the usual relations between projection operators:

P 2
i = Pi, PL + PR = 1, PLPR = 0. (3.55)

The γ5 is thus called the chirality operator. It is diagonal in the Weyl represen-
tation. Consequently, in the Weyl representation, helicity is diagonalized in the
extreme relativistic limit.

The chirality operator is very useful for keeping the Dirac spinor notation
when writing a L that differentiates between right- and left-handed fermions. A
good example is the charged current weak interaction between a charged lepton
` and its SU(2) partner neutrino ν`, where, in contrast to the V (vector) form
of the electromagnetic current, we have the V −A form of the weak current:

Jµ = ψ̄`γ
µ 1

2
(1 − γ5)ψν`

. (3.56)

This ensures that parity is maximally violated in such intereactions, because

1

2
(1 − γ5)uν =

(

σ0 0
0 0

)(

χ−

−χ−

)

=

(

χ−

0

)

. (3.57)

So, only the νL (and ν̄R) are projected out: only the left-handed neutrinos
and right-handed antineutrinos couple to their charged counterparts by weak
interactions. Of course, if the neutrino mass is not strictly zero, then it is
possible to perform a Lorentz transformation to change a νL to a a νR.4

4Even if neutrinos are not exactly massless, it is possible to ensure that the weak interac-
tions couple only to νL and ν̄R by requiring that the neutrinos be their own antiparticles.
Such neutrinos are known as Majorana neutrinos. Such neutrinos are best treated on a basis
of Majorana spinors, which are structured differently than Dirac spinors.

41



Chapter 4

Decay Widths and
Scattering Cross Sections

We are now ready to calculate the rates of some simple scattering and decay
processes. The former is expressed in terms of cross section, σ, which is a
measure of the probability of a specific scattering process under some given set
of initial and final conditions, such as momenta and spin polarization. The
latter is expressed in terms of lifetime, τ , or, equivalently, decay width, Γ (∝ 1

τ
),

which is a measure of the probability of a specific decay process occuring within
a given amount of time in the parent particle’s rest frame. The calculation
involves two steps:

1. Calculate the amplitude, M, of the process. It is also often referred to as
the matrix element, and denoted by Mfi, to indicate that in a matrix rep-
resentation of the transformation process, with the initial and final states
as bases, this is the element that connects a particular final state f to a
given initial state i. A process can be a combination of subprocesses, in
which case, the total amplitude is the sum of the subprocess amplitudes.1

Each simple (sub)process is represented by a unique Feynman diagram.
Its amplitude is a point function in the phase space of all the particles in-
volved, including any intermediate propagator, and depends on the nature
of the coupling at each vertex (of the diagram). For a given diagram, the
amplitude can be obtained by following the Feynman rules for combining
the elements - a factor for each external line (representing a free particle in
the initial or final state), one for each internal line (representing a virtual
propagator particle), and one for each vertex point where the lines meet.

2. Integrate the amplitude over the allowed phase space to get the σ or Γ,
as the case may be. The integral can be constructed, easily in principle,
by following Fermi’s golden rule, although its evaluation can be extremely

1An amplitude is a Lorentz scalar, but generally complex-valued.
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challenging except in the simplest of cases such as those we will encounter
in this course.

This chapter describes the above rules and use them to calculate the decay
rates and cross sections for some simple (and sometimes hypothetical) processes
in quantum electrodynamics (QED).

4.1 Physical meaning of decay width

One of the most important charateristics of a particle is its lifetime. It de-
pends, of course, on the available decay modes or channels, which are subject to
conservation laws for appropriate quantum numbers, coupling strength of the
decay process, and kinematic constraints. The lifetime of an individual particle
cannot be predicted, but a statistical distribution can be specified for a large
sample. Equivalently, one can express it in terms of the decay rate, Γ, which is
the probability per unit time that a given particle will decay.

The probability that a single unstable entity will cease to exist as such after
an interval is proportional to that interval. The constant of proportionality
is called the decay rate. For complex unstable entities such as stars, living
organisms, businesses, economies etc., any two are rarely “identical”, and each
evolves in its own complex manner with time. Their decay rates depend on their
constitution, age, and external factors, making it very difficult to estimate their
lifetimes, even on average. Fortunately, that is not the case with elementary
particles. Thus, for an ensemble of N → ∞ identical particles, the change in
the number after a time dt is

dN = −ΓNdt. (4.1)

So, the expected number surviving after time t is

N(t) = N(0)e−Γt. (4.2)

The time after which the ensemble is expected to shrink to
1

e
of its original size

is called the lifetime:

τ =
1

Γ
. (4.3)

If multiple decay modes are available, as is often the case, then one can
associate a decay rate for each mode, and the total rate, will be the sum of the
rates of the individual modes.

Γtotal =

n
∑

i=1

Γi. (4.4)

The particle’s lifetime is them given by

τ =
1

Γtotal
. (4.5)
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In such cases, we are often interested in the branching fractions, i.e. the pro-
babilities of the decay by individual modes. The branching fraction of mode i
is

Bi =
Γi

Γtotal
. (4.6)

Since the dimension of Γ is the inverse of time, in our system of natural units, it
has the same dimension as mass (or energy). When the mass of an elementary
particle is measured, the total rate shows up as the irreducible “width” of the
shape of the distribution.2 Hence the name decay width.

4.2 Physical meaning of scattering cross section

Consider the 2 → n scattering process

ab→ cd . . . (4.7)

The system of incoming particles labeled a, b constitute the initial state |i〉,
and that of the outgoing particles labeled c, d, . . . constitute the final state
|f〉.3 If a packet of a particles is made to pass head-on through a packet of b
particles so that the overlap area is A, and the number of particles swept by
that overlap area in the two packets are Na and Nb repectively, then the number
of scatterings, NS is directly proportional to Na and Nb, and inversely to A.
The overall constant of proportionality is called the cross section, σ:

NS = σ
NaNb

A
. (4.8)

Thus, the cross section must have the same dimension as area. Cross sections
in contemporary HEP experiments are typically measured in units of nanobarn
(nb) to femtobarn (fb), where a barn is defined as

1b = 10−24 cm2 = 2.568 GeV−2. (4.9)

As for decays, one is often more interested in various differential (or exclu-
sive) cross sections, σi rather than the total (or inclusive) cross section, σtotal:

σtotal =

n
∑

i=1

σi (4.10)

For example, the total cross section of proton-antiproton collisions at a
center-of-mass energy (

√
s), as in Tevatron Run 2, is huge,

σ(pp̄→ X) ≈ 75 mb, (4.11)

where X represents “anything”, but that for the most highly sought-after pro-
cesses are small (duh!), e.g.

σ(pp̄→ tt̄X) ≈ 7.5 pb. (4.12)

2As opposed to the statistical and systematic uncertainties in the measurement, which
can be reduced, in principle, to zero by building an infinitely precise and accurate measuring
device and collecting an infinite amount of data with it.

3Different labels are not intended to mean that the particles are necessarily different.
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4.3 Calculation of widths and cross sections

The matrix element between the initial state |i〉 and the final state |f〉 is called
the S matrix:

Sfi = (2π)4δ4(pf − pi)Mfi, (4.13)

where pi is the total initial momentum, pf the total final momentum, and the
4-dimensional δ funtion expresses the conservation of 4-momentum (E, ~p). The
quantity Mfi, called the (reduced) matrix element or amplitude of the process,
contains the non-trivial physics of the problem, including spins and couplings.
It is usually calculated by perturbative approximation.

The probability of the transition from |i〉 to |f〉 is given by

Pi→f =
Sfi

〈f |f〉〈i|i〉 . (4.14)

The rate of the transition is determined by Fermi’s Golden Rule:4

transition rate = 2π|Mfi|2 → (phase space). (4.15)

4.3.1 The Golden Rule for Decays

For an n-body decay
i→ fk; k = 1, . . . , n (4.16)

the differential decay rate is given by

dΓ = |M|2 S

2mi

(

n
∏

k=1

d3~pk

(2π)32Ek

)

× (2π)4δ4

(

pi −
n
∑

k=1

pk

)

, (4.17)

where pk is the 4-momentum of the kth particle, and S is a product of statistical

factors:
1

m!
for each group of m identical particles in the final state.

Usually we are not interested in specific momenta of the decay products. So,
the total decay rate is obtained by integrating Eq. 4.17. For a general 2-body
decay, the total width is given by

Γ =
S|~p|
8πmi

|M|2, (4.18)

where |~p| is the magnitude of the momentum of either outgoing particle in the
parent’s rest frame (this is fully determined by the masses of the 3 particles
involved in the process), and M is evaluated at the momenta required by the
conservation laws.

4Derivation of this rule is outside the scope of this course, but can be found in any standard
text of quantum field theory.
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4.3.2 The Golden Rule for Scattering

Just as for the decay rate, for a 2 → n scattering process

ij → fk; k = 1, . . . , n (4.19)

the differential cross section is given by

dσ = |M|2 S

4
√

(pi · pj)2 − (mimj)2

(

n
∏

k=1

d3~pk

(2π)32Ek

)

×(2π)4δ4

(

pi + pj −
n
∑

k=1

pk

)

.

(4.20)
For a 2 → 2 process in the CM frame, this leads to

dσ =
S

64π2E2
CM

|~pf |
|~pi|

|M|2dΩ, (4.21)

where |~pf | is the magnitude of the momentum of either outgoing particle, |~pi|
is the magnitude of the momentum of either incoming particle, and

dΩ = sin θdθdφ (4.22)

is the solid-angle element in which the final state particles scatter.

4.4 Feynman rules for calculating the amplitude

In the previous sections, the formulae for deay rates and scattering cross sections
are given in terms of the amplitude Mfi. Here we give the recipe to calculate
−iMfi for a given Feynman diagram for tree-level processes in QED:5

1. External lines:

(a) For an incoming electron, positron, or photon, associate a factor u,
v̄, or eµ, respectively.

(b) For an outgoing electron, positron, or photon, associate a factor ū,
v, or e∗µ, respectively.

2. Vertices: For each vertex, include a factor of ieγµ for an electron or
−ieγµ for a positron. Care must be exercised to get the overall sign for
fermions correct.

3. Internal lines:

(a) For an electron or a positron connecting two vertices, include a term

i

(

/p+m

p2 −m2 + iε

)

. (4.23)

5Only the vertex factor is different for QCD and weak interactions. We shall encounter
them in due course.
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(b) For an photon connecting two vertices, include a term

igµν

q2 + iε
. (4.24)

(c) Integrate over all undetermined internal momenta.
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Chapter 5

Electromagnetic Scattering

In this chapter, we will apply the methods discussed in the preceding chapters
to compute cross sections of some simple electromagnetic processes involving
charged leptons (and photons, of course). We will restrict ourselves to initial
and final states involving no more than two particles, and to the lowest order
in perturbative calculations, (i.e., to tree-level Feynman diagrams only). The
coupling at each vertex is proportional to the electric charge e of the fermion
(we will only deal with charged leptons in this chapter). At low energies, this
is manifested in terms of the fine structure constant

α =
e2

4π
=

1

137
. (5.1)

The value of α depends on the energy at which it is measured. The above value
corresponds to the E → m` limit. Moreover, up to energies a few GeV below
MW (=80 GeV) weak interactions can be safely ignored. Strong interactions are
irrelevant in this context since leptons carry no color charge. Each higher order
diagram will make a contribution proportional to α to the matrix element, which
will subsequently have to be squared to get the cross section. Since leading-order
diagrams for 2 → 2 processes involve 2 vertices, our calculations will actually
hold good to a few parts per 10−4 level at low energies.

Before looking at some examples of electromagnetic scattering between two
fermions, let us recall the conserved current density in Eq. 3.33. Putting in the
(free) fermion wave functions given by Eq. 3.43 in the initial and final states,
we see that the transition current at each vertex is

Jµ
fi = −eψ̄fγ

µψi = −eūfγ
µui exp (i(pf − pi) · x), (5.2)

where ui and ūf are the fermion spinors in the initial and final states, respec-
tively. Such a factor at each end of a photon propagator is exactly what one
would get by following the Feynman rules summarized in the last chapter.

It is instructive to note that if we had a scalar (i.e. spin-0) charged particle
instead of the spin- 1

2 fermion, then the transition current could be obtained
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by simply dropping the spinors and the γµ from Eq. 5.2, while retaining the
normalization:

Jµ
fi = −e(pf + pi)

µ exp (i(pf − pi) · x). (5.3)

Operating on the electromagnetic vector field Aµ, such a current would give
the interaction only of the electric charge and the photon. The difference bet-
ween the two transition currents is due to the magnetic moment of the fermion.
Indeed, the lepton-photon interaction at a vertex can be expressed in the form

ūfγ
µui =

1

2m
ūf ((pf + pi)

µ + iσµν(pf − pi)ν)ui, (5.4)

known as the Gordon decomposition (into charge and magnetic moment parts).

5.1 Electron-Muon Scattering

Consider the process e−µ− → e−µ− shown in Fig. 5.1.

e− e−

µ− µ−

Figure 5.1: The Feynman diagram for e−µ− → e−µ−.

The matrix element representing the exchange of a single photon between
the electron and the muon currents is given, as prescribed by the Feynman rules,
by

Mfi = −Jα
e−

gαβ

q2 + iε
Jβ

µ− = −e2
ū(pe−

f )γαu(pe−

i )ū(pµ−

f )γαu(p
µ−

i )

q2 + iε
, (5.5)

where the photon momentum qµ is determined by the momentum conservation
condition

q = pe−

i − pe−

f = pµ−

f − pµ−

i . (5.6)

Note that switching the e− and the µ− in the above expression is of no conse-
quence since the direction of the photon-mediated momentum transfer is irrel-
evant and will have to be integrated over to get the cross section anyway.
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For the cross section, we’ll need |Mfi|2, which can be written as

|Mfi|2 =
e4

q4
(Le−)αβ(Lµ−)αβ (5.7)

in terms of the tensors

(L`−)αβ ≡ 1

e2
(J`−)α(J`−)∗β . (5.8)

Evaluation of these tensors are actually much easier than it may appear at this
point. A general method exists to facilitate such calculations, and it does not
depend on any specific representation of the γ matrices or spinors.

Our task is to evaluate the matrix element ū(p2)Oαu(p1), where Oα is a
4 × 4 matrix, made of momenta and γ matrices, in the spinor space. Here α
represents a collection of Lorentz indices: no index represents a scalar, one a
vector, and so on. Squaring the matrix element we get a tensor, such as those in
Eq. 5.8, which will make up a part of |Mfi|2, as in Eq. 5.7. Since the complex
conjugate and Hermitian conjugate are the same for a complex number, the
tensor is

(ū(p2)Oαu(p1))(ū(p2)Oβu(p1))
∗ = (ū(p2)Oαu(p1))(u

†(p1)O
†
βγ0u(p2))

= (ū(p2)Oαu(p1))(ū(p1)γ0O
†
βγ0u(p2)).

