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Assignment: HW7 [40 points]
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Due: 2006/11/22

P7.1 [6 + 8 = 14 points]
A particle of mass m can move in one dimension under the influence of
two springs connected to two walls that are a distance a apart, as shown
in Fig. 7.1. The springs obey Hooke’s law, have zero unstretched lengths
and spring constants k1 and k2 respectively.
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Figure 7.1

(a) Let x be the length of the first spring, and b its equilibrium value.
Using the displacement from the equilibrium, q = x− b, as the gen-
eralized coordinate, find the Hamiltonian and the total energy of the
system, and examine if these quantities are conserved.

(b) Now consider the coordinate transformation

Q = q − b sin(ωt), (1)

where ω is some constant (not necessarily the natural frequency of
the system). Find the Hamiltonian and the total energy of the system
in terms of Q and its conjugate momentum P , and examine if these
quantities are conserved.

P7.2 [4 + 2 = 6 points]
Let (q, p) be the phase-space coordinates of a system with one degree of
freedom.

(a) Under what conditions is the transformation

Q = α
p

q
; P = βq2 (2)

canonical (α and β are constants)?

(b) Find a suitable generating function of type 1, F1(q,Q), for the above
transformation.

P7.3 [6 points]
Consider the (continuous and regular) one-parameter group of canonical
transformations ψθ defined as the solution to the differential equation

∂ψµ(ω0; θ)

∂θ
= εµν

[

∂φ(ω)

∂ων

]

ωµ=ψµ(ω0;θ)

= εµν
∂φ(ω0; θ)

∂ψν
, (3)
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where φµ are some functions of ω, independent of θ. Indeed, φµ is the
inverse of the ratio of the infinitesimal change in the parameter θ and the
corresponding change in the phase space coordinate ωµ:

ω′µ = ωµ + δθφµ(ω). (4)

Show that a function A(ω) = A(ψ(ω0; θ)) = Aθ(ω0) will obey the differ-
ential equation

∂Aθ(ω0)

∂θ
= {Aθ(ω0), φ(ω0)}ω0

, (5)

which then leads to the power series solution

A(ω) = Aθ(ω0) = A(ω0)+θ {Aθ(ω0), φ(ω0)}+
θ2

2!
{{Aθ(ω0), φ(ω0)} , φ(ω0)}+· · · .

(6)

P7.4 [10 + 4 = 14 points]
A particle of mass m moves in one dimension under a potential V (x) =
kx−2, where x is the Cartesian coordinate and k a constant.

(a) Find x(t) using the Poisson bracket form of the equation of motion for
the quantity y = x2 given the initial conditions x(0) = x0, p(0) = 0.

(b) Show that the quantity D = xp− 2Ht is a constant of the motion.
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