Simulations of Coherent Synchrotron Radiation and Wavelet Methodology

Balša Terzić
Beam Physics and Astrophysics Group
NICADD, Northern Illinois University

Jefferson Lab Seminar
June 4, 2009
Outline of the Talk

• Coherent Synchrotron Radiation (CSR):
 • Physical problem
 • Mathematical problem
 • Computational problem
 • Two approaches: point-to-point (P2P) and mean field (MF)
 • We present reasons why we choose to develop a MF code from an existing P2P code designed by Rui Li
 • Demand for increased sensitivity necessitates numerical noise removal
• Wavelet Methodology
 • Brief outline of wavelets
 • Wavelet denoising: examples and applications
 • Harnessing the power of wavelets: past, present and the future
• Summary
Coherent Synchrotron Radiation: A Physical Problem

- When a charged particle beam travels along a curved trajectory (bending magnet), beam emits synchrotron radiation.

- If the wavelength λ of synchrotron radiation is longer than the bunch length σ_s, the resulting radiation is coherent synchrotron radiation (CSR).

- Incoherent synchrotron radiation: largely cancels out.

- Coherent synchrotron radiation: has systematic effects.
Coherent Synchrotron Radiation: A Physical Problem

- CSR is the low frequency (long wavelength) part of the power spectrum

- N particles in the bunch act in phase and enhance intensity by a factor N (typically $N=10^9\text{-}10^{11}$)

- Therefore for shorter bunch (σ_s small), CSR is more pronounced
Coherent Synchrotron Radiation: A Physical Problem

• Short bunch lengths are desirable in many different contexts:
 • FEL require high peak current for a given bunch charge
 • ERL often require a short duration of radiation
 • B-factories and linear colliders require short bunch to achieve higher luminosities
• The demand for short bunches is expected to increase in the future
• This presents a problem:
 short beam bunch ⇒ CSR is dominant ⇒
 ⇒ beam is a subject to adverse CSR effects
• Adverse CSR effects, which can seriously impair beam quality:
 Energy change ⇒ energy spread ⇒ longitudinal instability (microbunching)
 ⇒ emittance degradation
• Having a trustworthy code to simulate CSR is of great importance
Coherent Synchrotron Radiation:
A Mathematical Problem

- Dynamics of an electron bunch is governed by

\[
\frac{d}{dt} \left(\gamma m_e \vec{v} \right) = e \left(\vec{E} + \vec{\beta} \times \vec{B} \right) \\
\vec{\beta} = \vec{v} / c \\
\vec{E} = \vec{E}^{\text{ext}} + \vec{E}^{\text{self}} \\
\vec{B} = \vec{B}^{\text{ext}} + \vec{B}^{\text{self}}
\]

- \(\vec{E}^{\text{ext}}, \vec{B}^{\text{ext}} \): external EM fields
- \(\vec{E}^{\text{self}}, \vec{B}^{\text{self}} \): self-interaction (CSR)

\[
\vec{E}^{\text{self}} = - \vec{\nabla} \phi - \frac{1}{c} \frac{\partial \vec{A}}{\partial t} \\
\vec{B}^{\text{self}} = \vec{\nabla} \times \vec{A}
\]

where

\[
\phi(\vec{r}, t) = \int \frac{d\vec{r}'}{|\vec{r} - \vec{r}'|} \rho(\vec{r}', t') \\
\vec{A} = \frac{1}{c} \int \frac{d\vec{r}'}{|\vec{r} - \vec{r}'|} \vec{J}(\vec{r}', t')
\]

\[
\text{charge density: } \rho(\vec{r}, t) = \int f(\vec{r}, \vec{v}, t) d\vec{v} \\
\text{current density: } \vec{J}(\vec{r}, t) = \int \vec{v} f(\vec{r}, \vec{v}, t) d\vec{v}
\]

\[
\text{Need to know the history of the bunch}
\]

beam distribution function (DF): \(f(\vec{r}, \vec{v}, t) \)
Coherent Synchrotron Radiation: A Computational Problem

• Storing and computing with a 4D (3 positions, 1 time) charge and current densities is prohibitively expensive
 ⇒ Need simplifications/approximations

• Possible simplifications to full dimensional CSR modeling:
 • 1D line approximation (IMPACT, ELEGANT): probably too simplistic
 • 2D approximation (vertically flat beam):
 • codes by Li 1998, Bassi et al. 2006