(5.9)
We define Ōβ ≡ γ0O

†γ0.
1 Then, expressing the matrix multiplications in terms

of the element indices, we get

(ū(p2)Oαu(p1))(ū(p2)Oβu(p1))
∗

= ū(p2)i(Oα)iju(p1)j)(ū(p1)k(Ōβ)klγ0u(p2))l

= (u(p2)lū(p2)i)(Oα)ij(u(p1)j ū(p1)k)(Ōβ)kl

(5.10)

2 If we define a matrix whose m,n component is u(p1)mū(p1)n, the above ex-
pression is just the trace of a matrix that is the product of 4 matrices. Thus,
we can write the squared matrix element of Eq. 5.9, without explicit use of the
indices, as

(ū(p2)Oαu(p1))(ū(p2)Oβu(p1))
∗ = Tr(u(p2)ū(p2)Oαu(p1)ū(p1)Ōβ). (5.11)

So, with simple expressions for the 4 × 4 matrix u(p)ū(p), our calculations are
reduced to taking traces using the relations listed in Sec. 3.2.

Now we are ready to handle the summing of spinors in the initial and final
states. Commonly, the incoming beams are unpolarized and the spin polariza-
tion of the outgoing particles are undetermined. In such a case, we must take

1For Oβ = γµ, γµγ5, iγ5, σµν , Ōβ = Oβ .
2Einstein summation is implied, but the Latin indices label the components of the 4-

component Dirac spinor, and hence run from 1 to 4. They have nothing to do with the
components of a Lorentz 4-vector in the Minkowski space. X i and Xi are one and the same.

50



the average of the helicities in the initial state and sum over those in the final
state, which appear only in the 4 × 4 matrices constructed from the spinors.
The matrices Oα, Ōβ do not depend on helicity. The sums can be derived from
the spinors in Eq. 3.48, which simply yield

∑

λ=1,2

u(p, λ)ū(p, λ) = /p+m (5.12)

for fermions, and
∑

λ=1,2

v(p, λ)v̄(p, λ) = /p−m (5.13)

for antifermions, where the helicity λ is now indicated explicitly in the spinor.
Thus, after summing over the helicities of all the spin- 1

2 particles in Eq. 5.11,
we get

(ū(p2)Oαu(p1))(ū(p2)Oβu(p1))
∗ = Tr((/p2 +m2)Oα(/p1 +m1)). (5.14)

For each antiparticle, each /p+m is replaced by /p−m. These expressions appear
repeatedly in calculations involving spin- 1

2 particles in the initial and final states
of a process. They embody the linearity requirement of quantum mechanics,
where Mfi must contain a single power of each spinor leading to a product of
the form u(p)ū(p) in the square of the matrix element.

If the helicity of a spin- 1
2 particle is fixed in the initial state or determined

in the final state, then the matrix element will be a function of its helicity λ.
One could use explicit spinors to calculate this, but an alternative form has
been derived that can be used simply in trace calculations. Consider the spin- 1

2
particle in its rest frame. Define a spin 3-vector in this frame as ~s = χ†~σχ,
where χ is normalized so that χ†χ = 1. We can construct sµ = (0, ~s), which
transforms as a Lorentz 4-vector. So, p · s = 0 is a Lorentz scalar. Using the
spinors in Eq. 3.48, we can show that

u(p, λ)ū(p, λ) = (/p+m)
(1 + γ5/s(λ))

2

v(p, λ)v̄(p, λ) = (/p−m)
(1 + γ5/s(λ))

2
.

(5.15)

Defining ê(λ) as a unit vector along ~p for positive helicity and opposite ~p for
negative helicity,

s =

(

ê(λ) · ~p
m

,
ê(λ)E

m

)

(5.16)

gives s(λ) for the two helicity choices. These spin-dependent expressions become
indispensable in the studies of weak interactions, where parity violation makes
helicity selection a quintessential feature.

Returning to the calculation of e−µ− scattering cross section with unpolar-
ized incoming beams, and no discrimination on helicities of the outgoing parti-
cles, we take the average over the initial helicities (which amounts to summing
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and dividing by 2) and sum over the final ones to get

(L`−)αβ =
1

2
Tr
(

(/p
`−

f +m`)γα(/p
`−

i +m`)γβ

)

, (5.17)

where ` = e, µ.
The expression on the RHS has two terms with an even number of γ matrices,

which can be evaluated by the trace formulae of Sec. 3.2:

(L`−)αβ = 1
2

(

Tr(/p`−

f γα/p`−

i γβ) +m2
`Tr(γαγβ)

)

= 2
(

(p`−

f )α(p`−

i )β + (p`−

f )β(p`−

i )α − (p`−

f · p`−

i −m2
`)gαβ

)

.

(5.18)
Multiplying the tensors for the electron and the muon, we get finally the unpo-
larized result for |Mfi|2, summed over final spins:

1

4

∑

spins

|Mfi|2 =
8e4

q4
((pe−

f · pµ−

f )(pe−

i · pµ−

i ) + (pe−

f · pµ−

i )(pe−

i · pµ−

f )

−m2
e(p

µ−

i · pµ−

f ) −m2
µ(pe−

i · pe−

f ) + 2m2
em

2
µ).

(5.19)
This final result is a Lorentz invariant that is symmetric under the exchange
e− ↔ µ−.

In the extreme relativistic limit, the terms involving the particle masses can
be neglected. This leads to the approximation

∑

spins

|Mfi|2 ≈ 8e4

(pe−

i − pe−

f )4
((pe−

f ·pµ−

f )(pe−

i ·pµ−

i )+(pe−

f ·pµ−

i )(pe−

i ·pµ−

f )). (5.20)

Also, in this limit, the Mandelstam variables of Eqs. 1.44, 1.45, and 1.46 become

s = (pe−

i + pµ−

i )2 = (pe−

f + pµ−

f )2 ≈ 2pe−

i · pµ−

i ≈ 2pe−

f · pµ−

f ,

t = (pe−

f − pe−

i )2 = (pµ−

f − pµ−

i )2 ≈ −2pe−

i · pe−

f ≈ −2pµ−

i · pµ−

f ,

u = (pµ−

f − pe−

i )2 = (pe−

f − pµ−

i )2 ≈ −2pµ−

f · pe−

i ≈ −2pe−

f · pµ−

i .

(5.21)

Thus, for scattering of unpolarized electrons and muons at E � mµ(≈ 200me),
we have a compact expression for the squared matrix element:

∑

spins

|Mfi|2 ≈ 2e4
(s2 + u2)

t2
. (5.22)

Note that this diverges in the limit of t→ 0 (no momentum transfer).
What remains in the calculation of the cross section is the integration over

the phase space. For final states consisting of any two given particles, the only
spatial variable is the scattering angle (evaluated in the center of mass, unless
otherwise specified.) The differential cross section is obtained by substituting
the above |Mfi|2 in Eq. 4.21.
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5.2 e+e− annihilation to µ+µ−

The Feynman diagram for the process e+e− → µ+µ− is shown in Fig. 5.2.

e+

e−

µ−

µ+

Figure 5.2: The Feynman diagram for e+e− → µ+µ−.

The squared matrix element can be obtained simply by “crossing” the result
for e−µ− → e−µ−, which amounts to the interchange s↔ t in Eq. 5.22. Thus,

∑

spins

|Mfi|2 ≈ 2e4
(t2 + u2)

s2
, (5.23)

where now e+e− → µ+µ− is the s-channel process.
We can calculate s, t, and u in terms of the center-of-mass energy ECM and

the scattering angle θ between the outgoing muons and the incoming electrons
(Exercise: derive these relations.)

s = E2
CM,

t =
1

2
E2

CM(1 − cos θ),

u =
1

2
E2

CM(1 + cos θ).

(5.24)

Therefore,
∑

spins

|Mfi|2 ≈ e4(1 + cos2 θ), (5.25)

and the differential cross section is

dσ

dΩCM
=

2e4

64π2s

(

1

2
(1 + cos2 θ)

)

=
α2

4s
(1 + cos2 θ), (5.26)

where we have made the substitution α =
e2

4π
. Note that, unlike e−µ− → e−µ−,

this cross section shows only a mild peaking in the forward direction.
The total interaction cross section can be obtained by integrating over θ:

σ(e+e− → µ+µ−) =
4πα2

3s
. (5.27)
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It falls as the inverse-square of the CM energy.
This result has been verified by experimental data at ECM’s up to several

tens of GeV, until effects of weak interaction become significant. Up to that
point, the error incurred by ignoring higher order terms in the perturbative
calculations (corresponding Feynman diagrams have multiple iternal lines) is
much smaller than the experimental resolution.
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Chapter 6

Gauge Theories
in Particle Physics

In this chapter we will put to use the mathematical formalism of groups learnt
in Chapter 2 to establish the U(1), SU(2), and SU(3) symmetries of the Stan-
dard Model Lagrangian that give rise to the electromagnetic, weak, and strong
interactions, respectively.

6.1 Gauge Invariance in Quantum Theory

We saw in Section 2.6 how a local phase transformation of the fermion wave
function ψ → eiqθ(x)ψ alongwith a simultaneous redefinition of the eletromag-
netic field Aµ → Aµ + ∂µθ(x) leaves the Lagrangian invariant. The result can,
in fact, be interpreted to say that the local gauge invariance (phase invariance
would be more appropriate, but we’ll honor the historical legacy) requires the

presence of a field Aµ = (V, ~A). In Example 1 of Sec. 2.6, we solved for the
scalar field as a static function of space. However, we could have written it just
as well as a plane wave normalized to a single quantum of a defnite energy ω
and momentum ~k:

φ =
1√
2ω

(

aei(~k·~r−ωt) + a†e−i(~k·~r−ωt)
)

=
1√
2ω

(

aeikµxµ + a†e−ikµxµ

)

, (6.1)

where a† creates quanta associated with the field φ and a desroys them.
In a similar fashion, the solution for the vector field Aµ can be expanded in

terms of particle creation and destruction operators. Consequently, there must
be an associated particle, and since the field is described by a 4-vector, it must
be associated with a vector, i.e. spin-1, particle. Since the same effect occurs
with any charged particle (not just fermions), the interaction of the new particle,
which we interpret as being the photon, is the same with any charged particle -
it is a universal interaction. Thus, phase invariance of the theory for electrically
charged particles requires that there must be a photon and an electromagnetic
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interaction of precisely the observed kind. Note, however, that the numerical
value of the charge is undetermined.

In a sense, the existence and form of the electromagnetic interaction has
been derived. If a particle carries a charge and the theory is invariant under
certain phase transformations, then associated fields, called gauge fields, and
associated spin-1 particles, called gauge bosons must exist. These allow us to
write the associated interaction Lagrangians. There are three known gauge
transformations under which the theory is invariant, and three associated sets
of gauge bosons. Why these three and not others, or whether there are others,
is not known.1

The Lagrangian (and wave equation) for a free charged particle can be modi-
fied to describe its interaction with a photon by replacing the ordinary 4-gradient
with the covariant derivative:

Dµ = ∂µ − iqAµ, (6.2)

2 This concept can be generalized to other (i.e. non-electromagnetic) charges as
well. Suppose we want the theory to be invariant under a transformation where
particle states change as

ψ′ = Uψ (6.3)

for some U . We want to define

Dµ = ∂µ − igAµ, (6.4)

where Aµ is the interacting field that has to be added to keep the theory invari-
ant, but now we don’t know how Aµ itself transforms. We also want

Dµ′ψ′ = U(Dµψ), (6.5)

i.e.
(∂µ − igAµ′)Uψ = U(∂µ − igAµ)Uψ. (6.6)

This can be solved for Aµ′:

−igAµ′Uψ = −∂µ(Uψ) + U∂µψ − igUAµψ = −(∂µU)ψ − igUAµψ. (6.7)

Since each term acts on an arbitrary state ψ, we can drop the ψ and multiply
from the right by U−1, so

Aµ′ = − i

g
(∂µU)U−1 + UAµU−1. (6.8)

This is how Aµ must transform for any U . (Exercise: verify that this gives the
expected answer for g = q and U = e−iqθ)

Equation 6.8 is very general and remains valid if U a matrix, rather than a
scalar, in an internal space. The Aµ is also a matrix, so the order of multiplica-
tion is important.3

1Another way to phrase the interpretation of what we have observed is that we cannot
distinguish between the effects of a local change in phase convention and the effects of a new
vector field.

2For charged fermions, this can be seen by comparing Eqs. 3.31 and 3.35.
3Of course, if U and Aµ are not matrices, then UAµU−1 = Aµ, as is the case in electro-

magnetism.
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6.2 Strong Isospin: an example of SU(2)

Let us take for example the strong isospin symmetry of nucleons, pions, and
other hadrons, that plays an important role in the understanding of nuclei and
of hadrons. This will serve as an important aid in “visualizing” the more fun-
damental weak isospin symmetry, which is what we’re really after.

Consider the neutron (n) and the proton (p). Their masses,

mn = 939.57 MeV, mp = 938.27 MeV, (6.9)

differ by only ∼0.15%. No other particles have a similar mass. Both form nuclei
and interact similarly. The only obvious difference is that the proton carries
an electric charge and the neutron does not. However, their interactions in the
nucleus are strong interactions. Strong interactions are not sensitive to electric
charge and are ∼100 times stronger than electromagnetic ones. So, the electric
charge is not of much consequence.

This kind of reasoning led to the idea of picturing n and p as two states of
the same entity, a nucleon, N . One could associate an internal quantum space
called the strong isospin space, where the nucleon points in some direction: “up”
if it is a p, “down” if n. If strong interactions do not distinguish between a n
and a p, it follows that the theory that describes strong interactions is invariant
under rotations in the strong isospin space.4

Since there are two nucleon states, it is like spin-up and spin-down. So, we
can try to put the p and n as states of a spin-like, or SU(2), doublet:

N =

(

p
n

)

. (6.10)

Another example of a hadron classified as states in SU(2) multiplets is the pion,
which has states π± amd π0, with masses mπ± = 139.57 MeV, mπ0 = 134.96
MeV. It can be represented as an isospin-1 state, i.e. a triplet:

π =





π1

π2

π3



 , (6.11)

with charge states

π± = 1√
2
(π1 ± iπ2),

π0 = π3.
(6.12)

As for nucleons, the pion states have the same strong interactions, and differ-
ences in mass and interactions of sizes typical of electromagnetic effects. Later
we will see how W bosons can be put in a similar classification under weak
isospin.

