Assignment: HW1 [40 points]

Assigned: 2006/09/20
Due: 2006/09/27

P1.1 [10 points]
Show that the Galilei transformations $g(\mathbf{R}(\psi, \hat{\mathbf{n}}), \mathbf{w}, \mathbf{a}, s)$,

$$
\begin{equation*}
\binom{\mathbf{r}}{t} \xrightarrow{g}\binom{\mathbf{r}^{\prime}=\mathbf{R r}+\mathbf{w} t+\mathbf{a}}{t^{\prime}=\lambda t+s} \tag{1}
\end{equation*}
$$

with $\operatorname{det} \mathbf{R}=+1, \lambda=+1$, form a group. ${ }^{1}$

S1.1 Consider the composition of two successive transformations,

$$
\begin{equation*}
\binom{\mathbf{r}_{0}}{t_{0}} \xrightarrow{g^{(0,1)}}\binom{\mathbf{r}_{1}=\mathbf{R}^{(0,1)} \mathbf{r}_{\mathbf{0}}+\mathbf{w}^{(0,1)} t+\mathbf{a}^{(0,1)}}{t_{1}=t_{0}+s^{(0,1)}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\binom{\mathbf{r}_{1}}{t_{1}} \xrightarrow{g^{(1,2)}}\binom{\mathbf{r}_{2}=\mathbf{R}^{(\mathbf{1}, \mathbf{2})} \mathbf{r}_{\mathbf{1}}+\mathbf{w}^{(1,2)} t+\mathbf{a}^{(1,2)}}{t_{2}=t_{1}+s^{(1,2)}} \tag{3}
\end{equation*}
$$

Writing the transformation from \mathbf{r}_{0} to \mathbf{r}_{2} in the same way,

$$
\begin{equation*}
\binom{\mathbf{r}_{0}}{t_{0}} \xrightarrow{g^{(0,2)}}\binom{\mathbf{r}_{2}=\mathbf{R}^{(\mathbf{0}, 2)} \mathbf{r}_{\mathbf{0}}+\mathbf{w}^{(0,2)} t+\mathbf{a}^{(0,2)}}{t_{2}=t_{0}+s^{(0,2)}} \tag{4}
\end{equation*}
$$

we read off the following relations

$$
\begin{align*}
\mathbf{R}^{(0,2)} & =\mathbf{R}^{(1,2)} \mathbf{R}^{(0,1)} \\
\mathbf{w}^{(0,2)} & =\mathbf{R}^{(1,2)} \mathbf{w}^{(0,1)}+\mathbf{w}^{(1,2)} \tag{5}\\
\mathbf{a}^{(0,2)} & =\mathbf{R}^{(1,2)} \mathbf{a}^{(0,1)}+s^{(0,1)} \mathbf{w}^{(1,2)}+\mathbf{a}^{(1,2)} \\
s^{(0,2)} & =s^{(1,2)}+s^{(0,1)}
\end{align*}
$$

We can now see how these transformations form a group by verifying that they satisfy the four group axioms:

1. There is an operation defining the composition of two Galilei transformations

$$
\begin{equation*}
g^{(0,1)} g^{(1,2)}=g^{(0,2)} \tag{6}
\end{equation*}
$$

as we have explicitly worked out in Eq. 5.
2. The composition is an associative operation: $g_{3}\left(g_{2} g_{1}\right)=\left(g_{3} g_{2}\right) g_{1}$. This is so because both addition and matrix multiplication have this property.

[^0]3. There exists a unit element $e=g(\mathbf{1}, \mathbf{0}, \mathbf{0}, 0)$, which satisfies the condititon $g_{i} e=e g_{i}=g_{i}$ for all $g_{i} \in G_{+}^{\uparrow 4}$.
4. For every $g \in G_{+}^{\uparrow 4}$, there is an inverse transformation g^{-1} such that $g g^{-1}=g^{-1} g=e$. If $g=g(\mathbf{R}, \mathbf{w}, \mathbf{a}, s)$, then it can be seen easily from Eq. 5 that $g^{-1}=g\left(\mathbf{R}^{T},-\mathbf{R}^{T} \mathbf{w}, s \mathbf{R}^{T} \mathbf{w}-\mathbf{R}^{T} \mathbf{a},-s\right)$.

P1.2 $[2+4+4=10$ points]
A particle of mass m moves without friction along a symmetrical planar curve $s=s(\theta)$ whose axis of symmetry is parallel to a uniform gravitational field of acceleration $\mathbf{g} . s$ is the displacement in arc length from the center, and θ in angle from the horizontal, as shown in Fig. 1.2.