• Based on how the DF (and, consequently, charge and current densities) are represented, two approaches emerge:
 • *Point-to-point (tracking) methods*: solving microscopic Maxwell's equation using retarded potentials
 • *Mean field (PIC, grid, mesh) methods*: solving Maxwell equation using finite difference, finite element, Green's function, retarded potentials...
Coherent Synchrotron Radiation: A Computational Problem

- **Point-to-point approach (2D):** Li 1998

\[f(\vec{r}, \vec{v}, t) = q \sum_{i=1}^{N} n_m(\vec{r} - \vec{r}_0^{(i)}(t)) \delta(\vec{v} - \frac{\vec{v}_0^{(i)}(t)}{c}) \]
 DF

\[\rho(\vec{r}, t) = q \sum_{i=1}^{N} n_m(\vec{r} - \vec{r}_0^{(i)}(t)) \]
 charge density

\[\vec{J}(\vec{r}, t) = q \sum_{i=1}^{N} \vec{\beta}_0^{(i)}(t) n_m(\vec{r} - \vec{r}_0^{(i)}(t)) \]
 current density

\[n_m(\vec{r} - \vec{r}_0^{(i)}(t)) = \frac{1}{2\pi \sigma_m^2} e^{-\frac{(x-x_0(t))^2+(y-y_0(t))^2}{2\sigma_m^2}} \]
 Gaussian macroparticle

- Charge density is sampled with \(N \) Gaussian-shaped 2D macroparticles (2D distribution without vertical spread)

- Each macroparticle interact with each other one throughout history

- Expensive: computation of retarded potentials and self fields \(\sim O(N^2) \)
 \[\Rightarrow \] small number \(N \) \(\Rightarrow \) poor spatial resolution
 \[\Rightarrow \] difficult to see small-scale structure

- While useful in obtaining low-order moments of the beam, *point-to-point approach is not optimal for studying CSR*
Coherent Synchrotron Radiation: A Computational Problem

- **Mean field approach with retarded potentials (2D)**: Terzić & Li, *in preparation*

\[
f(\vec{x}, \vec{v}, t) = q \sum_{i=1}^{N} \delta(\vec{r} - \vec{r}_0^{(i)}(t)) \delta(\vec{v} - \frac{\vec{v}_0^{(i)}(t)}{c})
\]

DF (Klimontovich)

\[
\rho(\vec{x}_k^*, t) = q \sum_{i=1}^{N} \int_{-h}^{h} \delta(\vec{x}_k^{*} - \vec{x}_0^{(i)}(t) + \vec{X}) p(\vec{X}) d \vec{X}
\]

charge density

\[
\vec{J}(\vec{x}_k^*, t) = q \sum_{i=1}^{N} \hat{\beta}_0^{(i)}(t) \int_{-h}^{h} \delta(\vec{x}_k^{*} - \vec{x}_0^{(i)}(t) + \vec{X}) p(\vec{X}) d \vec{X}
\]

current density

- Charge and current densities are sampled with \(N\) point-charges (\(\delta\)-functions) & deposited on a finite grid \(\vec{x}_k^*\) using a deposition scheme \(p(\vec{X})\)

- Two main deposition schemes:
 - Nearest Grid Point (NGP)
 (constant: deposits to \(1^D\) points)
 - Cloud-In-Cell (CIC)
 (linear: deposits to \(2^D\) points)

There exist higher-order schemes

- Particles do not directly interact with each other, but only through a mean-field of the gridded representation
Coherent Synchrotron Radiation: A Computational Problem

- Mean field approach with retarded potentials (2D): Terzić & Li, in preparation (continued)

 - Grid resolution is specified a priori (fixed grid) or changes as necessary (adaptive grid)
 - N_X: # of gridpoints in X
 - N_Y: # of gridpoints in Y
 - $N_{\text{grid}} = N_X N_Y$ total gridpts
 - Grid: $\mathbf{x}_k = [\hat{X}_{ij}, \hat{Y}_{ij}]$
 - $i = 1, \ldots, N_X$, $j = 1, \ldots, N_Y$
 - Inclination angle α

- Grid is determined so as to tightly envelope all particles
 Minimizing number of empty cells \Rightarrow optimizing spatial resolution
Coherent Synchrotron Radiation: A Computational Problem