4This can only be an approximate symmetry of nature since it is broken, however slightly,
by electromagnetic interactions.
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For the strong isospin to be a valid symmetry, it must also hold for interac-
tions. Let us try to write an interaction Lagrangian to describe the most general
pion-nucleon interaction at the lowest order. Let p† create a proton or destroy
and antiproton, π+ destroy a π+ or create a π−, n destroy a neutron or create an
antineutron and so on. Then the most general 3-particle interaction Lagrangian
that conserves neucleon number and electric charge is

Lint = gpnp
†nπ+ + gnpn

†pπ− + gppp
†pπ0 + gnnn

†nπ0. (6.13)

For this Lagrangian to be invariant under rotations in the isospin space, certain
relations must hold among the g’s. For example, invariance under p → n rota-
tion requires gpp = ±gnn. Since π is a vector in the isospin space, we must make
a vector from the neucleon, so the Lagrangian, made of the scalar product of
the two, will be invariant. This is achieved by forming the vector N †~σN , where
σi are the Pauli spin matrices. Then

Lint = g
(

N †~σN
)

· ~π = gN †~σ · ~πN (6.14)

is invariant under rotations in the isospin space since it is the sacalar product
of two vectors in that space. We can write the scalar product in an expanded
form:

~σ · ~π = σ1π1 + σ2π2 + σ3π3

=





0 1

1 0



π1 +





0 −i
i 0



π2 +





1 0

0 1



π3

=





π3 π1 − iπ2

π1 + iπ2 −π3





=





π0
√

2π+

−
√

2π− π0



.

(6.15)

Then

N †~σ · ~πN =
(

p† n†
)





π0 −
√

2π+

−
√

2π− −π0









p

n





=
(

p† n†
)





π0p−
√

2π+n

−
√

2π−p− π0n





= p†pπ0 −
√

2p†nπ+ −
√

2n†pπ− − n†nπ0.

(6.16)

Thus we see that for the interactions to be invariant under rotations in the strong

isospin space, the couplings gpn, gnp, gpp, gnn must be in ratios 1 : 1 : − 1√
2

:
1√
2
.
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This technique of writing interactions invariant under rotations in internal
spaces to obtain the form of the interaction is used extensively. For weak isospin,
it is the W bosons, rather than pions, that have isospin 1. That strong isospin is
a nearly good symmetry turns out to be fortuitous, rather than a fundamental
feature of nature.

6.3 Non-Abelian Gauge Theories

We can now put together the ideas of internal spaces and of phase invariance.
For the moment, let us continue with the nucleon example. We can write a
phase transformation where a rotation mixing the proton and neutron states is
expressed as a unitary operator in the isospin space,





p′

n′



 = ei~ε·~σ
2





p

n



 . (6.17)

The σi are the Pauli matrices and εi are three parameters that specify the
rotation. We can expand the exponential as a power series. Since σ2

i = 1, all
powers of any Pauli matrix are either itself or the unit matrix. Note, however,
that the order of successive transformations matters, since the rotations do not
commute. Formally, this is expressed by the commutator [σi, σj ] = 2iεijkσk.
Whenever the order of transformations matters, they are called non-Abelian
transformations.

We could equally well consider particles in a multiplet of any group, and
demand invariance under the appropriate transformation. If particles a1, a2,
and a3 carry quantum numbers in an SU(3) space, we could write











a′1

a′2

a′2











= ei~α·~λ
2











a1

a2

a3











, (6.18)

where ~α = (α1, α2, · · ·α8) are the eight rotation parameters, and λi, (i =
1, 2, · · ·8) are the Gell-Mann matrices. Quarks possess such a degree of free-
dom. It is called color because some of its properties are analogous to those of
colors, although it has no connection to anything in classical physics nor with
anything we experience in the everyday world.

As of now, there is no theoretical principle that tells us what internal spaces
to examine. Each internal space where particles carry non-trivial quantum
numbers leads to an interaction between particles, mediated by a new set of
gauge bosons. In the Standard Model, the complete set of spaces comprises
of the SU(3) color space, and the SU(2) and U(1) electroweak spaces. these
have been discovered empirically, and do an amazingly good job of describing
the all fundamental phenomena and features of the world we live in. Next, we
will examine the implications of demanding invariance under transformations
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in these spaces, but no one yet understands why it is these particular ones that
apply and not others. Having gained some insight into the familiar case of the
proton and the neutron, let us next examine the quarks and the leptons and
their weak isospin.

6.4 Gauge Theories for Quarks and Leptons

Suppose that the quarks and leptons can be put in multiplets of a (weak) isospin
space, and that the theory should be invariant under transformations of the
form of Eq. 6.17. Proceeding as before, we demand invariance under local phase
transformations. That is, technically, we make the parameters functions of
space and time, εi(x

µ) or αi(x
µ). That guarantees we can choose how we define

the phase of the quark and lepton states at each point of space-time, rather
than having a choice here fix how the phase must be defined somewhere else of
sometime later. A theory with a local non-Abelian phase invariance is called a
Yang-Mills gauge theory.

No free particle can have an invariance under a non-Abelian gauge transfor-
mation, since the derivatives in the wave equation will act on εi(x

µ). We are led
again to define a covariant derivative. All the logic of Sec. 6.1 carries over, but
now instead of a function qθ(x) in the exponent of the wave function, we have
a function εiσi that transforms non-trivially under a SU(2) group or a function
αiλi that transforms non-trivially under a SU(3) group. The states describe
leptons or quarks.

To define the covariant derivative Dµ, it is necessary for the SU(2) case to
introduce a set of three fields, each of which behaves as a 4-vector under Lorentz
transformations, in order that we can write a term that transforms as ∂µ does.
Before we needed one Aµ; now we need a W µ

i for each σi. We can define

Dµ = ∂µ − ig2
~σ

2
~W µ. (6.19)

This is the generalization of the Abelian case Eq. 6.4, to include the non-Abelian
transformations. If both transformations were relevant, the appropriate terms
would add in Dµ. The coupling g2 is an arbitrary factor wich will determine
the interaction strengths. The W µ

i must be introduced if the theory is to be
invariant under weak isospin transformations. Since they correspond to a par-
ticle transforming under space rotations as a vector, they should be realized as
spin-1 particles, like the photon. Since σi is there, Eq. 6.19 is a 2 × 2 matrix
equation.

We want to find how W µ
i changes under a gauge transformation, since we

have no previous answer analogous to Aµ → Aµ + ∂µθ(x) in the Abelian case.
We start with the basic physics requirement that

Dµ′ψ′ = ei~ε(x)·~σ
2Dµψ, (6.20)

since ψ itself transforms that way. Assume that W µ
i transforms so that

W ′µ
i = W µ

i + δW µ
i , (6.21)
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and we want to solve for δW µ
i . The derivation is quite similar to the steps

followed in Eq. 6.5 through Eq. 6.8, and leads to

σiδW
µ
i =

1

g2
(∂µεi)σi +

i

2
εiW

µ
j [σiσj − σjσi]. (6.22)

Recognizing the commutator as 2iεijkσk , this becomes

σi

(

δW µ
i − 1

g2
∂µεi − εijkεjW

µ
k

)

= 0, (6.23)

so we can conclude

δW µ
i =

1

g2
∂µεi − εijkεjW

µ
k = 0. (6.24)

We will not use Eq. 6.24 in further derivations, though it would be useful in a
more advanced treatment. For us, it demonstrates how a fully gauge invariant
non-Abelian theory can be constructed.

In Eq. 6.19 the covariant derivative is written with the understanding that
it will act on the soublet representation of SU(2). That is appropriate for us
as we will put left-handed fermions in such doublets. We have implicitly noted
that by labeling the couplig g2. Two generalizations are necessary.

First, though still in the internal SU(2) weak isospin space, Dµ could act on
a state in a different representation. If ψ is a state of weak isospin t with 2t+ 1
components, let ~T be the (2t+ 1) × (2t+ 1) matrix operator representation in
that basis. Then

Dµ = ∂µ − ig2 ~T · ~W µ. (6.25)

For spin- 1
2 , ~T = ~σ

2 . We will interchangeably write ~T · ~W µ or TiW
µ
i , where

summation over i = 1, 2, 3 is implied in the latter.
Second, we could consider a different internal space, where the interactions

are invariant under another set of transformations. For a SU(n) invariance, with

group generators ~F in an (n2−1)-dimensional space, and [Fi, Fj ] = icijkFk, the
appropriate Dµ to act on the n-dimensional matter state ψ is

Dµ = ∂µ − ign
~F · ~Gµ, (6.26)

where the Gµ are the (n2 − 1) gauge bosons that must be introduced to have

a gauge-invariant theory. We will interchangeably write ~F · ~Gµ or FaG
µ
a , where

summation over a = 1, 2, · · ·8 is implied in the latter for SU(3).
Apparently nature also knows about a SU(3) internal space, which is called

the “color” space as we have already mentioned, as well as the SU(2) isospin
space. The appropriate generators are the Gell-Mann matrices λi described in
Section 2.3.

By adding several terms to ∂µ we can guarantee that we obtain a covariant
derivative Dµ that will allow us to write Lagrangians (and therefore equations)
that are invariant under gauge transformations, simultaneously or separately, in
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all the internal spaces. the full covariant derivative that we are presently aware
of can be written as

Dµ = ∂µ − ig1
Y

2
Bµ − ig2

σi

2
W µ

i − ig3
λa

2
Gµ

a . (6.27)

The couplings are arbitrary real numbers. For the Abelian U(1) symmetry
we have written the field that must be introduced as Bµ rather than as the
electromagnetic field Aµ, since we do not know ahead of time that nature’s
U(1) invariance corresponds precisely to electromagnetism. We will use physics
arguments to make this association later. The U(1) term has been written with
a generator Y in a form analogous to the other terms. For U(1), Y is just a
number, though it can depend on the states on which Dµ operates. Y is called
the U(1) hypercharge generator.

It is worth emphasizing that for the non-Abelian transformations, once the
gi are fixed for any representation, they are known for all representations. For
example, measuring g2 with muon decay fixes it for quark interactions. Once
the coupling of W or g to one fermion is measured, their coupling to all fermions
and guage bosons is known.

The ∂µ is a Lorentz 4-vector, as are all the terms in Eq. 6.27. The first two
terms are singlets (i.e. they multiply the unit matrix) in the SU(2) and SU(3)
spaces. The third term is a 2 × 2 matrix in SU(2) and a singlet in the other
spaces. The fourth term is a 3 × 3 matrix in SU(3) and a singlet in the other
spaces. There is no inconsistency in having different size matrices for different
terms as they operate in different spaces.

Equation 6.27 is, in a sense, the main equation of the Standard Model. When
used in a Lagrangian, it leads to the full theory of the SM. It is the culmination
of several decades of creative thinking by a number of physicists, leading to the
realization that the phase invariance of quantum theory must exist for transfor-
mations in new kinds of internal spaces, and that quarks and leptons apparently
carry labels that distinguish among three internal spaces. The phase, or gauge,
invariance is guaranteed by the form of Dµ, as we learned in Section 6.1. In each
case, as in the discussion of gauge invariance for electromagnetism, additional
spin-1 gauge boson fields Bµ, W µ

i , and Gµ
a must exist (1, 3, and 8 respectively).

All of these have been observed experimentally.
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Chapter 7

The Electroweak theory and
Quantum Chromodynamics

The standard model Lagrangian is invariant under a set of transformations, each
forming a symmetry group, in three internal spaces of its particles. Each of these
appears as a local gauge (phase) invariance of the fields, and the corresponding
additional term in the covariant derivative requires a set of vector (i.e. spin-1)
bosons to mediate the transformations.

First, all particles have a U(1) symmetry that leads to an Abelian phase
invariance. This is just like the phase invariance related to the electromagnetic
interactions. Instead of identifying the two just yet, let us call the gauge boson
required by this U(1) invariance Bµ. The index µ indicates that Bµ must
transform under Lorentz transformations the same way as an ordinary 4-vector,
so it can be added to the 4-gradient ∂µ that gives the kinetic term in the
Lagrangian. The connection between Bµ and the photon field Aµ remains to
be established.

The second internal symmetry forms an SU(2) group of weak isospin that
leads to a non-Abelian phase invariance. This is analogous to the strong isospin
SU(2) symmetry of n and p that we have studied in some detail. The associated
gauge bosons, analogous to the pions of the strong isospin, are denoted by W µ

i .
There is one boson for each of the 3 generators of the S(2). So, i = 1, 2, 3.
Just as for the pions, the physical W particles have integral electromagnetic
charges:1

W+ =
1√
2
(−W 1 + iW 2),

W− =
1√
2
(−W 1 − iW 2),

W 0 = W 3.

(7.1)

1Note that we now have a “charge” label for each symmetry, and must distinguish them.

63



As we shall see, the U(1) and the SU(2) combine in what is called the Elec-
troweak theory.2

The third internal symmetry forms an SU(3) group of color that leads to an-
other, independent, non-Abelian phase invariance. The associated gauge bosons
are labeled Gµ

a , a = 1, 2, ..., 8, one for each of the 8 generators of the SU(3)
group. The bosons are called gluons, and the theory of particle interactions via
gluon exchange is called Quantum Chromodynamics (QCD). The internal charge
of the particles that gluons couple to is called “color”, and the associated force
is called the strong force because the coupling constant has the largest value of
all the gauge interactions.

This chapter is devoted to a pedagogical overview of how the Electroweak
and QCD terms enter the standard model Lagrangian.

7.1 The Quark and Lepton states

By construction, the full Lagrangian should be derivable by replacing the or-
dinary (4-gradient) derivative in the free particle Lagrangian by the covariant
derivative that is adjusted for the gauge symmetries. It will have a part, Lgauge,
for the kinetic energy of the gauge fields. The rest represents, in addition to
the kinetic energies of the quark and leptons, their interactions with the gauge
fields; we will call this part Lfermion.

3

Now that we have 3 internal charges in addition to the space-time properties
of the fields, we need to establish some notations to indicate how the particles
will transform in those internal spaces. These characterizations are based on ob-
servation - the standard model does not stipulate any physical principle behind
the arrangement, but does a remarkable job of accommodating the experimental
observations in a consistent manner.

All known quarks and leptons are observed to be either electroweak SU(2)
singlets or parts of electroweak doublets. The way a particle is assigned to SU(2)
states is subtle. Consider the electron spinor ψe− . The left- and right-handed
components can be separated by using the respective spin projection operators
defined in Eq. 3.53 (see Sec 3.6):

e−R = PRψe− ,

e−L = PLψe− .

