Assignment: HW7 [40 points]

Assigned: 2006/11/15
Due: 2006/11/22

P7.1 $[6+8=14$ points]
A particle of mass m can move in one dimension under the influence of two springs connected to two walls that are a distance a apart, as shown in Fig. 7.1. The springs obey Hooke's law, have zero unstretched lengths and spring constants k_{1} and k_{2} respectively.

Figure 7.1
(a) Let x be the length of the first spring, and b its equilibrium value. Using the displacement from the equilibrium, $q=x-b$, as the generalized coordinate, find the Hamiltonian and the total energy of the system, and examine if these quantities are conserved.
(b) Now consider the coordinate transformation

$$
\begin{equation*}
Q=q-b \sin (\omega t) \tag{1}
\end{equation*}
$$

where ω is some constant (not necessarily the natural frequency of the system). Find the Hamiltonian and the total energy of the system in terms of Q and its conjugate momentum P, and examine if these quantities are conserved.
$\underline{\text { P7.2 }}[4+2=6$ points $]$
Let (q, p) be the phase-space coordinates of a system with one degree of freedom.
(a) Under what conditions is the transformation

$$
\begin{equation*}
Q=\alpha \frac{p}{q} ; \quad P=\beta q^{2} \tag{2}
\end{equation*}
$$

canonical (α and β are constants)?
(b) Find a suitable generating function of type $1, F_{1}(q, Q)$, for the above transformation.

P7.3 [6 points]
Consider the (continuous and regular) one-parameter group of canonical transformations ψ_{θ} defined as the solution to the differential equation

$$
\begin{equation*}
\frac{\partial \psi^{\mu}\left(\omega_{0} ; \theta\right)}{\partial \theta}=\epsilon^{\mu \nu}\left[\frac{\partial \phi(\omega)}{\partial \omega^{\nu}}\right]_{\omega^{\mu}=\psi^{\mu}\left(\omega_{0} ; \theta\right)}=\epsilon^{\mu \nu} \frac{\partial \phi\left(\omega_{0} ; \theta\right)}{\partial \psi^{\nu}} \tag{3}
\end{equation*}
$$

where ϕ^{μ} are some functions of ω, independent of θ. Indeed, ϕ^{μ} is the inverse of the ratio of the infinitesimal change in the parameter θ and the corresponding change in the phase space coordinate ω^{μ} :

$$
\begin{equation*}
\omega^{\prime \mu}=\omega^{\mu}+\delta \theta \phi^{\mu}(\omega) \tag{4}
\end{equation*}
$$

Show that a function $A(\omega)=A\left(\psi\left(\omega_{0} ; \theta\right)\right)=A_{\theta}\left(\omega_{0}\right)$ will obey the differential equation

$$
\begin{equation*}
\frac{\partial A_{\theta}\left(\omega_{0}\right)}{\partial \theta}=\left\{A_{\theta}\left(\omega_{0}\right), \phi\left(\omega_{0}\right)\right\}_{\omega_{0}} \tag{5}
\end{equation*}
$$

which then leads to the power series solution
$A(\omega)=A_{\theta}\left(\omega_{0}\right)=A\left(\omega_{0}\right)+\theta\left\{A_{\theta}\left(\omega_{0}\right), \phi\left(\omega_{0}\right)\right\}+\frac{\theta^{2}}{2!}\left\{\left\{A_{\theta}\left(\omega_{0}\right), \phi\left(\omega_{0}\right)\right\}, \phi\left(\omega_{0}\right)\right\}+\cdots$.
$\underline{\text { P7.4 }}[10+4=14$ points] A particle of mass m moves in one dimension under a potential $V(x)=$ $k x^{-2}$, where x is the Cartesian coordinate and k a constant.
(a) Find $x(t)$ using the Poisson bracket form of the equation of motion for the quantity $y=x^{2}$ given the initial conditions $x(0)=x_{0}, p(0)=0$.
(b) Show that the quantity $D=x p-2 H t$ is a constant of the motion.