- **Mean field approach with retarded potentials (2D):** Terzić & Li, *in preparation* (continued)

 - Computational cost:
 - Particle deposition (yields charge and current densities on the grid):
 - $O(N)$ operations
 - Integration over history (yields retarded potentials):
 - $O(N_{\text{grid}}^2)$ operations
 - Finite difference (yields self-forces on the grid):
 - $O(N_{\text{grid}})$ operations
 - Interpolation (yields self-forces acting on N individual particles)
 - $O(N)$ operations
 - **Total cost $\sim O(N_{\text{grid}}^2) + O(N)$** operations (in realistic sim.: $N_{\text{grid}}^2 >> N$)

 - N_{grid} and N should be chosen *judiciously*

 - Favorable scaling allows for larger N, and reasonable grid resolution
 \Rightarrow improved spatial resolution
Coherent Synchrotron Radiation: A Computational Problem

- **Point-to-point (P2P) Vs. Mean field (MF):**

 - Computational cost: $O(N^2)$ Vs. $O(N_{\text{grid}}^2) + O(N)$

 Fair comparison: P2P with N macroparticles and MF with $N_{\text{grid}} = N$

- 2D grid:
 $N_X = N_Y = 32$

 ![Image of P2P and MF comparisons]

 signal-to-noise ratio

 \[
 \text{SNR} = \sqrt{\frac{\sum_i \tilde{q}_i^2}{\sum_i (q_i - \tilde{q}_i)^2}}
 \]

 $\tilde{q}_i = \text{exact}$
 $q_i = \text{approx.}$

- MF approach provides superior spatial resolution to P2P approach

 \Rightarrow Modify Rui Li's P2P CSR code into a MF
Coherent Synchrotron Radiation: Numerical Noise in the Mean Field Simulations

• There are the two major sources of numerical noise in MF simulations:
 • **graininess of the distribution function**: \(N_{\text{simulation}} \ll N_{\text{physical}} \)
 • **discreteness of the computational domain**: quantities defined on a finite grid

• One must first understand the profile of the numerical noise associated with the discreteness of the computational in order to be able to remove it

• Systematic removal of numerical noise from the MF simulations leads to physically more reliable results, equivalent to simulations with many more particles
Coherent Synchrotron Radiation:
Numerical Noise in the Mean Field Simulations

• If many random realizations of a given particle distribution have are
deposited onto a grid, the number of particles in each gridpoint is
Poisson-distributed (variance = mean) ⇒ noise is signal-dependent

• Wavelet denoising is at its most powerful (and mathematically strongest
ground) when the noise is Gaussian-distributed (signal-independent, white)

• Signal contaminated with Poissonian noise can be transformed to signal
with Gaussian noise by a variance-stabilizing Anscombe transform (1948):

\[Y_G = 2 \sqrt{Y_P + \frac{3}{8}} \]

\[Y_P = \text{signal with Poissonian noise} \]
\[Y_G = \text{signal with Gaussian noise} \]

• After the transformation the noise in each gridpoint is (nearly) Gaussian-
distributed with variance \(\sigma = 1 \)

• Essentially, we have pre-processed the signal before denoising it

• This error/noise estimate \(\sigma \) is crucial for optimal wavelet noise removal

[For more details see Terzić, Pogorelov & Bohn 2007, PR STAB, 10, 034201]
Coherent Synchrotron Radiation: Removing Numerical Noise from Mean Field Simulations

• It is desirable to remove noise from the MF simulations
 less numerical noise ⇔ running simulations with more particles
 ⇒ increased sensitivity to physical small-scale structure

• Noise removal from the MF simulations can be done in several ways:
 • Particle deposition schemes:
 • Higher order deposition schemes serve as smoothing filters
 • Filtering:
 • Savitzky-Golay smoothing filter (local polynomial regression)
 • In Fourier space:
 • Truncating the highest Fourier frequencies
 • In wavelet space:
 • Wavelet coefficient thresholding

• Wavelets provide a natural setting for *judicious* noise removal
 (other methods indiscriminantly smooth over/truncate small scale structures)
Brief Overview of Wavelets

