
NIU PHYS 500, Fall 2006 Classical Mechanics Solutions for HW1

Assignment: HW1 [40 points]

Assigned: 2006/09/20
Due: 2006/09/27

P1.1 [10 points]
Show that the Galilei transformations g(R(ψ, n̂),w, a, s),





r

t





g
−→





r′ = Rr + wt+ a

t′ = λt+ s



 , (1)

with det R = +1, λ = +1, form a group.1

S1.1 Consider the composition of two successive transformations,





r0

t0





g(0,1)

−→





r1 = R(0,1)r0 + w(0,1)t+ a(0,1)

t1 = t0 + s(0,1)



 , (2)

and




r1

t1





g(1,2)

−→





r2 = R(1,2)r1 + w(1,2)t+ a(1,2)

t2 = t1 + s(1,2)



 . (3)

Writing the transformation from r0 to r2 in the same way,





r0

t0





g(0,2)

−→





r2 = R(0,2)r0 + w(0,2)t+ a(0,2)

t2 = t0 + s(0,2)



 , (4)

we read off the following relations

R(0,2) = R(1,2)R(0,1),

w(0,2) = R(1,2)w(0,1) + w(1,2),

a(0,2) = R(1,2)a(0,1) + s(0,1)w(1,2) + a(1,2),

s(0,2) = s(1,2) + s(0,1)

(5)

We can now see how these transformations form a group by verifying that
they satisfy the four group axioms:

1. There is an operation defining the composition of two Galilei trans-
formations

g(0,1)g(1,2) = g(0,2), (6)

as we have explicitly worked out in Eq. 5.

2. The composition is an associative operation: g3(g2g1) = (g3g2)g1.
This is so because both addition and matrix multiplication have this
property.

1This is the proper, orthochronous Galilei group G
↑4
+

.
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3. There exists a unit element e = g(1,0,0, 0), which satisfies the con-

dititon gie = egi = gi for all gi ∈ G
↑4
+ .

4. For every g ∈ G
↑4
+ , there is an inverse transformation g−1 such that

gg−1 = g−1g = e. If g = g(R,w, a, s), then it can be seen easily from
Eq. 5 that g−1 = g(RT ,−RT w, sRT w −RT a,−s).

P1.2 [2 + 4 + 4 = 10 points]
A particle of mass m moves without friction along a symmetrical planar
curve s = s(θ) whose axis of symmetry is parallel to a uniform gravita-
tional field of acceleration g. s is the displacement in arc length from the
center, and θ in angle from the horizontal, as shown in Fig. 1.2.

s

g

y

x

θ

O

m

Figure 1.2

If the particle starts from rest at s = s0 and executes simple harmonic
oscillations with frequency ω,

(a) Derive the expression for s(t).

(b) Relate s(t) to θ(t) and comment on the resultant motion.

(c) From the explicit solution, calculate the force of constraint and the
total force acting on the particle.

S1.2 (a) The equation for the simple harmonic motion is

s̈+ ω2s = 0. (7)

The solution that satisfies the given initial condition ṡ(0) = 0 is

s(t) = s(0) cos (ωt) = s0 cos (ωt) (8)

(b) The Lagrangian function is

L(s, ṡ) =
m

2
ṡ2 − U(s), (9)

where the potential energy U is given by

U = mgy = mg

∫ s

0

sin θds. (10)

Thus, the Euler-Lagrange equation is

s̈+ g sin θ = 0. (11)
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Inserting the above expression for s(t), we obtain

s0ω
2 cos (ωt) = g sin θ, (12)

or,
θ(t) = sin−1(λ cos (ωt)), (13)

where

λ ≡ s0
ω2

g
≤ 1. (14)

The angular velocity is

θ̇(t) =
−λω sin (ωt)

√

1 − λ2 cos2(ωt)
. (15)

In the limit λ → 1, θ goes to zero and θ̇ goes to ω, except for ωt = nπ,
where they are singular.

(c) The force of constraint is the one perpendicular to the trajectory. It
is

FC(θ) = mg cos θ





− sin θ

cos θ



 (16)

The total force is then

F = Fg + FC(θ)

= mg

(

0
−1

)

+mg

(

− sin θ
cos θ

)

= −mg sin θ

(

− cos θ
sin θ

)

.

(17)

P1.3 [5 + 5 = 10 points]
Consider the equations (no sum over α)

ẍα + ω2
αxα = 0, α = 1, 2, . . . , n, (18)

where ω2
α =

kα

m
, kα 6= kβ for α 6= β. In the absence of constraints

this system can be thought of either as n uncoupled 1-D oscillators or
as an anisotropic oscillator with n degrees of freedom, each with its own
frequency ωα. Take the second view.

(a) Find the constraint force C(x, ẋ) that will keep this oscillator on the
sphere Sn−1 of radius 1, in the Euclidean space E

n, whose equation

is |x|2 ≡
n

∑

α=1

x2
α = 1. Here x is the vector with components xα in E

n.

Assume that C is normal to Sn−1 (i.e., parallel to x). Write down
the equations of motion for the constrained oscillator.