Figure 1.2
If the particle starts from rest at $s=s_{0}$ and executes simple harmonic oscillations with frequency ω,
(a) Derive the expression for $s(t)$.
(b) Relate $s(t)$ to $\theta(t)$ and comment on the resultant motion.
(c) From the explicit solution, calculate the force of constraint and the total force acting on the particle.

S1.2 (a) The equation for the simple harmonic motion is

$$
\begin{equation*}
\ddot{s}+\omega^{2} s=0 \tag{7}
\end{equation*}
$$

The solution that satisfies the given initial condition $\dot{s}(0)=0$ is

$$
\begin{equation*}
s(t)=s(0) \cos (\omega t)=s_{0} \cos (\omega t) \tag{8}
\end{equation*}
$$

(b) The Lagrangian function is

$$
\begin{equation*}
L(s, \dot{s})=\frac{m}{2} \dot{s}^{2}-U(s) \tag{9}
\end{equation*}
$$

where the potential energy U is given by

$$
\begin{equation*}
U=m g y=m g \int_{0}^{s} \sin \theta d s \tag{10}
\end{equation*}
$$

Thus, the Euler-Lagrange equation is

$$
\begin{equation*}
\ddot{s}+g \sin \theta=0 \tag{11}
\end{equation*}
$$

Inserting the above expression for $s(t)$, we obtain

$$
\begin{equation*}
s_{0} \omega^{2} \cos (\omega t)=g \sin \theta \tag{12}
\end{equation*}
$$

or,

$$
\begin{equation*}
\theta(t)=\sin ^{-1}(\lambda \cos (\omega t)) \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda \equiv s_{0} \frac{\omega^{2}}{g} \leq 1 \tag{14}
\end{equation*}
$$

The angular velocity is

$$
\begin{equation*}
\dot{\theta}(t)=\frac{-\lambda \omega \sin (\omega t)}{\sqrt{1-\lambda^{2} \cos ^{2}(\omega t)}} \tag{15}
\end{equation*}
$$

In the limit $\lambda \rightarrow 1, \theta$ goes to zero and $\dot{\theta}$ goes to ω, except for $\omega t=n \pi$, where they are singular.
(c) The force of constraint is the one perpendicular to the trajectory. It is

$$
\begin{equation*}
\mathbf{F}_{C}(\theta)=m g \cos \theta\binom{-\sin \theta}{\cos \theta} \tag{16}
\end{equation*}
$$

The total force is then

$$
\begin{align*}
\mathbf{F} & =\mathbf{F}_{g}+\mathbf{F}_{C}(\theta) \\
& =m g\binom{0}{-1}+m g\binom{-\sin \theta}{\cos \theta} \tag{17}\\
& =-m g \sin \theta\binom{-\cos \theta}{\sin \theta}
\end{align*}
$$

$\underline{\text { P1.3 }}[5+5=10$ points $]$
Consider the equations (no sum over α)

$$
\begin{equation*}
\ddot{x}_{\alpha}+\omega_{\alpha}^{2} x_{\alpha}=0, \quad \alpha=1,2, \ldots, n \tag{18}
\end{equation*}
$$

where $\omega_{\alpha}^{2}=\frac{k_{\alpha}}{m}, k_{\alpha} \neq k_{\beta}$ for $\alpha \neq \beta$. In the absence of constraints this system can be thought of either as n uncoupled 1-D oscillators or as an anisotropic oscillator with n degrees of freedom, each with its own frequency ω_{α}. Take the second view.
(a) Find the constraint force $\mathbf{C}(x, \dot{x})$ that will keep this oscillator on the sphere \mathbf{S}^{n-1} of radius 1 , in the Euclidean space \mathbb{E}^{n}, whose equation is $|\mathbf{x}|^{2} \equiv \sum_{\alpha=1}^{n} x_{\alpha}^{2}=1$. Here \mathbf{x} is the vector with components x_{α} in \mathbb{E}^{n}. Assume that \mathbf{C} is normal to \mathbf{S}^{n-1} (i.e., parallel to \mathbf{x}). Write down the equations of motion for the constrained oscillator.
(b) Show that the n functions

$$
\begin{equation*}
F_{\alpha}=x_{\alpha}^{2}+\sum_{\beta \neq \alpha} \frac{\left(x_{\alpha} \dot{x}_{\beta}-\dot{x}_{\alpha} x_{\beta}\right)^{2}}{\omega_{\alpha}^{2}-\omega_{\beta}^{2}} \tag{19}
\end{equation*}
$$

are constants of the motion.
 is a scalar function. Then the equations of motion are

$$
\begin{equation*}
\ddot{x}_{\alpha}+\omega_{\alpha}^{2} x_{\alpha}=f(x, \dot{x}) x_{\alpha} \quad(\text { no sum over } \alpha) . \tag{20}
\end{equation*}
$$

