
NIU PHYS 500, Fall 2006 Classical Mechanics Solutions for HW4

Assignment: HW4 [40 points]

Assigned: 2006/10/25
Due: 2006/11/01

Solutions

P4.1 [4 + 4 = 8 points]

(a) Find the moment of inertia tensor I of a uniform cube of side s and
mass M whose pivot is at a corner and whose sides are lined up along
the axes of an orthonormal coordinate system.

(b) Find the principal axis system and the moments of inertia.

S4.1 (a) The elements of the moment-of-inertia tensor are

Iij =

∫

V

(δijx
2 − xixj)ρdV (1)

where V the volume and ρ ≡ M
V

is the uniform density of the rigid
body. For the given cube,

I11 = I22 = I33 = ρ

∫ s

0

dx1

∫ s

0

dx2

∫ s

0

dx3(x
2
1 + x2

2) =
2

3
ρs5 =

2

3
Ms2

I12 = I23 = I31 = −ρ

∫ s

0

dx1

∫ s

0

dx2

∫ s

0

dx3(x1x2) = −1

4
ρs5 = −1

4
Ms2

(2)

Therefore, the I matrix is

I =
2

3
Ms2A ≡ 2

3
Ms2





1 α α

α 1 α

α α 1



 (3)

where α = −3

8
and A is the 3 × 3 matrix.

(b) To find the principal axes, we digonalize A. The eigenvalue equation
is

(1 − λ)3 − 3α2(1 − λ) + 2α3 = (1 − λ − α)2(1 − λ + 2α) = 0. (4)

whose solutions are

λ1 = 2α + 1 =
1

4
, λ2 = λ3 = 1 − α =

11

8
. (5)

The eigenvector belonging to λ1 (not normalized) is (1, 1, 1), and thus
it lies along the diagonal of the cube: one of the principal axes of the
cube pivoted at a corner is along its diagonal passing through that
corner. Since the remaining two eigenvalues are degenerate, any two
mutually perpendicular directions perpendicular to the first eigen-
vector can serve as the other two principal axes. The corresponding
moments of inertia are

I1 =
1

6
Ms2, I2 = I3 =

11

12
Ms2. (6)
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P4.2 [4 points]
The cube in Problem 1 rotates instantaneously about the edge that is lined
up along the x1 axis. Find the angle between the angular momentum L
and the angular velocity ~ω.

S4.2 If ~ω is along the x1 axis, ~ω = (ω, 0, 0). In that coordinate system,

L =
2

3
Ms2





1 α α

α 1 α

α α 1



 =





ω

0
0



 =
2

3
Ms2ω





1
α

α



 = Ms2ω





2

3

− 1

4

− 1

4



 .

(7)
Clearly, ~ω is not an eigenvector of I and L is not parallel to ~ω. The angle
θ between L and ~ω is given by

cos θ =
L · ~ω
Lω

=

2

3
√

(

2

3

)2

+

(

−1

4

)2

+

(

−1

4

)2
= 0.8835,

or, θ = 0.4876.

(8)

P4.3 [4 points]
Consider the symmetric dumbbell rotating in a “double cone” about its
CM as shown in Fig. 4.3: two equal point masses m connected by a
massless inextensible link of length 2`. Find the angular momentum of
the system and the torque required to maintain the motion.

~ω
v1

v2

L

m

m

r1

r2

O

Figure 4.3
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S4.3 The relation connecting rα, vα (α = 1, 2) and ~ω is

vα = ω̃ × rα (9)

and the relation connecting rα, vα (α = 1, 2) and L is

L =
∑

α

mαrα × vα. (10)

Note that ~ω is directed along the axis of rotation while L is perpendicular
to the line connecting the two masses. Thus, the angular momentum
vector L is not constant in time but rotates with an angular velocity ~ω in
such a way that it traces out a cone whose axis is the axis of rotation:

N = L̇ 6= 0, (11)

i.e., to keep the dumbbell rotating as shown in Fig. 4.3, a constant external
torque must be applied. In this case, m1 = m2 = m, |r1| = |r2| = `.
Hence, using Eqs. 9 and 10, we get

|L| = 2m`2ω sin θ (12)

where θ is the angle between the axis of rotation and the line connecting
the two masses. The direction of L is perpendicular to both.

P4.4 [8 points]
Find the characteristic frequencies of the coupled circuits in Fig. 4.4.
Comment on the two modes of oscillation (Hint: only one mode is damped).
Examine how the damped mode depends on the relation between R2 and
L

C
.

C C

L R L

Figure 4.4

S4.4 Let us start from a more general circuit shown in the figure below.

C1

I1 I2

C2

L1 R L2
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Let the charge on C1 and C2 be Q1 and Q2 respectively. Then, using
Kirchhoff’s law,

L1İ1 + R(I1 − I2) +
Q1

C1

= 0,

L2İ2 + R(I2 − I1) +
Q2

C2

= 0.

(13)

Taking time derivatives of Eqs. 13 and using Q̇ = I ,

L1Ï1 + R(İ1 − İ2) +
I1

C1

= 0,

L2Ï2 + R(İ2 − İ1) +
I2

C2

= 0.

(14)

Let us try solutions of the form

I1(t) = A1e
−iωt,

I2(t) = A2e
−iωt.

(15)

Using these trial solutions in Eqs. 14 gives the secular equation (by setting
the determinant of the coefficients of the A’s to 0):

(

ω2L1 −
1

C1

− iωR

)(

ω2L2 −
1

C2

− iωR

)

+ ω2R2 = 0. (16)

It is clear from Eq. 16 that the oscillations will be damped because ω will
have an imaginary part (The resistor in the circuit dissipates energy). The
problem at hand is a special case in which L1 = L2 = L and C1 = C2 = C,
which simplifies the secular equation to

(

ω2L − 1

C
− iωR

)2

+ ω2R2 = 0. (17)

with solutions

ω1 = ± 1√
LC

,

ω2 =
i

L

(

R ±
√

R2 − L

C

)

.