(7.2)

Remarkably, the left- and right-handed states transform differently under the
electroweak SU(2). Right-handed electrons are electroweak singlets, while the

2This should not be a total surprise since some of the weak bosons carry electomagnetic
charge.

3Additional fields will contribute additional terms. As we shall see in the next chapter, a
complex scalar (i.e. spin-0) field will be necessary to explain how the electroweak symmetry
of the vacuum is broken, and mass is generated. For now, we focus on constructing a theory
that describes all the gauge interactions, but where all particles are massless.
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left-handed electrons are in electroweak doublets, with left-handed neutrinos as
their partners. Thus, the electroweak SU(2) is denoted as SU(2)L, in which e−R
is a singlet and

`L =

(

νe

e−

)

L

(7.3)

is a doublet. Rotations in SU(2)L space cause transitions e−L ↔ νeL, but don’t
affect e−R (we are not talking about right-handed neutrinos since their existence
is somewhat uncertain). We will denote `1 = νeL and `2 = e−L . The up and
down quarks behave in ana analogous way:

qLα =

(

uα

dα

)

L

(7.4)

are the SU(2)L doublets of left handed quarks, while the right-handed quark
states, dRα and uRα are SU(2)L singlets. Note that we have introduced an
additional index, α to label the state of a quark in the SU(3) space of color.
All quarks are color triplets, so α is equal to 1, 2, or 3. Sometimes the 3 color
charges are referred to as r, g, b, and their “negative”s r̄, ḡ, b̄, so rr̄ + gḡ + bb̄ is
a color singlet. A quark makes a transition from one color state to another by
emitting or absorbing a gluon, of which there are eight (one corresponding to
each Gell-Mann matrix, the generators of SU(3) symmetry). The color index is
not needed for leptons since they are colorless (i.e. singlets in color space).

We have only considered one generation (or family) of fermions: νe, e, d, u.
The theory simply repeats itself for the two other known families: νµ, µ, s, c,
and ντ , τ , b, t. All gauge interactions of a given type of quark or lepton (where a
type is specified by its electric charge or weak isospin label) are identical across
families, only their masses are different. The charged quarks and leptons of
the 2nd and 3rd generations are unstable. They decay to the first generation
particles via weak interactions.

7.2 The quark and lepton Lagrangian

To write the fermion Lagrangian in a compact form, we introduce one conven-
tion: whenever the terms in Dµ act on a fermion state of a different matrix
form, they give zero, by definition. Thus, σiWi, which is a 2 × 2 matrix in the
SU(2)L space, gives zero upon acting on eR, uR, dR. Similarly, λaGa, which
is a 3 × 3 matrix in the color SU(3) space, gives zero upon acting on leptons.
With this, the (massless) fermion Lagrangian can be written as

Lfermion =
∑

f

f̄γµDµf, (7.5)

where the covariant derivative is given in Eq. 6.27, and f = `L, eR, qLα, uR, dR

plus similar terms for the 2nd and 3rd generations.
Let us look at this Lagrangian term-by-term, one type of gauge interactions

at a time. For the U(1) and SU(2) terms, we will only consider the leptons.
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Since the color labels of the quarks are not affected by transitions in the U(1)
or SU(2) spaces, quarks will behave in the same way as leptons for U(1) and
SU(2) interactions.

7.2.1 The U(1) terms

For the first family of leptons, we have

Lfermion(U(1), `) = ¯̀iγµ

(

ig1
YL

2
Bµ

)

`+ ēRiγ
µ

(

ig1
YR

2
Bµ

)

eR, (7.6)

where we have (presciently) made the provision that the left- and right-handed
fermions could carry different amounts of the charge Y . In the SU(2)L space, `
is a doublet, while g1Y B

µ is just a number, so

¯̀γµ` = ν̄Lγ
µνL + ēLγ

µeL. (7.7)

Then

Lfermion(U(1), `) =
g1
2

(YL(ν̄Lγ
µνL + ēLγ

µeL) + YRēRγ
µeR)Bµ. (7.8)

Before we interpret this, we need the SU(2) part as it will contain terms involv-
ing the same particles.

7.2.2 The SU(2) terms

Since σiWi is a 2×2 matrix, the contribution from right-handed leptons is zero,
and we have

Lfermion(SU(2), `) = ¯̀iγµ

(

ig2
σi

2
W i

µ

)

`

= −g2
2

(

ν̄L ēL

)

γµ





W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ









νL

eL





= −g2
2

(

ν̄L ēL

)

γµ





W 0
µ −

√
2W+

µ

−
√

2W−
µ −W 0

µ









νL

eL





= −g2
2

(

ν̄Lγ
µνLW

0
µ −

√
2ν̄Lγ

µeLW
+
µ −

√
2ēLγ

µνLW
−
µ − ēLγ

µeLW
0
µ

)

.

(7.9)
The seven terms in eqs 7.8 and 7.9 describe all gauge interactions of leptons in
the SM.
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7.3 The Electroweak Neutral Current

We have seen that the electromagnetic interaction of a particle of charge Q is

LEM = QAµ (ēLγ
µeL + ēRγ

µeR) . (7.10)

There are terms of this form in Eqs. 7.8 and 7.9. So, we have to determine
whether they combine properly. However, before doing so, we have to resolve
the fact that there are similar terms involving ν̄LνL, and the neutrino does not
partake in EM interaction. The neutrino-neutrino interaction term is

(

−g1
2
YLBµ − g2

2
W 0

µ

)

ν̄Lγ
µνL. (7.11)

So, in order to avoid putting g1 = g2 = 0, which would render the whole exercise
meaningless, we contend that the electromagnetic field Aµ is a combination of
Bµ and W 0

µ , and that it is orthogonal to the combination in Eq. 7.11. Thus, we
try defining

Aµ ∝ g2Bµ − g1YLW
0
µ . (7.12)

If Bµ and W 0
µ are orthogonal, normalized fields, then the coefficient of ν̄Lγ

µνL,
which we call Zµ,

Zµ ∝ g1YLBµ + g2W
0
µ , (7.13)

is indeed orthogonal to Aµ, so the neutrino is free of EM interaction. We can
normalize Aµ and Zµ,

Aµ =
g2Bµ − g1YLW

0
µ

√

g2
2 + g2

1Y
2
L

, (7.14)

Zµ =
g1YLBµ + g2W

0
µ

√

g2
2 + g2

1Y
2
L

, (7.15)

so if W i
µ and Bµ are normalized to unity, so are Aµ and Zµ.

Having combined the neutrino terms in a consistent way, we can return to
electrons. From Eqs. 7.8 and 7.9, the term for electron-electron interaction is

(

−g1
2
YLBµ +

g2
2
W 0

µ

)

ēLγ
µeL +

(

−g1
2
YRBµ

)

ēRγ
µeR. (7.16)

Equations 7.14 and 7.15 give

Bµ =
g2Aµ + g1YLZµ
√

g2
2 + g2

1Y
2
L

, (7.17)

W 0
µ =

−g1YLAµ + g2Zµ
√

g2
2 + g2

1Y
2
L

. (7.18)

Substituting these in Eq. 7.16, we can express the electron-electron interaction
in terms of the electromagnetic field Aµ (and necessarily, therefore, the new field
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Zµ as well). Then Eq. 7.16 becomes

−Aµ

[

ēLγ
µeL

(

g1g2YL
√

g2
2 + g2

1Y
2
L

)

+ ēRγ
µeR

(

g1g2YR

2
√

g2
2 + g2

1Y
2
L

)]

−Zµ

[

ēLγ
µeL

(

g2
1Y

2
L − g2

2

2
√

g2
2 + g2

1Y
2
L

)

+ ēRγ
µeR

(

g2
1YRYL

2
√

g2
2 + g2

1Y
2
L

)]

.

(7.19)

Comparing this with Eq. 7.10, we must have (e is positive, so Q = −e for
electrons),

−e =
g1g2YL

√

g2
2 + g2

1Y
2
L

(7.20)

and

−e =
g1g2YR

2
√

g2
2 + g2

1Y
2
L

. (7.21)

These fix

YR = 2YL,

YL = −e
√

g2
2 + g2

1Y
2
L

g1g2
.

(7.22)

Since only the combination g1YL appears, we can choose, for convenience,
YL = −1 (we can always redefine g1 to accommodate this choice), so

e =
g1g2

√

g2
2 + g2

1

. (7.23)

This demonstrates that the theory we’ve been developing can indeed be inter-
preted to contain the usual electromagnetic interaction for electrons (Eq. 7.10),
and neutrinos (none), plus an additional so-called neutral current interaction
with Zµ for both electrons and neutrinos. The form of Eq. 7.23 suggests the
definitions

sin θW =
g1

√

g2
2 + g2

1

,

cos θW =
g2

√

g2
2 + g2

1

,

(7.24)

or,

g2 =
e

sin θW

,

g1 =
e

cos θW

.

(7.25)

68



Note
√

g2
2 + g2

1 =
e

cos θW sin θW

. (7.26)

So, now g1 and g2 have been written in terms of the known e (
e2

4π
≈ 1

137
in

natural units), and an angle θW , called the electroweak mixing angle, which
is not determined by the theory developed so far. θW has to be measured or
calculated in some other way. Its value is given by sin2 θW = 0.22215±0.00076.

Let us now examine the couplings of the new field Zµ to both electrons and
neutrinos. From Eqs. 7.8 and 7.9, using Eqs. 7.15, 7.22, the couplings, and
Eq. 7.24, the term for neutrino-neutrino interaction becomes

−
√

g2
2 + g2

1

2
Zµν̄Lγ

µνL =
g2

2 cos θW

Zµν̄Lγ
µνL. (7.27)

Thus, we can attach a strength factor of
g2

2 cos θW

to each νL-Z vertex.

For the interaction of electrons with Z, there’s no reason to expect eL and
eR to have the same coupling since they have been treated differently in the
way the theory has been constructed. We are concerned now with the second
half of Eq. 7.19. Using the identities derived above, we get

g2
1 − g2

2

2
√

g2
2 + g2

1Y
2
L

=
e2

2
√

g2
2 + g2

1Y
2
L

(

1

cos2 θW

− 1

sin2 θW

)

=
e

cos θW sin θW

(

−1

2
+ sin2 θW

)

(7.28)

for the first term, and

g2
1

√

g2
2 + g2

1Y
2
L

=
e2

cos2 θW

cos θW sin θW

e

=
e

cos θW sin θW

(

sin2 θW

)

.

(7.29)

for the second. The last two results have been written in a convenient form to
help one notice that they can both be written as

e

cos θW sin θW

(

T3f −Qf sin2 θW

)

. (7.30)

In Eq. 7.30, T3f is the eigenvalue of T3 (the diagonal SU(2) generator analogous

to Jz for spin) for any fermion f . Formally, Ti =
σi

2
for a left-handed doublet.

If f is a SU(2)L singlet, (eR, uR, dR etc), then T3f = 0. If f is an upper member

of a SU(2)L doublet, (νL, uL etc), then T3f = +
1

2
. If f is an lower member of
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a SU(2)L doublet, (eL, dL etc), then T3f = −1

2
. Qf is the electric charge of the

fermion: Qe = −1, Qν = 0, Qu = + 2
3 , Qd = − 1

3 , in units of e. Thus Eq. 7.30
gives the electroweak charge of any fermion, i.e. the strength of its coupling to
Z.4

So, now we have constructed a theory of electroweak interactions so that it
contains the ordinary EM interactions, plus an additional photon-like particle
Z, which interacts with any fermion that has a non-zero electroweak charge (the
Qf term in Eq. 7.30) or weak isospin (the T3f term in Eq. 7.30). The strength is
not small – in fact, sin θW cos θW < 1 means that the Z interaction is stronger
than the photon interaction! Why, then, was it not discovered long ago?

The new interactions are called neutral current interactions, since they are
analogous to the charged current weak interactions. There must indeed be a
new boson, Z, like the photon, if this theory is to be correct. The reason it
was not discovered long ago (in low-energy experiments) is because, unlike the
photon, it is not massless. In fact, weighing in at 91 GeV, it is much harder to
produce than a photon. Since the mass appears in the denominator whenever a
Z is exchanged in a neutral current interaction, the size of the neutral current
effect decreases as the mass of the Z increases.

The role of mass in the theory will be discussed later. We will see that it
is possible to give mass to the Z in a consistent way. Indeed, the mass of the
Z can be predicted, and the Z was directly observed in 1983 at precisely the
expected mass. the neutral current effects due to the interactions of neutrinos,
electrons, quarks, and muons were found in the early 1970’s, and provided the
earliest confirmations of the approach we are following.

7.4 The Charged Current

The U(1) part of the lepton Lagrangian only gave terms that are diagonal in
the fermion type (i.e. νL → νL, eL → eL, eR → eR), which we have called
neutral current transitions. But, Eq. 7.9 also has an off-diagonal part leading to
transitions between partners in the SU(2)L doublet structure (i.e. νL ↔ eL):

LCC =
g2√
2

(

ν̄Lγ
µeLW

+
µ + ēLγ

µνLW
−
µ

)

. (7.32)

The two terms on the RHS are Hermitian conjugates of each other, so L is
Hermitian, as expected. The subscript “CC” reflects the fact that the transitions
involve transfer of electric charge since SU(2) doublet partners carry different
amounts of it.

Note that only eL are involved, eR does not interact with charged W s at all.
This is, of course, the parity violation of the weak interactions. In accordance

4Note that we can identify

Qf = T3f +
Yf

2
. (7.31)
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with Eq. 3.56, we can remove the subscript “L” by explicitly applying the pro-
jection operator to the general lepton wave function that includes both the left-
and right-handed components:

ν̄Lγ
µeL =

1

2
ν̄γµ(1 − γ5)e. (7.33)

Because of its vector (γµ) minus axial vector (γµγ5) form, an interaction with a
current of this type is called a V −A charged current interaction. The neutron
beta decay (to a proton, an electron and an antineutrino) is perhaps the most
well-known exmple of a V − A interaction. It is interpreted at the quark level
as n(udd) → p(uud)W− → p(uud)e−ν̄e.

From Eq. 7.32, one might expect the strength of the charged current inter-
action to be almost twice that of the electromagnetic interaction since

(g2/
√

2)2

4π
=

(e2/4π)

2 sin2 θW

≈ 2

137
.

What one finds instead, is that the weak interactions are much weaker (hence the
name) at low energies. Just as for the Z0, this is explained if one assumes the
W± to be massive. Direct observation ofW± in 1983 confirmed this explanation.

We have now dealt with the basic leptonic part of the SM Lagrangian, except
for the mass term. The mass terms of the formmψ̄ψ for the fermions orm2V µVµ

for the spin-1 gauge bosons haven’t appeared yet, so all fermions and gauge
bosons are massless, contrary to experience. We will address this problem after
dealing with the quark content of the Lagrangian.