Multiplying both sides by x_{α} and summing over α,

$$
\begin{equation*}
\sum_{\alpha}\left(x_{\alpha} \ddot{x}_{\alpha}+\omega_{\alpha}^{2} x_{\alpha}^{2}\right)=f(x, \dot{x}) \sum_{\alpha} x_{\alpha}^{2}=f(x, \dot{x}) \tag{21}
\end{equation*}
$$

But

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} \sum_{\alpha} x_{\alpha}^{2}=2 \sum_{\alpha} x_{\alpha} \ddot{x}_{\alpha}+2 \sum_{\alpha} \dot{x}_{\alpha}^{2}=\frac{d^{2}}{d t^{2}}(1)=0 \tag{22}
\end{equation*}
$$

or,

$$
\begin{equation*}
\sum_{\alpha} x_{\alpha} \ddot{x}_{\alpha}=-\sum_{\alpha} \dot{x}_{\alpha}^{2} \tag{23}
\end{equation*}
$$

So, the scalar function is

$$
\begin{equation*}
f(x, \dot{x})=\sum_{\alpha}\left(\omega_{\alpha}^{2} x_{\alpha}^{2}-\dot{x}_{\alpha}^{2}\right) \tag{24}
\end{equation*}
$$

and the constraint force itself is

$$
\begin{equation*}
\mathbf{C}(x, \dot{x})=m \mathbf{x} \sum_{\alpha}\left(\omega_{\alpha}^{2} x_{\alpha}^{2}-\dot{x}_{\alpha}^{2}\right) \tag{25}
\end{equation*}
$$

The equations of motion become

$$
\begin{equation*}
\ddot{x}_{\alpha}+\omega_{\alpha}^{2} x_{\alpha}=x_{\alpha} \sum_{\beta}\left(\omega_{\beta}^{2} x_{\beta}^{2}-\dot{x}_{\beta}^{2}\right) \quad(\text { no sum over } \alpha) \tag{26}
\end{equation*}
$$

The equations of motion are nonlinear, which makes the problem nontrivial.
(b)

$$
\begin{align*}
\frac{d F_{\alpha}}{d t} & =2 x_{\alpha} \dot{x}_{\alpha}+\sum_{\beta \neq \alpha} \frac{2\left(x_{\beta} \dot{x}_{\alpha}-x_{\alpha} \dot{x}_{\beta}\right)\left(\dot{x}_{\beta} \dot{x}_{\alpha}+x_{\beta} \ddot{x}_{\alpha}-\dot{x}_{\alpha} \dot{x}_{\beta}-\ddot{x}_{\beta} x_{\alpha}\right)}{\omega_{\alpha}^{2}-\omega_{\beta}^{2}} \\
& =2 x_{\alpha} \dot{x}_{\alpha}+2 \sum_{\beta \neq \alpha} \frac{x_{\beta}\left(f-\omega_{\alpha}^{2}\right) x_{\alpha}-x_{\alpha}\left(f-\omega_{\beta}^{2}\right) x_{\beta}}{\omega_{\alpha}^{2}-\omega_{\beta}^{2}}\left(x_{\beta} \dot{x}_{\alpha}-x_{\alpha} \dot{x}_{\beta}\right) \\
& =2 x_{\alpha} \dot{x}_{\alpha}-2 \sum_{\beta \neq \alpha} x_{\alpha} x_{\beta}\left(x_{\beta} \dot{x}_{\alpha}-x_{\alpha} \dot{x}_{\beta}\right) \\
& =2 x_{\alpha} \dot{x}_{\alpha}+2 x_{\alpha}^{2} \sum_{\beta \neq \alpha} x_{\beta} \dot{x}_{\beta}-2 x_{\alpha} \dot{x}_{\alpha} \sum_{\beta \neq \alpha} x_{\beta}^{2} \\
& =2 x_{\alpha} \dot{x}_{\alpha}+2 x_{\alpha}^{2}\left(-x_{\alpha} \dot{x}_{\alpha}\right)-2 x_{\alpha} \dot{x}_{\alpha}\left(1-x_{\alpha}^{2}\right) \\
& =0 . \tag{27}
\end{align*}
$$

To get the second line, use the equations of motion. To get the last line, use the constraint equation.
$\underline{\text { P1. }}[3+4+3=10$ points]
A bead of mass m slides without friction in a uniform gravitational field of acceleration \mathbf{g} on a vertical circular hoop of radius R. The hoop is constrained to rotate at a fixed angular velocity Ω about its vertical diameter. Take the center of the hoop as the pole (origin) of a spherical polar coordinate system in which $\mathbf{r}=\{r, \theta, \phi\}$ represents the radius vector of the bead, with $\theta=0$ along the direction of gravity.
(a) Write down the Lagrangian $L(\theta, \dot{\theta})$.
(b) Find how the equilibrium values of θ depend on Ω. Which are stable and which are unstable?
(c) Find the frequencies of small vibrations about the stable equilibrium positions (hint: use the first term in a Taylor series expansion). What happens when $\Omega=\sqrt{\frac{g}{R}}$?