(18)

Hence, the general solution for I1(t) is

I1(t) =A+

1,1e
i
√

1

LC
t + A−

1,1e
−i
√

1

LC
t

+ e−
R

L
t

(

A+

1,2e

q

R2

L2
−

1

LC
t
+ A−

1,2e
−

q

R2

L2
−

1

LC
t

)

,
(19)

and similarly for I2(t). Mode 1, represented by ω1, is purely oscillatory
with no damping. This is the case when I1 and I2 are equal in magnitude
and sense, cancelling each other in R. Mode 2, represented by ω2, is where
I1 and I2 enforce each other in R. Examination of the exponents inside the
parentheses in Eq. 19 shows that if R2 < L

C
, then there will be damped

oscillations of I1 and I2 (underdamping), whereas if R2 > L
C

, then the
currents will decrease monotonically without oscillation (overdamping).
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P4.5 [10 points]
A mass M moves horizontally along a smooth rail. A pendulum of mass
m hangs from M by a massless rod of length ` in a uniform vertical
gravitational field g as shown in Fig. 4.5. Ignore all terms of order θ3 and
higher in expansions of trigonometric functions, as well as terms of order
θ2θ̇ and higher in the Lagrangian. Find the eigenfrequencies and describe
the normal modes.

X

x

y

θ
`

M

m

g

(0, 0)

Figure 4.5

S4.5 The coordinates of the pendulum are given by

x = X + ` sin θ,

y = ` − ` cos θ.
(20)

and it’s velocity (by taking time derivatives of Eq. 20) by

ẋ = Ẋ + `θ̇ cos θ,

ẏ = `θ̇ sin θ.
(21)

Hence, the kinetic energy is

T =
M

2
Ẋ2 +

m

2
(ẋ2 + ẏ2)

=
M

2
Ẋ2 +

m

2
(Ẋ2 + `2θ̇2 + 2`Ẋθ̇ cos θ),

(22)

and the potential energy

U = mgy = mg`(1 − cos θ). (23)

For θ � 1, cos θ ≈ 1− θ2

2
. Using this approximation, and further negelct-

ing terms of order θ2θ̇ and higher, Eqs. 22 and 23 reduce to

T =
(M + m)

2
Ẋ2 +

m

2
(`2θ̇2 + 2`Ẋθ̇) (24)

and
U = mgy =

m

2
g`θ2 (25)
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respectively. Hence, choosing X and θ as the generalized coordinates,

m =

(

M + m m`

m` m`2

)

, (26)

A =

(

0 0
0 mg`

)

, (27)

and the eigenfrequencies are given by the equation

|A −mω2| = 0

or,

∣

∣

∣

∣

−(M + m)ω2 −m`ω2

−m`ω2 mg` − m`2ω2

∣

∣

∣

∣

= 0,

or, ω2[ω2M`2 − mg`(m + M)] = 0,

(28)

i.e.,

ω1 = 0,

ω2 =

√

g

`

(M + m)

M
.

(29)

Subsituting the eigenfrequencies in the equation

∑

j

(Aj,k − ω2
rmj,k)aj,r = 0 (30)

gives
a2,1 = 0 (k = 2, r = 1),

a1,2 = − m`

m + M
a2,2 (k = 2, r = 2).

(31)

Thus the expressions of the generalized coordinates in terms of the normal
coordinates,

X = a1,1η1 + a1,2η2,

θ = a2,1η1 + a2,2η2

(32)

become

X = a1,1η1 −
m`

m + M
a2,2η2,

θ = a2,2η2

(33)

which can be inverted to yield the normal coordinates in terms of the
generalized coordinates:

η2 =
1

a2,2

θ,

η1 =
1

a1,1

(

X +
m`

m + M
θ

)

.

(34)
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P4.6 [6 points]
Three oscillators of equal mass m moving in one dimension are coupled
such that the potential energy of the system is given by

U =
1

2

[

κ1(x
2
1 + x2

3) + κ2x
2
2 + κ3(x1x2 + x2x3)

]

(35)

where
κ3 =

√
2κ1κ2. (36)

Find the eigenfrequencies by solving the secular equation. What is the
physical interpretation fo the zero-frequency mode?

S4.6

A =





κ1
1

2
κ3 0

1

2
κ3 κ2

1

2
κ3

0 1

2
κ3 κ1



 (37)

m = m





1 0 0
0 1 0
0 0 1



 (38)

Thus, the secular equation is

|A −mω2| = 0

or,

∣

∣

∣

∣

∣

∣

κ1 − mω2 1

2
κ3 0

1

2
κ3 κ2 − mω2 1

2
κ3

0 1

2
κ3 κ1 − mω2

∣

∣

∣

∣

∣

∣

= 0

or, (κ1 − mω2)2(κ2 − mω2) − 1

2
κ2

3(κ1 − mω2)2 = 0

(39)

Since κ3 =
√

2κ1κ2, Eq. 39 reduces to

(κ1 − mω2)[(κ1 − mω2)(κ2 − mω2) − κ1κ2] = 0

or, mω2(κ1 − mω2)[(κ1 + κ2) − mω2] = 0.
(40)

Therefore, the eigenfrequencies are

ω1 = 0,

ω2 =

√

κ1

m
,

ω3 =

√

κ1 + κ2

m
.

(41)

For the zero-frequency mode, we have

η̈1 + ω2
1η1 = 0 ⇒ η̈1 = 0 ⇒ η1(t) = at + b. (42)

That is, the zero-frequency mode corresponds to a pure translation of the
system, with no oscillation.
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