7.5 The Quarks and the QCD Lagrangian

Some comments on the electroweak terms involving quarks (in Eq. 7.5) are in or-
der before we turn our attention to QCD. The quark wave function is a product
of 5 factors: space, spin, and one each for the 3 gauge groups. The orthonor-
mality of the wave function must hold separately for each factor. Since the
space, spin, and U(1)Y ⊗SU(2)L structures of quarks and leptons are the same,
the treatment of leptons in the preceding sections apply without modifications
to quarks (except for the fact that unlike νR, we cannot pretend that uR does
not exist, since the latter is carries electric charge, and therefore, has photon
interactions). Charged currents (W±) couple to left-handed quarks only, caus-
ing uL ↔ dL transitions, and neutral current transitions occur with a universal

strength
e(T3f −Qf sin2 θW )

sin θW cos θW

for each left- or right-handed quark, with Q =
2

3

for uL, uR; Q = −1

3
for dL, dR; T3 =

1

2
for uL; T3 = −1

2
for dL; T3 = 0 for dL

and dR.
Since the leptons carry no color (i.e. they are singlets in the SU(3)C space),

the λaGa term in the Lagrangian (or in the covariant derivative of Eq. 6.27),
which is a sum of 3× 3 matrices in the SU(3)C space, makes zero contribution
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to the leptons. Its contribution to quarks is non-zero, since each quark is a
member of a SU(3)C triplet. With color indices α and β equal to 1, 2, or 3, the
terms have the form, for a particular quark q,

g3
2
q̄αγ

µλa
αβG

a
µqβ . (7.34)

Unlike some of the Wi, the eight gluons Ga are electrically neutral and have
no electromagnetic interactions. Their interactions with quarks is somewhat
like a photon to a charged fermion, but there’s a major difference. Since not
all the generators λa can be simulteneously diagonalized (only two can, as we
have seen in Sec. 2.3), the interaction with a gluon can change the color of
the quark. Color being a conserved quantum number, this implies that the
gluons themselves carry color (unlike photons, which do not carry the charge
they couple to), and therefore have (strong) self-interaction.

The color charge is forever confined inside bound states that carry no net
color. This makes it impossible to obeserve directly (although its existence is
firmly esablished by overwhelming circumstantial evidence), and we will not
study the term in Eq. 7.34 as explicitly as we did the equivalent electroweak
term. But, it can be seen from the term 7.34 that a quark or an antiquark makes
transition from one color state to another by emitting or absorbing a gluon. The
gluon, like other vector bosons, carry momentum and other additive quantum
numbers. The SU(3)C term is strictly separated from the U(1)Y and SU(2)L

terms and parity is strictly conserved in strong interactions. Since particles
can be turned into antiparticles by reversing their direction (momentum and

charge), one vertex with a strength
g3
2

describes all the transitions

qg → q′, q → q′g, g → q′q̄, q̄ → q̄′g, q̄g → q̄′, (7.35)

where q and q′ differ only in their color labels.

7.6 The Fermion-Gauge Boson Lagrangian

So, now we have all the pieces to put together the Lagrangian for the interaction
of quarks and leptons with photons, W±, Z0, and gluons. The relevant part of
the SU(3) × SU(2) × U(1) Lagrangian is, for the first family,

L =
∑

f=νe,e,u,d

eQf (f̄γµf)Aµ

+
g2

cos θW

∑

f=νe,e,u,d

[

f̄Lγ
µfL(T3f −Qf sin2 θW ) + f̄Rγ

µfR(Qf sin2 θW )
]

Zµ

+
g2√
2

[

(ūLγ
µdL + ν̄Lγ

µeL)W+
µ + Hermitian Conjugate

]

+
g3
2

∑

q=u,d

qαγ
µλa

αβqβG
a
µ.

(7.36)
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For the second and third families, the substitutions (νe, e, u, d) → (νµ, µ, c, s) or
(νe, e, u, d) → (ντ , τ, t, b) give the appropriate results. Some numerical relations
are

GF√
2

=
g2
2

8M2
W

, (7.37)

g2 =
e

sin θW

, (7.38)

g1 =
e

cos θW

, (7.39)

α =
e2

4π
' 1

137
, (7.40)

α1 =
g2
1

4π
' 1

100
, (7.41)

α2 =
g2
2

4π
' 1

30
, (7.42)

α3 =
g2
3

4π
' 0.3-0.1. (7.43)

The values of the couplings α, α1, α2, α3 depend on the momentum transfer
of the interaction. The values given above are for interactions up to a ∼ 100
GeV.
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Chapter 8

Masses and
the Higgs Mechanism

The Z, like the W± must be very heavy. This much can be inferred immedi-
ately because a massless Z boson would give rise to a peculiar parity-violating
long-range force. However, when the SU(2)×U(1) gauge structure for the EM
interactions was first written down by Glashow in 1960, it was not clear how
to give mass to the W± and the Z bosons without breaking the gauge sym-
metry explicitly. That adding mass terms for the W± and the Z bosons by
hand breaks the symmetry is not a problem as such. Nice as the idea of local
symmetry is, we, as physicists, would gladly sacrifice it if that enables us to
explain some facts. The main problem is that addition of such terms renders
the theory unrenormalizable. It leads to dimension 5 operators that make in-
finite contributions to the interaction Hamiltonian when one attempts to take
higher order quantum corrections into account. The longitudinal component of
the Z field, ZL, then appears only in the mass term, and not in the kinetic
energy term, thus acting as an auxiliary field. Such a ZL propagator does not
fall off with momentum, and we get infinities that do not cancel and cannot be
swept out of the observable realm. But all is not lost. If we somehow preserve
the gauge-invariance structure and give mass to W± and Z, we may be able to
preserve renomalizability. This is what Weinberg and Salam accomplished by
invoking the idea of spontaneous symmetry breaking. The result was not only
a consistent theory, but the masses of the W± and Z were calculated in terms
of parameters that had been measured before we had the capability to produce
those particles on mass shell. The theory was quickly put to test by building
a machine powerful enough to produce those particles if their masses were not
too different from their predicted values. When it emerged with flying colors,
it marked one of the towering achievements in theoretical physics.

The mechanism of spontaneous symmetry breaking also provides a way for
fermions to get their masses, but those masses cannot be predicted - they appear
as free parameters in the SM.
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Essentially, it is conjectured that the “vacuum”, defined as the ground state
of nature, is not a complete void. Instead, it is permeated by a scalar (i.e. spin-0)
field, called a Higgs field, that is a doublet in the SU(2) space of weak isospin,
and carries a non-zero U(1) hypercharge, but is electrically neutral and a singlet
in the SU(3) space of color. The gauge bosons and fermions can interact with
this field in a way so as to appear massive. This means that the SU(2) and U(1)
quantum numbers of vacuum are non-zero, so those symmetries are effectively
broken. The associated charges can appear from or disappear into the vacuum
even though the corresponding currents are conserved. When the symmetry is
broken in this way, i.e. the symmetry is valid for the Lagrangian but not for the
ground state of the system, it is said to be a spontaneously broken symmetry.

8.1 Spontaneous Symmetry Breaking

As a simple example of spontaneous symmetry breaking, consider the theory
with a single Hermitian scalar field and the Lagrangian

L(φ) = T − V =
1

2
∂µφ∂µφ−

(

µ2

2
φ2 +

λ

4
φ4

)

, (8.1)

where µ and λ are parameters of the potential. With a single field, there can
be no continuous internal symmetry, but the above Lagrangian is invariant
under the “reflection” φ → −φ. By general quantum mechanical principles, the
potential must have minima if it is to describe a physical system. This requires
λ > 0. Given a minimum (which is the classical ground state of the system), we
can follow the normal perturbative procedure in quantum mechanics to expand
the fields around their values at the minimum and determine the excitations.
In quantum field theory, it is conventional to call this ground state the vacuum,
and the excitations are particles. Their masses are determined by the form of
the Lagrangian near the vacuum. The Lagrangian in Eq. 8.1 is not the most
general, but it is more general than it may appear. It can be shown that higher
powers of φ would lead to infinities in physical quantities and must therefore be
excluded.

If µ2 > 0, then we have the vacuum at φ = 0, and the Lagrangian describes
a scalar field with mass µ that has a quartic self coupling of strength λ

4 . But,
what if µ2 < 0? There is no physical reason to exclude such a possibility. Now
we have a local maximum, instead of a minimum, at φ = 0. We would not
want to perturb around such a point where the free theory contains a tachyon,
a particle with imaginary mass! Rewriting the potential as

V (φ) =
λ

4

(

φ2 +
µ2

λ

)2

, (8.2)

(the additive constant is of no consequence) we see that there are two degenerate

minima at φ = ±
√

−µ2

λ
. The potential in a symmetric neighborhood of φ = 0

that contains both minima looks like a smooth “W”. Physically, the two minima
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are equivalent. We can choose either one to perturb around, so let us pick

φ =
√

−µ2

λ
. For the φ field,

v =

√

−µ2

λ
(8.3)

is a vacuum expectation value (VEV). To determine the particle spectrum, let
us rewrite the theory in terms of a field with zero VEV:

η(x) = φ(x) − v. (8.4)

We could equally well have chosen η(x) = φ(x) + v, but the physics conclusions
would not be affected since the theory is symmetric under φ→ −φ. But having
made a particular choice of η, the potential is not symmetric about its minimum.
The Langrangian is not invariant under η → −η. The symmetry has been
spontaneously broken by the choice of vacuum.

Substituting Eq. 8.4 into Eq. 8.1 we get

L =
1

2
(∂µη∂

µη) −
(

1

2
µ2(v2 + 2ηv + η2)

+
1

4
(v4 + 4v3η + 6v2η2 + 4vη3 + η4)

)

=
1

2
(∂µη∂

µη) −
(

v2

2
(µ2 +

1

2
λv2) + ηv(µ2 + λv2)

+
η2

2
(µ2 + 3λv2) + λvη3 +

1

4
λη4

)

.

(8.5)

The term linear in η vanishes (by Eq. 8.3), as it must near the minimum, and
L simplifies to

L =
1

2
(∂µη∂

µη) −
(

λv2η2 + λvη3 +
1

4
λη4

)

+ irrelevant constant. (8.6)

Now the term with η2 has the correct sign so it can be interpreted as a mass
term. This Lagrangian describes a scalar field η that appears as a particle of
mass

m2
η = 2λv2 = −2µ2, (8.7)

and with two interactions, a cubic one of strength λv and a quartic one of
strength λ

4 . Both of these depend on λ, which is a free parameter as far as we
can tell, and are therefore interactions of undetermined strengths.

The two descriptions of the theory in terms of φ or η must be equivalent
if the problem is exactly solvable. If we want a perturbative description, it is
essential to perturb around the minimum to have a convergent description. The
scalar particle described by the theory with µ2 < 0 is a real scalar, with a mass
obtained by its self-interaction with other scalars, because at the minimum of
the potential there is a non-vanishing VEV v.

Next we will repeat the analysis for increasingly complicated symmetries un-
til we see what happens when the symmetry of L is the SM SU(2)L×U(1)Y in-
variance and when we have the combined Lagrangian of gauge bosons, fermions,
and HIggs fields. At each stage surprising new features wil emerge.
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8.2 Spontaneous breaking of a continuous
symmetry: the Goldstone Theorem

Breakdown of continuous symmetries is slightly more subtle. Let us consider
the fairly general situation described by the Lagrangian

L(φ) = T − V =
1

2
∂µφ∂µφ− V (φ), (8.8)

where φ is some multiplet of spinless fields and V (φ) and thus L(φ) is invariant
under some symmetry group

δφ = iεaT
aφ, (8.9)

T a being imaginary antisymmetric matrices (because φ are Hermitian).
As in the previous section, we want to perturb around a minimum of the

potential V (φ). We expect the φ field to have a VEV, 〈φ〉, which minimizes V .
To simplify notations, we define

Vj1...jn
=

∂n

∂φj1 . . . ∂φjn

V (φ). (8.10)

Then we can write the condition that λ be an extremum of V (φ) as

Vj(λ) = 0. (8.11)

For V to have a minimum at λ, we must also have

Vjk(λ) ≥ 0. (8.12)

The second derivative matrix Vjk(λ) is the mass-squared matrix. We can see
this by expanding V (φ) in a Taylor series in the shifted fields η = φ − λ and
noting that the mass term is 1

2Vjk(λ)ηjηk. Thus, Eq. 8.12 assures us that there
are no tachyons in the free field case about which we are perturbing.

Now comes the interesting part, the behavior of the VEV λ under the trans-
formations in Eq. 8.9. There are two cases. If

Taλ = 0 (8.13)

for all a, the symmetry is not broken. This is certainly what happens if λ = 0.
But Eq. 8.13 is the more general statement that the vacuum doesn’t carry the
charge Ta, so the charge cannot disappear into the vacuum. In the second case,

Taλ 6= 0 for some a. (8.14)

Then the charge Ta can disappear into the vacuum even though the associated
current is conserved. This is spontaneous breaking of a continuous symmetry.

Often there are some generators of the original symmetry that are sponta-
neously broken while others are not. The set of generators satisfying Eq. 8.13 is
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closed under commutation (because Taλ = 0 and Tbλ = 0 implies [Ta, Tb]λ = 0)
and generates an unbroken subgroup of the original symmetry group.

Returning to the mass matrix, because V is invariant under the transforma-
tion in Eq. 8.9, we can write

V (φ+ δφ) − V (φ) = iVk(φ)εa(T a)klφl = 0. (8.15)

If we differentiate with respect to φj , we get (since εa are arbitrary),

Vjk(φ)(T a)klφl + Vk(φ)(T a)kj = 0. (8.16)

Setting φ = λ, we find that the second term drops out because of Eq. 8.11, and
we obtain

Vjk(φ)(T a)klφl = 0. (8.17)

But Vjk(λ) is the mass-squared matrix M 2
jk for the spinless fields, so we can

rewrite the last equation in the matrix form as

M2T aλ = 0. (8.18)

For T a in the unbroken subgroup, this condition is trivially satisfied. But if
T aλ 6= 0, then it requires T aλ is an eigenvector of M2 with zero eigenvalue. It
corresponds to a massless boson field given by

φTT aλ. (8.19)

This is called a Goldstone boson after J. Goldstone, who first established this
connection between spontaneously broken continuous symmetries and massless
particles. We will see a specific example in the next section.