(b) Show that the n functions

Fα = x2
α +

∑

β 6=α

(xαẋβ − ẋαxβ)2

ω2
α − ω2

β

(19)

are constants of the motion.
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S1.3 (a) Since C is parallel to x, we may write C(x, ẋ) = mf(x, ẋ)x, where f
is a scalar function. Then the equations of motion are

ẍα + ω2
αxα = f(x, ẋ)xα (no sum over α). (20)

Multiplying both sides by xα and summing over α,

∑

α

(xαẍα + ω2
αx

2
α) = f(x, ẋ)

∑

α

x2
α = f(x, ẋ). (21)

But
d2

dt2

∑

α

x2
α = 2

∑

α

xαẍα + 2
∑

α

ẋ2
α =

d2

dt2
(1) = 0, (22)

or,
∑

α

xαẍα = −
∑

α

ẋ2
α. (23)

So, the scalar function is

f(x, ẋ) =
∑

α

(ω2
αx

2
α − ẋ2

α) (24)

and the constraint force itself is

C(x, ẋ) = mx
∑

α

(ω2
αx

2
α − ẋ2

α). (25)

The equations of motion become

ẍα + ω2
αxα = xα

∑

β

(ω2
βx

2
β − ẋ2

β) (no sum over α). (26)

The equations of motion are nonlinear, which makes the problem
nontrivial.

(b)

dFα

dt
= 2xαẋα +

∑

β 6=α

2(xβẋα − xαẋβ)(ẋβ ẋα + xβẍα − ẋαẋβ − ẍβxα)

ω2
α − ω2

β

= 2xαẋα + 2
∑

β 6=α

xβ(f − ω2
α)xα − xα(f − ω2

β)xβ

ω2
α − ω2

β

(xβ ẋα − xαẋβ)

= 2xαẋα − 2
∑

β 6=α

xαxβ(xβẋα − xαẋβ)

= 2xαẋα + 2x2
α

∑

β 6=α

xβẋβ − 2xαẋα

∑

β 6=α

x2
β

= 2xαẋα + 2x2
α(−xαẋα) − 2xαẋα(1 − x2

α)

= 0.

(27)

To get the second line, use the equations of motion. To get the last
line, use the constraint equation.
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P1.4 [3 + 4 + 3 = 10 points]
A bead of mass m slides without friction in a uniform gravitational field
of acceleration g on a vertical circular hoop of radius R. The hoop is
constrained to rotate at a fixed angular velocity Ω about its vertical diam-
eter. Take the center of the hoop as the pole (origin) of a spherical polar
coordinate system in which r = {r, θ, φ} represents the radius vector of
the bead, with θ = 0 along the direction of gravity.

(a) Write down the Lagrangian L(θ, θ̇).

(b) Find how the equilibrium values of θ depend on Ω. Which are stable
and which are unstable?

(c) Find the frequencies of small vibrations about the stable equilibrium
positions (hint: use the first term in a Taylor series expansion). What

happens when Ω =

√

g

R
?

S1.4 (a) The constraint equations in spherical polar coordinates are

r = R (28)

and
φ = Ωt, (29)

where φ is the azimuth angle, but we do not use them explicitly. The
Lagrangian is

L =
m

2
(R2θ̇2 +R2Ω2 sin2 θ) +mgR cos θ. (30)

The first term is the kinetic energy T and the second is the negative

potential −V relative to θ =
π

2
. In T the first term comes from the

motion along the hoop, and the second from the rotation of the hoop.
The constraints are built into T , for the r is constrained to be R, ṙ
is constrained to be zero (it does not appear), and φ̇ is constrained
to be Ω. This is a system with one degree of freedom.

(b) Lagrange’s equation (after dividing both sides by mR2) is

θ̈ = Ω2 sin θ cos θ −
g

R
sin θ ≡ F (θ). (31)

Equilibrium occurs where θ̈ = 0, i.e., at θ = 0, π, and θ0 where

θ0 = cos−1
( g

RΩ2

)

(32)

is defined only if Ω ≥

√

g

R
. As Ω approaches zero, it merges with

the equilibrium point at θ = 0 when Ω =

√

g

R
. As Ω increases,

θ0 approaches
π

2
. To understand the stability, think of F (θ) as the

magnitude of a force, the negative derivative of a potential. To see
whether that potential is at a minimum or a maximum at equilibrium,

take the second derivative of the potential, namely,
dF

dθ
. It is found
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that θ0 is stable for 0 < θ0 <
π

2
, i.e., all allowed values of θ0. The

equilibrium point at θ = 0 is stable for Ω <

√

g

R
and unstable

otherwise. The equilibrium point at θ =
π

2
is always unstable. Thus,

θ = 0 is the only stable equilibrium at Ω = 0. It remains so as Ω

increases to

√

g

R
at which point θ = 0 becomes unstable, but two

new stable equilibria appear at θ0 = ± cos−1

√

g

RΩ2
. As Ω increases,

these two points approach cos θ0 = 0, i.e., the horizontal plane, from
opposite directions.

(c) For Ω >

√

g

R
, the first term in a Taylor series expansion about θ0

yields

∆θ̈ = Ω2(sin2 θ0 − cos2 θ0) −
g

R
sin2 θ0

= −∆θΩ2 cos2 θ0

≡ Ω2

(

1 −
g2

R2Ω2

)

∆θ,

(33)

so the (circular) frequency of small vibrations is Ω sin θ0. For Ω <

√

g

R
,

a Taylor series expansion about θ = 0 yields

θ̈ = −
( g

R
− Ω2

)

θ, (34)

so the (circular) frequency is

√

g

R
− Ω2.

For Ω =

√

g

R
, the first (or the linear) term in a Taylor series ex-

pansion about the stable equilibrium vanishes, so in this case the
vibration is not harmonic.
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