- **Wavelets**: orthogonal basis composed of scaled and translated versions of the same localized wavelet $\psi(x)$:
 \[\psi_i^k(x) = 2^{k/2} \psi(2^k x - i) \quad k, i \in \mathbb{Z} \]
 \[f(x) \approx \sum_k \sum_i d_i^k \psi_i^k(x) \]
- Each new resolution level k is orthogonal to the previous levels
- Wavelets are derived from the scaling function $\phi(x)$ which satisfies
 \[\phi(x) = \sqrt{2} \sum_j h_j \phi(2x - j) \]
 \[\psi(x) = \sqrt{2} \sum_j g_j \phi(2x - j) \]
 (only finite number of filter coefficients h_j and g_j are non-zero: compact support)
- In order to attain orthogonality of different scales, their shapes are strange
 - Makes them suitable to represent irregularly shaped functions
- For discrete signals (gridded quantities), fast Discrete Wavelet Transform (DFT) is an $O(MN)$ operation, M size of the wavelet filter, N signal size
Brief Overview of Wavelets

- Wavelet transform separates scales
Brief Overview of Wavelets

• Advantages of wavelet formulation:
 - Wavelet basis functions have compact support ⇒ signal localized in space
 Wavelet basis functions have increasing resolution levels
 ⇒ signal localized in frequency
 ⇒ *simultaneous localization in space and frequency* (FFT only frequency)
 - Wavelet basis functions correlate well with various signal types
 (including signals with singularities, cusps and other irregularities)
 ⇒ *compact and accurate representation of data (compression)*
 - Wavelet transform preserves hierarchy of scales
 - In wavelet space, discretized operators (Laplacian) are also sparse and have
 an efficient preconditioner ⇒ *solving some PDEs is faster and more accurate*
 - Wavelets provide a natural setting for noise removal ⇒ *wavelet denoising*
Wavelet Denoising

- In wavelet space:
 - signal \rightarrow few large wavelet coefficients c_{ij}
 - noise \rightarrow many small wavelet coefficients c_{ij}

- Denoising by wavelet thresholding:
 - if $|c_{ij}| < T$, set to $c_{ij} = 0$

- A great deal of study has been devoted to estimating optimal T

$$T = \sqrt{2\log N_{\text{grid}} \cdot \sigma}$$

($\sigma=1$ after Anscombe transform)

Denoising factor (DF):

$$DF = \frac{\text{Error}_{\text{original}}}{\text{Error}_{\text{denoised}}}$$

[Terzić, Pogorelov & Bohn 2007, PR STAB, 10, 034201]
Wavelet Denoising and Compression

- When the signal is known, one can compute Signal-to-Noise Ratio (SNR):
 \[\text{SNR} = \sqrt{\frac{\sum q_i^2}{\sum (q_i - \bar{q}_i)^2}} \]

- \(SNR \sim \sqrt{N_{\text{ppc}}} \)
 \(N_{\text{ppc}} \): avg. # of particles per cell
 \(N_{\text{ppc}} = N/N_{\text{cells}} \)
Wavelet Denoising and Compression

- When the signal is known, one can compute Signal-to-Noise Ratio (SNR):
 \[SNR = \sqrt{\frac{\sum_i \bar{q}_i^2}{\sum_i (q_i - \bar{q}_i)^2}} \]
 \(\bar{q}_i = \text{exact} \)
 \(q_i = \text{approx.} \)

- \(SNR \sim \sqrt{N_{ppc}} \)
 \(N_{ppc} \): avg. # of particles per cell
 \(N_{ppc} = \frac{N}{N_{\text{cells}}} \)

2D superimposed Gaussians on 256×256 grid
Wavelet Denoising and Compression

- When the signal is known, one can compute Signal-to-Noise Ratio (SNR):

\[
SNR = \sqrt{\frac{\sum_i \bar{q}_i^2}{\sum_i (q_i - \bar{q}_i)^2}} \quad \bar{q}_i = \text{exact} \\
q_i = \text{approx.}
\]

- \(SNR \sim \sqrt{N_{\text{ppc}}}\) \(N_{\text{ppc}}\) : avg. # of particles per cell \(N_{\text{ppc}} = N/N_{\text{cells}}\)

2D superimposed Gaussians on 256×256 grid

ANALYTICAL

\(N_{\text{ppc}} = 3\) \(SNR = 2.02\)
Wavelet Denoising and Compression

- When the signal is known, one can compute Signal-to-Noise Ratio (SNR):
 \[SNR = \sqrt{\frac{\sum_i \bar{q}_i^r}{\sum_i (q_i - \bar{q}_i)^r}} \]