8.3 Complex scalar field - a Global Symmetry

Suppose that φ is a complex scalar,

φ =
1√
2
(φ1 + iφ2) (8.20)

and
L = (∂µφ)∗(∂µφ) − µ2φ∗φ− λ(φ∗φ)2. (8.21)

This is invariant under a global gauge transformation,

φ→ φ′ = eiχφ, (8.22)

so the symmetry of L is now a global U(1) symmetry rather than a reflection
as in Section 8.1. In terms of the real components, we have

L =
1

2
(∂µφ1)

2 +
1

2
(∂µφ2)

2 − µ2

2
(φ2

1 + φ2
2) −

λ

4
(φ2

1 + φ2
2)

2. (8.23)
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In the φ1, φ2 plane, the potential clearly has a minimum at the origin if µ2 > 0,
while for µ2 < 0, the minimum is along a circle of radius

φ2
1 + φ2

2 =
µ2

λ
= v2. (8.24)

The potential in a symmetric neighborhood of φ = 0 that contains the minimum
looks like a Mexican sombrero or the bottom of a wine bottle.

As before, to analyze the case with µ2 < 0 we have to expand around
φ2

1 + φ2
2 = v2. We could choose any point on the circle, but to proceed we have

to choose some point, which will break the symmetry for the solutions. We pick,
arbitrarily, the point φ1 = v, φ2 = 0, and write, with η and ρ real,

φ =
1√
2
(v + η(x) + iρ(x)). (8.25)

Substituting this in Eq. 8.23, we again find that the Lagrangian can be
written in a form that is readily interpreted in terms of particles and their
interactions:

L =
1

2
(∂µη∂

µη) +
1

2
(∂µρ∂

µρ) + µ2η2

−λv(ηρ2 + η3) − λ

4
(η4 + 2η2ρ2 + ρ4)

+ irrelevant constant.

(8.26)

The first two terms represent the normal kinetic energy. The term +µ2η2 tells
us that the η field corresponds to a physical particle of squared mass

m2
η = 2|µ2|. (8.27)

Note that there’s no equivalent term in ρ2, implying that the particle associated
with the field ρ has zero mass. It is the Goldstone boson of the theory. As we
expected, since we chose a particular direction in the φ1, φ2 plane to associate
with the vacuum, the gauge invariance is no longer present in Eq. 8.26.

Physical interpretation of the massless boson is not difficult. Excitations in
the radial direction requires moving up in the potential (away from the mini-
mum), and a mass term arises from the resistance against that effort. Along the
circle, the potential does not vary, so there is no resistance to motion along the
circle. Thus, excitation along the circle amounts to creation of a massless boson.
The Goldstone phenomenon is widespread in physics. We have encountered a
simple example. The U(1) symmetry is broken because we had to choose a
particular point on the circle to perturb around. The presence and the partic-
ular form of the remaining (interaction) terms in Eq. 8.26 carry the link to the
original unbroken symmetry, but not in an obvious way.

8.4 The Abelian Higgs Mechanism

Having worked out the breaking of a global gauge symmetry, let us now try a
local one, i.e. let us consider a Lagrangian that is invariant under local gauge
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transformations. We know from our earlier discussions that such an invariance
requires the introduction of a massless vector field, say Aµ, and we know that
we should write the Lagrangian in terms of the covariant derivative,

∂µ → Dµ = ∂µ − igAµ. (8.28)

The gauge field transforms as

Aµ → A′
µ = Aµ − 1

g
∂µχ(x) (8.29)

and φ as
φ(x) → φ′(x) = eiχ(x)φ(x). (8.30)

The Lagrangian is then

L = (Dµφ)∗(Dµφ) − µ2φ∗φ− λ(φ∗φ)2 − 1

4
FµνF

µν . (8.31)

For µ2 > 0 this describes the interaction of a charged scalar particle (with g = e)
of mass µ with the electromagnetic field Aµ, for example. Note that there is no
mass term for Aµ. The kinetic energy terms for the vector field are contained
in FµνF

µν and we shall carry them along, but they do not play a role in the
spontaneous breakdown of the symmetry. As in the previous sections, we are
primarily interested in the scenario where µ2 < 0. Note that this Lagrangian
contains four independent degrees of freedom: the two components φ1 and φ2 of
the scalar field, and the two transverse polarization states of the massless vector
boson (as expected, if Aµ represents a photon). We could proceed as before.
The algebra gets increasingly complicated, however, so in order to simplify the
analysis, let us use what we have already learned.

In general, φ can be written in the form φ(x) = η(x)eiρ(x), where η, ρ are
real, so we can rewrite φ as

φ(x) =
1√
2
(v + h(x)), (8.32)

with h real, having used a transformation as in Eq. 8.30, knowing that if neces-
sary, we could find a χ to accomplish that. We could not have done this in the
previous section, since the Lagrangian there was only invariant under a global
symmetry, not a local one. Now we substitute this in L. Since the original
choice of the field Aµ was not fixed by physics, we do not bother to carry its
transformation (Eq. 8.29) along. So

L =
1

2
((∂µ − igAµ)(v + h)) ((∂µ + igAµ)(v + h))

−µ
2

2
(v + h)2 − λ

4
(v + h)4 − 1

4
FµνF

µν

=
1

2
(∂µh)(∂

µh) +
1

2
g2v2AµA

µ − λv2h2 − λvh3 − λ

4
h4

−g2vhAµA
µ +

1

2
g2h2AµA

µ − 1

4
FµνF

µν .

(8.33)
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The surprising result is the second term on the RHS: we now have a mass term
for the gauge boson! But since we started with a gauge invariant theory and
only made algebraic transformations, we expect the resulting theory to be gauge
invariant as well. The gauge boson mass is the square root of the coefficient of
1
2AµA

µ,
MA = gv, (8.34)

which is non-zero only when the gauge symmetry is spontaneously broken as
a result of the Higgs field acquiring a non-zero VEV, v. So, the theory is
only gauge invariant in a restricted sense. As before, the Lagrangian is gauge
invariant, but the vacuum is not, because we had to choose a particular direction
in the φ1, φ2 plane and the minimum of the potential along that direction to
label “the vacuum”.

The spectrum now consists of a single real Higgs boson h, that has a mass√
2λv, various self interactions and cubic and quartic interactions with the gauge

field Aµ. Since the massive boson has three spin states (corresponding to J3 = 1,
0, or −1 in its rest frame), the number of independent fields is still four.

What has happened here is that the Goldstone boson of the previous section
has become the longitudinal polarization state of the gauge boson. This can
be seen a little more explicitly if the calculation of this section is carried out
without the simplifying step of Eq. 8.32, but using Eq. 8.25 instead. Then the
mass appears for the gauge vector boson, and a term Aµ∂

µρ, which apparently
allows Aµ to turn into ρ as it propagates. When such cross terms appear, one
can go to eigenstates by a diagonalization, which can be accomplished here by
a gauge transformation, and which eliminates ρ from the Lagrangian. This
phenomenon is sometimes referred to as the gauge boson having “eaten” the
Goldstone boson.

The mechanism we have just studied is called the Higgs mechanism. Tech-
nically it is well understood, but at a physical level its meaning is not yet fully
grasped in particle physics. In some sense, the longitudinal polarization state of
the gauge boson (which must exist if it is to be massive in a Lorentz invariant
theory where it is possible to go to its rest frame) is the Goldstone boson that
would have appeared as a physical particle if the theory were not a local gauge
theory. There is also a neutral spin-0 boson left over that apparently should
exist as a physical particle; it is called the Higgs boson. Note that the gauge
boson mass is fixed if g2 and v are known, but the mass of the Higgs boson
h depends on the unknown parameter λ. In the next section we will add the
last bit of complexity needed to fully incorporate the Higgs mechanism into the
SM.

8.5 The Higgs Mechanism in the Standard Model

Now we are ready to work out the Higgs mechanism in the SM by adding one
further degree of complexity. In the last section, we saw how the Higgs field can
break a local symmetry, but it was an Abelian symmetry and the Higgs field
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carried no charge: all of its quantum numbers, other than 4-momentum, were
zero. In the SM, the Higgs field is assigned to a SU(2) doublet. We can choose

φ =

(

φ+

φ0

)

, (8.35)

where the superscripts denote the electric charge. φ+ and φ0 are each complex
fields:

φ+ = 1√
2
(φ1 + iφ2),

φ0 = 1√
2
(φ3 + iφ4).

(8.36)

In the SU(2) space φ+ and φ0 are related by a rotation, like a spin-up and a
spin-down state, or the left-handed νe to the left-handed electron. The scalar
part of the Lagrangian has the same form as in last section

Lφ = (∂µφ)†(∂µφ) − µ2φ†φ− λ(φ†φ)2, (8.37)

but now φ is a column vector and φ† a row, each with 2 complex components,
so

φ†φ =
(

φ+∗ φ0∗ )
(

φ+

φ0

)

= φ+∗φ+ + φ0∗φ0 =
φ2

1 + φ2
2 + φ2

3 + φ2
4

2
. (8.38)

As before, we study the potential

V (φ) = µ2φ†φ+ λ(φ†φ)2. (8.39)

V (φ) is invariant under the local gauge transformation

φ(x) → φ′(x) = ei~α(x)·~σ
2 φ(x), (8.40)

where σi are the Pauli matrices and αi are parameters. Proceeding as before,
V (φ) has a minimum for µ2 < 0 at

φ†φ =
−µ2

2λ
=
v2

2
. (8.41)

From Eq. 8.38, we see that there are many ways to satisfy Eq. 8.41.
So, once again, we must choose a direction, this time in SU(2) space, and

expand around the minimum. We make the following choice and call it the
vacuum (in the sense that it is the ground state of free space), φ0:

φ0 =
1√
2

(

0
v

)

, (8.42)

i.e. φ3 = v, φ1 = φ2 = φ4 = 0.
To study the spectrum by perturbing around the vacuum, we write

φ(x) =
1√
2

(

0
v +H(x)

)

, (8.43)
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and we will look for the equations satisfied byH . We can make this simple choice
because for an arbitrary φ(x) we could apply a gauge transformation, φ → φ′ =

exp

(

i~σ · ~θ(x)
v

)

φ, and rotate φ(x) into the form of Eq. 8.43. This amounts

to “gauging away” three fields, which is consistent with what the Goldstone
theorem. The original symmetry, from Eq. 8.41,

φ2
1 + φ2

2 + φ2
3 + φ2

4 = invariant (8.44)

is an O(4) symmetry. By choosing a direction, we have broken three continuous
symmetries, so three massless bosons, and three fields, are gauged away. We
shall soon see that these three are just what are needed to endow the W± and
Z bosons with longitudinal polarization, and, therefore, mass.

Before we write the covariant derivative and complete the calculation, let
us examine a bit further what is happening. The electric charge Q, the weak
isospin eigenvalue T3, and the U(1) hypercharge Y (for the Higgs field) are
related by

Q = T3 +
Y

2
(8.45)

The electric charge assignment of Eq. 8.35 corresponds to YH = 1. The choice
that only the neutral component φ0 gets a VEV is very important, since what-
ever quantum numbers φ carries can vanish into the vacuum. If φ+ had a
non-zero VEV, then electric charge would not be conserved, contrary to obser-
vation.

If the vacuum φ0 is invariant under some subgroups of the original SU(2)×
U(1), any gauge bosons associated with that subgroup will still be massless.
Since the Higgs field φ(x) is a doublet, but only one component gets a VEV,
clearly the SU(2) symmetry is broken. Since YH 6= 0, the U(1) symmetry is
broken. However, if we operate with the electric charge operator on φ0, we get

Qφ0 =

(

T3 +
Y

2

)

φ0 = 0, (8.46)

so φ0 (i.e. the vacuum) is invariant under a transformation

φ0 → φ0
′ = eiα(x)Qφ0 = φ0. (8.47)

This is also a U(1) transformation, so the vacuum is invariant under a certain
U(1)Q whose generator is a particular linear combination of the generators of
the original SU(2)L and U(1)Y . Of course, this is the U(1) of electromagnetism,
and the gauge boson that remains massless is the photon (because it does not
acquire a longitudinal polarization by “eating” a Goldstone boson). The pres-
ence of a massless gauge boson was a necessary consequence of electric charge
conservation, which forces us to choose a vacuum that is electrically neutral.

Finally, let us carry out the algebra to see the consequences of the Higgs
mechanism. For the full Lagrangian to be invariant under the transformation
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in Eq. 8.40, we have to replace ∂µ by the covariant derivative Dµ where

Dµ = ∂µ − ig1
Y

2
Bµ − ig2

σi

2
W µ

i (8.48)

(this is the same as Eq. 6.27 except that we have dropped the color SU(3) term

since that symmetry is not broken) and the gauge fields Bµ and ~Wµ transform
as in Chapter 6. Then when φ gets a VEV, proceeding as in the earlier sections,
the Lagrangian contains extra terms

φ†
(

ig1
Y

2
Bµ + ig2

σi

2
W µ

i

)† (

ig1
Y

2
Bµ + ig2

σi

2
W µ

i

)

φ. (8.49)

Putting Y = 1, writing the 2× 2 matrices explicitly as in Chapter 7, and using
Eq. 8.43, we get the contribution to L,

1

8

∣

∣

∣

∣

∣

∣





g1Bµ + g2W
3
µ g2(W

1
µ − iW 2

µ)

g2(W
1
µ + iW 2

µ) g1Bµ − g2W
3
µ









0

v





∣

∣

∣

∣

∣

∣

2

=
1

8
v2g2

2

(

(W 1
µ)2 + (W 2

µ )2
)

+
1

8
v2(g1Bµ − g2W

3
µ )2.

(8.50)

The first term can be rewritten as

(

1

2
vg2

)2

W+
µ W

−µ (8.51)

carefully keeping track of the
√

2 factors as in Eq. 7.9. For a charged boson, the
expected mass term in a Lagrangian would be m2W+W−, so we can conclude
that the W± has indeed acquired a mass

MW =
1

2
vg. (8.52)

The second term in Eq. 8.50 is not diagonal. So, we have to define new
eigenvalues to find the particles with definite mass (B and W 3 are the neutral
states with diagonal weak hyercharge and weak isospin interactions). In fact,
we already have the answer in hand, because the linear combination of B and
W 3 appearing in Eq. 8.50 is just the combination we have called Zµ (see Sec. 7.3
and note the choice of YL = −1). We expect mass terms for Zµ and the photon
Aµ. For a neutral field there is a factor of 1

2 relative to the charged ones, so

mass terms 1
2 (MZ

2ZµZ
µ +Mγ

2AµA
µ) should appear. From Eq. 8.50 and the

normalization of Z in Eq. 7.15, we can conclude that

MZ =
1

2
v
√

g2
1 + g2

2 (8.53)

and
Mγ = 0. (8.54)
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It’s good to see that the photon remains massless since no AµA
µ term appears.