S1.4 (a) The constraint equations in spherical polar coordinates are

$$
\begin{equation*}
r=R \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi=\Omega t \tag{29}
\end{equation*}
$$

where ϕ is the azimuth angle, but we do not use them explicitly. The Lagrangian is

$$
\begin{equation*}
L=\frac{m}{2}\left(R^{2} \dot{\theta}^{2}+R^{2} \Omega^{2} \sin ^{2} \theta\right)+m g R \cos \theta \tag{30}
\end{equation*}
$$

The first term is the kinetic energy T and the second is the negative potential $-V$ relative to $\theta=\frac{\pi}{2}$. In T the first term comes from the motion along the hoop, and the second from the rotation of the hoop. The constraints are built into T, for the r is constrained to be R, \dot{r} is constrained to be zero (it does not appear), and $\dot{\phi}$ is constrained to be Ω. This is a system with one degree of freedom.
(b) Lagrange's equation (after dividing both sides by $m R^{2}$) is

$$
\begin{equation*}
\ddot{\theta}=\Omega^{2} \sin \theta \cos \theta-\frac{g}{R} \sin \theta \equiv F(\theta) \tag{31}
\end{equation*}
$$

Equilibrium occurs where $\ddot{\theta}=0$, i.e., at $\theta=0, \pi$, and θ_{0} where

$$
\begin{equation*}
\theta_{0}=\cos ^{-1}\left(\frac{g}{R \Omega^{2}}\right) \tag{32}
\end{equation*}
$$

is defined only if $\Omega \geq \sqrt{\frac{g}{R}}$. As Ω approaches zero, it merges with the equilibrium point at $\theta=0$ when $\Omega=\sqrt{\frac{g}{R}}$. As Ω increases, θ_{0} approaches $\frac{\pi}{2}$. To understand the stability, think of $F(\theta)$ as the magnitude of a force, the negative derivative of a potential. To see whether that potential is at a minimum or a maximum at equilibrium, take the second derivative of the potential, namely, $\frac{d F}{d \theta}$. It is found
that θ_{0} is stable for $0<\theta_{0}<\frac{\pi}{2}$, i.e., all allowed values of θ_{0}. The equilibrium point at $\theta=0$ is stable for $\Omega<\sqrt{\frac{g}{R}}$ and unstable otherwise. The equilibrium point at $\theta=\frac{\pi}{2}$ is always unstable. Thus, $\theta=0$ is the only stable equilibrium at $\Omega=0$. It remains so as Ω increases to $\sqrt{\frac{g}{R}}$ at which point $\theta=0$ becomes unstable, but two new stable equilibria appear at $\theta_{0}= \pm \cos ^{-1} \sqrt{\frac{g}{R \Omega^{2}}}$. As Ω increases, these two points approach $\cos \theta_{0}=0$, i.e., the horizontal plane, from opposite directions.
(c) For $\Omega>\sqrt{\frac{g}{R}}$, the first term in a Taylor series expansion about θ_{0} yields

$$
\begin{align*}
\Delta \ddot{\theta} & =\Omega^{2}\left(\sin ^{2} \theta_{0}-\cos ^{2} \theta_{0}\right)-\frac{g}{R} \sin ^{2} \theta_{0} \\
& =-\Delta \theta \Omega^{2} \cos ^{2} \theta_{0} \tag{33}\\
& \equiv \Omega^{2}\left(1-\frac{g^{2}}{R^{2} \Omega^{2}}\right) \Delta \theta
\end{align*}
$$

so the (circular) frequency of small vibrations is $\Omega \sin \theta_{0}$. For $\Omega<\sqrt{\frac{g}{R}}$, a Taylor series expansion about $\theta=0$ yields

$$
\begin{equation*}
\ddot{\theta}=-\left(\frac{g}{R}-\Omega^{2}\right) \theta \tag{34}
\end{equation*}
$$

so the (circular) frequency is $\sqrt{\frac{g}{R}-\Omega^{2}}$.
For $\Omega=\sqrt{\frac{g}{R}}$, the first (or the linear) term in a Taylor series expansion about the stable equilibrium vanishes, so in this case the vibration is not harmonic.

[^0]: ${ }^{1}$ This is the proper, orthochronous Galilei group $G_{+}^{\uparrow 4}$.