Using the identities of Chapter 7, we can also write

MW

MZ

= cos θW . (8.55)

Since B and W 3 mix, the neutral state is not degenerate in mass with the
charged ones, unless θW = 0. Once θW is measured, SM fixes either of the
Intermediate Vector Boson masses in terms of the other, and the result has
been verified by experiments.

It’s useful to define

ρ ≡ MW

MZ cos θW

. (8.56)

The SM predicts ρ = 1. In fact, it can be shown that ρ = 1 is guaranteed even
if additional Higgs doublets are present. Any deviation from ρ = 1 would be an
important signal of new physics.

8.6 Fermion Masses

Now that we have available the Higgs field in a SU(2) doublet, it is possible
to write a SU(2)-invariant interaction of fermions with the Higgs field. For
example, we can add the following interaction term to the Lagrangian for the
first-generation leptons:

Lint = ge

(

L̄φe−R + φ†ē−RL
)

. (8.57)

Since L =

(

νe

e−

)

and φ =

(

φ+

φ0

)

, L̄φ = ν̄eLφ
+ē−Lφ

0 is a SU(2) invariant.

Multiplying by the singlet e−R does not change the SU(2) invariance. The second
term is the Hermitian conjugate of the first. The coupling ge is arbitrary; neither
the presence of such terms nor ge follows from a gauge principle.

Following the previous sections, we can calculate the observable effects of
adding this term by replacing

φ →
(

0
v+H√

2

)

, (8.58)

where v is the Higgs VEV, and H is the neutral, physical Higgs particle. Sub-
stituting it into Eq. 8.57 gives

Lint =
gev√

2

(

L̄φe−R + φ†ē−RL
)

+
ge√
2

(

L̄φe−R + φ†ē−RL
)

H. (8.59)

The first term in Eq. 8.59 has exactly the same form as expected for a fermion
of mass

me =
gev√

2
. (8.60)
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Thus the theory can now accommodate a non-zero electron mass. It should be
noted here that it is only through such mass terms that a fermion can make
a transition from a right-handed helicity state to a left-handed one (or vice
versa). The amplitude is proportional to the fermion mass. This explains why
B(π− → eν̄e)

B(π− → µν̄µ)
≈ 1.23× 10−4.

Sicne ge is arbitrary, the value of the electron mass has not been calculated.
Rather, we can invert Eq. 8.60, so

ge =

√
2me

v
. (8.61)

The second term in Eq. 8.59 says that the theory has an electron-Higgs vertex of
strength ge√

2
= me

v
, which determines the probability for an electron or positron

to radiate a Higgs boson, or for a Higgs boson to decay into e+e−. We can
eliminate ge from the Lagrangian and rewrite it as

Lint = meēe+
me

v
ēeH. (8.62)

Note that no mass term appears for the neutrino since we have assumed that
the theory contains no right-handed neutrino state νR, so a term analogous to
Eq. 8.57 cannot be written that will subsequently lead to a mass term ν̄RνL.
This implies that the neutrinos do not interact with H . If there were a νR, it
would be hard to observe; since it would have T3 = 0 and Q = 0, it would not
couple to W±, Z0, or γ. However, a neutrino of non-zero mass, and therefore a
νR, can be accommodated in the SM.

For quarks, this leads to another subtlety (one that would also have occured

for leptons had νR existed). If ψ =

(

a
b

)

is a SU(2) doublet, then so is

ψc = −iσ2ψ
∗ =

(

−b∗
a∗

)

. (8.63)

Then we can also write terms of Lint using

φc =

(

−φ0∗

φ−

)

, (8.64)

which becomes, after invoking the Higgs mechanism,

φc →
(

− v+H
2

0

)

. (8.65)

φ has hypercharge Y = +1, φc has Y = −1, and still satisfies for each state,

Q = T3 +
Y

2
.

Then, for quarks, we have

Lint = gdQ̄LφdR + guQ̄LφcuR + Hermitian conjugate. (8.66)
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Substituting from Eqs. 8.61 and 8.63,and for QL, gives

Lint = mdd̄d+muūu+
md

v
d̄dH +

mu

v
ūuH, (8.67)

where gd and gu have been eliminated in favor of their masses, following the
same steps that led to Eq. 8.61. Again, the quark masses can be included in the
description, but since gd and gu are arbitrary parameters, not related to each
other or to ge, the masses have to be measured. The last two terms of Eq. 8.67
describe the interaction of d and u quarks with H0.

The entire procedure of this section can be repeated for the second and third
generations, giving further pieces of Lint which come from taking Eq. 8.62 with
e → µ, τ and Eq. 8.67 with u → c, t and d → s, b. Since the Higgs-fermion
coupling strength is proportional to the latter’s mass, it couples most strongly
to the heaviest fermions.

8.7 Comment on Vacuum Energy

The Higgs mechanism contributes to an important problem when cosmological
considerations are introduced. We found the Higgs VEV v =

√

−µ2/λ. Putting
φ = v in Eq. 8.39, we can calculate the Higgs potential at its minimum:

V (φ = v) = V0 =
λv4

2
. (8.68)

v = 2MW/g2 ≈ 246 GeV ⇒ V0 ≈ 2×109λ GeV4, and 1 GeV3 ≈ 1.3 × 1041 cm−3.

So, V0 ≈ 2.6 × 1050λ GeV/cm
3
. This is apparently the contribution of sponta-

neous symmetry breaking to the vacuum energy density of the universe.
But, from astrophysics, it is known that the energy density of luminous

matter in the universe is about one proton per cubic meter on the average, and
that the total density of matter is no more than ∼100 times this number. Thus,
empirically, the total energy density is less than about 10−4 GeV/cm3.

To compare this number with V0, we need the value of λ, the arbitrary Higgs
self-coupling in the Higgs potential. While λ is not known, if it were eventually
to be determined by some fundamental argument, such as a gauge principle,
presumably λ >∼ 1/10. Combining these, we find V0 ≈ 2 × 1049 GeV/cm

3
,

larger than the experimentally observed value by a factor of 1054!
Technically, this is not a contradiction, because we can always add a constant

to the potential in theories without gravity and cancel V0, but to do so involves
tuning the constant to a part in 1054, which is hardly satisfactory. this is
(essentially) what is referred to as the problem of the cosmological constant. If
gravity is included, terms of the kind we are considering will contribute to the
energy-momentum tensor and, through Einstein’s equations, dramatically affect
the geometry of space-time. This is another clue that in spite of the remarkable
descriptive power of the SM, it is a theory that is incomplete at the fundamental
level.
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Chapter 9

Quark (and Lepton) Mixing

It may be noted that in all of the Standard Model described so far, we have
made no provision for any transition between different generations (or families)
of fermions. The charged current (W±) only causes transitions between the two
states of a SU(2) doublet in the weak isospin space, while the neutral currents
(Z0, γ, g,H) do nothing to alter the flavor of a fermion.1 This would imply
that the lighter partner of a weak isospin doublet should be stable. While this
seems to be acceptable for leptons (ignoring for the moment the possibility of
neutrino mass, oscillations etc.), it is certainly not so for quarks. The b and s
quarks are not stable. In fact, there is ample evidence that the strange quark
connects to the up quark via charged current interactions in a manner very
similar to that of the down quark. Like the π+ (the scalar ud̄ bound state),
K+, the lightest charged strange meson (scalar us̄) decays predominantly to
µ+ν. The next major decay mode is π+π0.2 What’s more, the mean life of K+

is less than half that of π+.3 The shorter lifetime of the kaon is explained by
its larger mass, which translates to a larger phase space, but it also means that
the underlying charged current interaction across quark generations is not very
strongly suppressed.

9.1 The Cabibbo Mixing of d and s Quarks

The apparent contradiction is easily resolved if we abandon the implicit as-
sumption that the weak isospin eigenstates of the quarks are also their mass
eigenstates. In fact they are not. So far we have have put only the left-handed
d quark in a doublet with a left handed u quark:

ψL =

(

u
d

)

L

(9.1)

1The emission or absorption of a gluon will change the color of a quark, but the internal
space of color is orthogonal to flavor.

2B(π+ → µ+ν) ≈ 1, B(K+ → µ+ν) ≈ 0.63, B(K+ → π+π0) ≈ 0.21.
3τK± ≈ 1.24 × 10−8 s, τπ± ≈ 2.60 × 10−8 s, mK± ≈ 493.7 MeV, mπ± ≈ 139.6 MeV.
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This is clearly inadequate to explain strange quark weak interactions, such as
the kaon decays described above. But since d and s quarks are identical to
each other in every respect other than mass, we can generalize Eq. 9.1 so that
the field that appears in the weak isospin doublet with the u quark is a linear
combination of the d and s mass eigenstates:

ψL =

(

u
cos θcd+ sin θcs

)

L

, (9.2)

where the parameter θc is known as the Cabibbo angle. For a doublet of the
form Eq. 9.2, the coupling strength of strangeness-conserving processes is pro-
portional to cos θc while that for the parallel strangeness-altering processes (i.e.
those in which the d quark is replaced by the s quark) is proportional to sin θc.
Experimentally, sin θc ≈ 0.223, so that a strangeness-altering processes is in-
herently about 20 times (∼ 1

sin2 θc

) weaker than the corresponding strangeness-
conserving process.

9.2 The c quark and the GIM Mechanism

So far we have discussed only the W± exchange, but if Eq. 9.2 were the whole
story, there would be decay processes mediated by Z0 exchange as well. For ex-
ample, the Z0 coupling sin θc cos θcZ

0d̄LsL can give rise to the decayK0
L → µ+µ−

at a rate comparable to that of K+ → µ+νµ. In fact, the former is suppressed
by a factor of 10−8! This is one of the symptoms of a very general problem
– the absence of flavor-changing neutral current effects (FCNC). It prompted
Glashow, Iliopoulos, and Maiani (GIM) to propose a radical solution, the exis-
tence of a fourth quark, the charm quark, in a SU(2) doublet with the orthogonal
combination of s and d, so the doublet is

ψ′
L =

(

c
cos θcs− sin θcd

)

L

, (9.3)

As we will soon see, now the Z0 coupling to this doublet precisely cancels the
strangeness-altering coupling from the other doublet. This eliminates the decay
K0

L → µ+µ− in tree approximation. However, the problem reappears in one-
loop level if mc is too large. To fit the data, the c quark had to appear with
a mass no more than a few GeV. And it did! Other charmed mesons and
baryons were discovered just with the right properties. The c quark should
decay primarily to s because of 9.3, and it does.

This was one of the great triumphs of theoretical physics. It made a tidy
little world with a correspondence between quarks and leptons – one light family
with u, d, νe, e

− and one heavy family with c, s, νµ, µ
−. Nature, however, chose

not to stop here. Discovery of the τ− lepton ruined the correspondence, and the
subsequent discovery of the b quark did not come as much of a surprise. Direct
observation of t and ντ in due course completed the third family. We do not
know if there are any more families, but before considering the full spectrum
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consisting of all 3 families, let us initiate the mathematical approach by first
considering what may happen if there are only two families of quarks.4 Then
we could write the charged current of Chapter 7 associated with the W± boson
as

Jµ
CC =

(

ū c̄
)

γµPL

(

d
s

)

= ūγµPLd+ c̄γµPLs, (9.4)

where we have used row and column vectors in a flavor space. By u, c, d, s we
mean the mass eigenstates, the energy levels of the system. But then we should
call the weak eigenstates something else – to allow them to be different. So

we replace

(

d
s

)

by

(

d′

s′

)

, where the q′ states are defined to be the weak

interaction eigenstates. One set of eigenstates can be expanded in terms of the
other, so we write

(

d′

s′

)

L

= V

(

d
s

)

L

, (9.5)

where V must be a unitary 2×2 matrix. The most general unitary 2×2 matrix
can be written with three angles θ, α, and γ,

V =

(

cos θeiα sin θeiγ

− sin θe−iγ cos θe−iα

)

, (9.6)

so

d′ = cos θeiαd+ sin θeiγs

= eiα
(

d cos θ + s sin θei(γ−α)
)

,

s′ = − sin θe−iγd+ cos θe−iαs

= e−iγ
(

−d sin θ + s cos θei(γ−α)
)

.

(9.7)

We can redefine the relative phases of the quark states without changing any
observables. So we multiply d′ by e−iα, s′ by eiγ , and s by e−i(γ−α). If mass
terms are present, these phases can be absorbed by similar transformations of
sR and dR. With these replacements,

d′ = d cos θ + s sin θ,

s′ = −d sin θ + s cos θ,
(9.8)

and

V =

(

cos θ sin θ
− sin θ cos θ

)

. (9.9)

4In fact, this is pretty close to the historical development. The quarks were not discovered
all at once. The quark picture of hadrons and mesons developed in the same period as the
SU(2)×U(1) model. The first theory of quark mixing was formulated when only two familes
of quarks were known.
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Then the form of Eq. 9.4 that should have been used from the beginning is

Jµ
CC =

(

ū c̄
)

γµPL





d′

s′



 =
(

ū c̄
)

γµPLV





d

s





= ūγµPLd cos θ + ūγµPLs sin θ − c̄γµPLd sin θ + c̄γµPLs cos θ.

(9.10)

There are two new terms, both containing sin θ, and the old terms are reduced
by cos θ. The angle θ is the same as the Cabibbo angle θc encountered before.
Had θ been zero, then Eq. 9.10 would reduce to Eq. 9.4 and the s quark would
have been stable. Now it can decay via the coupling to u in the second term
above.

Note that we chose, as is convention, to rotate the down-type quarks, but
one could rotate the up-type quarks, or, in general, both types simultaneously.

If we had rotated both
(

ū c̄
)

and

(

d
s

)

, we would have had a current of

the form
(

ū c̄
)

γµPLV
†
upVdown

(

d
s

)

, but the product of two rotations is a

rotation so we can replace V †
upVdown by a single rotation matrix V .

Next we need to check the effect of this rotation on the neutral current. Still
working with two families, we have

Jµ
NC =

∑

f=u,c,d,s

(

f̄Lγ
µ(T3L −Q sin2 θW )fL + f̄Rγ

µ(−Q sin2 θW )fR

)

. (9.11)

Now we replace d by d′ and s by s′. Then the terms that would change are

(d̄L cos θ + s̄L sin θ)γµ(T3L −Q sin2 θW )(dL cos θ + sL sin θ)

+(−d̄L sin θ + s̄L cos θ)γµ(T3L −Q sin2 θW )(−dL sin θ + sL cos θ)

+(L→ R)

= d̄Lγ
µ(T3L −Q sin2 θW )dL(cos2 θ + sin2 θ)

+s̄Lγ
µ(T3L −Q sin2 θW )sL(cos2 θ + sin2 θ)

+d̄Lγ
µ(T3L −Q sin2 θW )sL(cos θ sin θ − cos θ sin θ)

+s̄Lγ
µ(T3L −Q sin2 θW )dL(cos θ sin θ − cos θ sin θ)

+(L→ R)

=
∑

f=d,s

(

f̄Lγ
µ(T3L −Q sin2 θW )fL + (L→ R)

)

.

(9.12)

We are back to the original result! So, the neutral current is diagonal in mass
eigenstates or weak eigenstates. This is called the GIM mechanism. It has
very profound consequences for decays, since the SM has no FCNC at the tree
level. Searches for FCNC are therefore interesting as possible probes for new
interactions.
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9.3 Kobayashi-Maskawa Mixing in the Six-Quark
Model

We can extend the results of the previous sections to the three families of quarks
that we know of. In analogy with Eq. 9.10, we can write the full charged current
for quarks as

Jµ
CC =

(

ū c̄ t̄
)

γµPLV





d
s
b



 , (9.13)

where V is now a 3×3 unitary matrix. A general a n×n unitary matrix has n2

independent real parameters, which means 9 for us. We can redefine the phases
of five quark states; the sixth would amount to an overall phase for all the states,
so it does not help. That leaves four parameters to describe the matrix. Also,
an orthogonal n× n matrix has n(n− 1)/2 real parameters, 3 here. Thus, one
of the parameters in V must enter as a relative phase.5 Then the terms in the
Hamiltonian ∼ WµJ

µ
CC can be complex, which implies that the theory will not

be invariant under transformations involving time reversal, or equivalently, CP .
The matrix V that connects the weak interaction eigenstates of the down-

type quarks to their mass eigenstates is called the Kobayashi-Maskawa, or
Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix:











d′

s′

b′











=











Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





















d

s

b











. (9.14)

The elements of V are presently measured to have magnitudes











0.9739 to 0.9751 0.221 to 0.227 0.0029 to 0.0045

0.221 to 0.227 0.9730 to 0.9744 0.039 to 0.044

0.0048 to 0.014 0.037 to 0.043 0.9990 to 0.9992











(9.15)

Ordering the families by mass, we see that transitions by one unit are small,
and transitions by two units are much smaller. These values assume that no
additional quarks exist that are coupled to the known ones (so that V is a 3× 3
unitary matrix).

Note that the b quark can decay as well. One of the terms in Eq. 9.13 is
c̄γµPLV b, with coefficient |Vcb| ≈ 0.042. The corresponding decay b → c̄W−

will be followed by the W− decaying into e−νe, µ
−νµ, τ−ντ , ūd, or c̄s, each of

the last two carrying 3 times the weight of each of the first three due to the
color degree of freedom available to the quarks. At the bc̄W vertex there is a

5A general n× n unitary rotation matrix contains n(n− 1)/2 angles and (n− 1)(n− 2)/2
phases.
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factor of Vcb moderating the usual coupling g2/
√

2. Thus the width of the b is
approximately

Γb '
9|Vcb|2G2

Fm
5
b

192π3
, (9.16)

where the 9 comes from the 9 open channels (neglecting phase space corrections
due to the daughter quarks and lepton masses). All of the W decay modes
except τ−ντ and c̄s are also open in decays of the τ−. However, being the
heavier partner in its SU(2) doublet, τ decay is not suppressed by an off-diagonal
element of a (lepton) mixing matrix. This would imply

Γb

Γτ

' 9

5
|Vcb|2

(

mb

mτ

)5

≈ 0.23. (9.17)

So, we’d expect the b lifetime to be ∼4.5 times longer than that of the τ because
the b can only decay via the rotation of the mass eigenstates to the weak eigen-
states. In reality, the factor is closer to 5.8. Our naive estimate is not off by
much considering that we ignored several (small) effects. A similar comparison
can be carried out with the c quark as well. Indeed, despite being 3 times lighter
than b and having fewer decay options, c has a shorter lifetime because it has a
large diagonal element namely Vcs, available.

At present the elements of V are parameters that have to be measured, just
like the fermion masses. Eventually, it is hoped that the relation between the
weak eigenstates and the mass eigenstates will be calculable, so the elements of
V can be expressed in terms of ratios of masses.

We could have carried out a similar procedure for leptons. If, however, any
pair of the same-type quarks are degenerate in mass, then we cannot tell the
mass eigenstates apart, so we could perform a rotation and make the correspon-
ding angle or element of V zero. Thus, if neutrinos were massless, there is no
need to have mixing angles; the weak eigenstates and mass eigenstates can be the
same. Over the past few years it has been emerging that the neutrinos are not
massless, after all. Oscillations among different flavors of neutrinos have been
observed by independent experiments, using different techniques. The mass
heirarchy in the lepton sector being entirely different from that in the quark
sector (the heaviest neutrino is at least 3 orders of magnitude lighter than the
lightest charged lepton), mixing of weak eigenstates and mass eigenstates has
different consequences between the two. Understanding neutrino mixing is one
of the highest priorities in particle physics today.
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Chapter 10

Interaction of Particles with
Matter

A scattering process at an experimental particle physics facility is called an
event. Stable particles emerging from an event are identified and their momenta
measured by their interactions in the material media of a suitably constructed
detector.1 Unstable particles are identified by adding the 4-momenta of their
daughters, if they can be isolated with sufficient confidence. Particle identifi-
cation can be either a unique assignment, or a broader classification. In this
chapter we shall discuss some fundamental characteristics of how different kinds
of particles interact with different kinds of material. In the next chapter we will
see how this knowledge is utilized to design detectors.

Electromagnetic interactions are most heavily relied upon for particle de-
tection. A charged particles loses energy as it tries to make its way through a
material medium. Several phenomena contribute to this process, and their rel-
ative importance depends on the properties of the particle and of the medium.
For energies of interest to us, the most important phenomenon, for any charged
particle other than electrons, is ionization. In addition to ionization, elec-
trons also lose a significant fraction of their energies by photon emission (a.k.a
bremsstrahlung). Being electrically neutral, photons do not cause ionization, but
at high energies, they transfer their energy to a medium by such electromagnetic
interactions as the photoelectric effect, Compton scattering, and production of
electron-positron pairs. Another important process is the Coulomb scattering
of a charged particle with atomic nuclei, which is responsible for multiple scat-
tering. We will discuss these first.

There are other electromagnetic processes that are used in particle identifi-
cation, but less generally. These include scintillation, Cerenkov radiation, and
transition radiation. These will be discussed separately along with some special

1Here “stable” is defined by the time it takes for a high-energy particle (K.E.>∼1 GeV)
to traverse distances comparable to the dimensions of the detector. Therefore, a high-energy
muon is a stable particle for our purpose.
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applications of the general effects mentioned above. Strong and weak nuclear
interactions of particles in matter will be discussed in subsequent sections.

10.1 Electromagnetic Interaction of Particles with

Matter

A rigorous treatment of electromagnetic interactions based on QED has been
done to a good extent. For subtle effects, empirical parametrizations of extensive
data give reasonably good basis for interpolation. Details of these procedures
are beyond our scope. We will only summarize the key results.

10.1.1 Energy Loss by Ionization

The form of the rate of energy loss by ionization can be seen from a semi-classical
argument. The mean rate of energy loss, or stopping power, of moderately rela-
tivistic charged particles other than electron by ionization and atomic excitation
of a material medium is given by the Bethe-Bloch equation, which follows from
a quantum treatment of energy loss based on a first-order Born approximation,
with some reasonable simplifying assumptions:

−dE
dx

= Kz2Z

A

1

β2

(

1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ

2

)

. (10.1)

(see “Passage of particle through matter” in http://pdg.lbl.gov for defini-
tions of various terms). The first two terms in the parentheses depend on the
particle velocity β, while the last one reflects a modest density effect.

The Bethe-Bloch formula is a good approximation (accurate to ∼1%) for

particles with βγ =
p

Mc
in the range of about 0.05 to 500. At lower energies

various corrections need to be taken into account, while at higher energies ra-
diative losses dominate. The effect of the sign of the particle’s charge, known as
the “Barkas effect” begins to enter the picture only near the lower boundary of
the Bethe-Bloch region.2 Except in hydrogen, particles of the the same velocity
have similar rates of energy loss in different materials, decreasing at a slow rate
with increasing Z. The stopping power functions are characterized by broad
minima whose position drops from βγ = 3.5 to 3.0 as Z goes from 7 to 100. In
practical cases, most relativistic particles (e.g. cosmic-ray muons) have mean
energy loss rates close to the minimum, and are said to be minimum ionizing
particles, or MIP’s.

Equation 10.1 can be integrated to find the total (or partial) “continuous
slowing-down approximation” (CSDA) range R for a particle which loses energy
only through ionization and atomic excitation. Since for a given medium, dE

dx

depends only on β, R/M is a function of E/M or pc/M in the Bethe-Bloch region

2In principle, one might expect some particle-antiparticle asymmetry, since the detector is
made entirely of matter, with no trace of antimatter.
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Figure 10.1: Stopping power (= 〈−dE/dx〉) for µ+’s in Cu as a function of
βγ = p/Mc ove 9 orders of magnitude in momentum (12 orders in KE). Solid
curves indicate the total stopping power. Vertical bands indicate boundaries
between different approximations.

In practice, range is a useful concept only for low-energy hadrons, for which it
is typically less than the interaction length (defined as the length through which
the probability of the hadron not participating in a strong nuclear interaction
drops by a factor of e), and for muons below a few hundred GeV (above which
radiative effects dominate).

For a particle with mass M and momentum Mβγc, Tmax is given by

Tmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
. (10.2)

The determination of the mean excitation energy is the principal non-trivial
task in the evaluation of the Bethe-Bloch formula. Estimates based on fits to
experimental measurements for various charged particles are used.

The simplifying assumptions used in the derivation of Eq. 10.1 begin to lead
us astray in regions of low energy. Atomic shell corrections are necessary when
the velocity of the incident particle becomes comparable to the velocity of the
bound electrons. Above the upper boundary of the Bethe-Bloch region, it is
necessary to account for radiation, kinematics, and the structure of the incident
particle.

The energy transferred to electrons increases with the incident particle en-
ergy. Secondary “knock-on” electrons with T � I are known as δ rays. The
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number of δ rays produced with energy greater than T0 in a thickness x is

N(T ≥ T0) =

∫ Tmax

T0

ξ
dT

T 2
= ξ

(

1

T0
− 1

Tmax

)

, (10.3)

where

ξ =
2πneZ

2e4

Mβ2
x. (10.4)

So, for T0 � Tmax, the number of energetic δ rays falls off inversely with the
energy and that the parameter ξ is the energy above which there will be, on
average, one δ ray produced. As such, it represents a “typical” value of energy
loss in the material.

Usually, δ rays of appreciable energy are rare, but occassionally they can
carry energies of O(1 GeV), sufficient to start a process that requires indepen-
dent treatment. A δ ray with kinetic energy Te and corresponding momentum
pe is produced at an angle θ given by

cos θ =
Te

pe

pmax

Tmax
, (10.5)

where pmax is the momentum of an electron with the maximum possible energy
transfer Tmax.

Several other processes, such as Cerenkov radiation, transition radiation,
brensstrahlung, and pair-production also become important at high energies.

10.1.2 Fluctuations in Ionization Energy Loss

Equation 10.1 only gives the mean energy lost by a charged particle per unit
thickness of matter (absorber). The actual amount of energy lost by a charged
particle that has traversed a given thickness of absorber will vary due to the
stochastic nature of the process. For moderatly relativistic incident charged
particles, collisions with small energy transfers are much more likely than those
with large transfers. As a result, the single-collision spectrum is highly skewed
and the dE

dx
distribution has a long tail on the high energy side. The proba-

bility density function f(∆;βγ, x) describing the distribution of energy loss ∆
in absorber thickness x is called the “Landau distribution”. If χ(W,x)dW is
the probability that a particle loses an energy between W and W + dW after
crossing a thickness x of the absorber, then

χ(W,x)dW =
1

ξ
fL(λ), (10.6)

where

λ = 1
ξ

(

W − ξ
(

ln ξ
ε′

+ 1 − CE

))

,

ln ε′ = ln
(1 − β2)I2

2mv2
+ β2,

CE = 0.577 (Euler’s constant).

(10.7)
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The quantity ε′ is the low energy cutoff of possible energy losses, chosen by
Landau so that the mean energy loss agreed with the Bethe-Bloch theory. The
function fL(λ) can be expressed as

fL(λ) =
1

π

∫ ∞

0

exp (−u(lnu+ λ)) sin (πu)du. (10.8)

The most probable value of the energy loss is given by

WMP = ξ

(

ln
ξ

ε′
+ 0.198 + δ

)

. (10.9)

The full width at half maximum (FWHM) of the distribution is 4.02ξ.
The Landau formula an approximation based on the assumptions that suc-

cessive collisions are statistically independent, that the absorber medium is ho-
mogeneous, and that the total energy loss is small compared to the incident
particle’s energy. Experimental energy loss distributions in gases are broader
than predicted by the Landau formula. Still, pulse height spectra of high-energy
charged particles in gaseous proportional chambers follow the general form of
the distribution. More elaborate “straggling” functions that provide a better
fit are available, but the Landau distribution often serves well enough. When
ξ/Emax is O(0.01) or less, the number of δ rays with energies near Emax is small,
and single large energy loss events give an asymmetric high-energy tail to the
energy loss distribution. The distribution approaches a Gaussian for ξ/Emax of
O(1) or more, when the number of δ rays with energies near Emax is large.

Physicists often relate total energy loss to the number of ion pairs produced
near the particle’s track. This relation becomes complicated for extremely rel-
ativistic particles due to the wandering of energetic δ rays whose ranges exceed
the dimensions of the fiducial volume. The mean local energy dissipation per
ion-pair produced, W , is essentially constant for moderately relativistic parti-
cles, but increases at slower particle speeds. For gases,W can be highly sensitive
to trace amounts of contaminants or dopants. Also, ionization yields in practical
cases may be influences by such factors as subsequent recombination.

Because of fluctuations in energy loss, a beam of particles of fixed energy will
have a distribution of ranges in a thick absorber. This is another manifestation
of the straggling phenomenon. The two fluctuations are related by

〈(E − Ē)2〉 =

(

dE

dx

)2

〈(R − R̄)2〉. (10.10)

The range distributions of moderately relativistic hadrons in metals are nearly
Gaussian. For a pure, monoenergetic beam of particles, the fractional strag-
gling σR/R increases with Z of the absorber. The fractional straggling in a
given absorber decreases with increasing kinetic energy and approaches a value
σR/R ≈ 1

2

√

me/M at high energy, where M is the mass of the incident particle.
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