 \(\bar{q}_i = \text{exact} \)

 \(q_i = \text{approx.} \)

- \(SNR \sim \sqrt{N_{ppc}} \)

 \(N_{ppc} : \text{avg. # of particles per cell} \quad N_{ppc} = \frac{N}{N_{\text{cells}}} \)

2D superimposed Gaussians on 256×256 grid

ANALYTICAL

- \(N_{ppc} = 3 \quad SNR = 2.02 \)
- \(N_{ppc} = 205 \quad SNR = 16.89 \)
Wavelet Denoising and Compression

- When the signal is known, one can compute Signal-to-Noise Ratio (SNR):
 \[SNR = \frac{\sum \bar{q}_i^2}{\sum_i (q_i - \bar{q}_i)^2} \]
 \(\bar{q}_i = \text{exact} \)
 \(q_i = \text{approx.} \)

- \(SNR \sim \sqrt{N_{\text{ppc}}} \)
 \(N_{\text{ppc}} \): avg. # of particles per cell
 \(N_{\text{ppc}} = \frac{N}{N_{\text{cells}}} \)

2D superimposed Gaussians on 256×256 grid

- Analytical
 \(N_{\text{ppc}} = 3 \quad SNR = 2.02 \)
 \(N_{\text{ppc}} = 205 \quad SNR = 16.89 \)

- Denoising by wavelet thresholding: if \(|c_{ij}| < T \), set to 0
Wavelet Denoising and Compression

- When the signal is known, one can compute Signal-to-Noise Ratio (SNR):

 $$ SNR = \sqrt{\frac{\sum_i \bar{q}_i^2}{\sum_i (q_i - \bar{q}_i)^2}} $$

 $\bar{q}_i =$ exact
 $q_i =$ approx.

 $$N_{ppc} = \frac{N}{N_{cells}}$$

 - N_{ppc}: avg. # of particles per cell

 2D superimposed Gaussians on 256×256 grid

- Wavelet denoising yields a representation which is:
 - Appreciably more accurate than non-denoised representation
 - Sparse (if clever, we can translate this sparsity in computational efficiency)

ANALYTICAL

<table>
<thead>
<tr>
<th>N_{ppc}</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.02</td>
</tr>
</tbody>
</table>

WAVELET THRESHOLDING

<table>
<thead>
<tr>
<th>N_{ppc}</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>16.89</td>
</tr>
</tbody>
</table>

DENOISED

<table>
<thead>
<tr>
<th>N_{ppc}</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>16.83</td>
</tr>
</tbody>
</table>

COMPACT: only 0.12% of coeffs
Harnessing the Power of Wavelets: The Past

• We have already used wavelets in mean field solvers and will greatly benefit from it in the current project:
 – Terzić, Pogorelov & Bohn 2007:
 • Designed a new 3D wavelet-based Poisson equation solver and optimized it for use in PIC beam simulations
 • Integrated the Poisson solver in beam code (IMPACT), benchmarked it and used to model Fermilab/NICADD photoinjector
 - First application of wavelets to 3D beam simulations
 • We provide a detailed treatment of noise in PIC simulations and implemented wavelet denoising
 - Roadmap to follow in the current project
 – Sprague 2008, Sprague & Terzić in preparation:
 • Tutorial of for wavelet use in solving PDEs
 • Enhanced the original solver by implementing adaptive grid
 - Will use this to further improve spatial resolution in our MF code
Harnessing the Power of Wavelets: The Present

- I am currently involved in two projects which bring CSR and wavelets together:
 - Collaboration with Rui Li on modifying her 2D CSR P2P code into a MF code:
 - Wavelet denoising of the representation is already implemented (can be turned on and off, enabling a clear comparison)
 - We already ascertained that only a small fraction of coefficients on the grid (<1% or so) is needed to accurately represent densities
 - Can this translate into a more efficient code?
 - Once the code is completed and tested, we will conduct a comprehensive comparison of the effects of denoising:
 - How much does wavelet denoising improve spatial resolution?
 - How accurate is the wavelet denoised representation?
Harnessing the Power of Wavelets: The Present

- Bassi & Terzić 2009:
 - Improved particle representation in Bassi’s 2D CSR code by replacing analytic cosine expansion with a wavelet approximation
 - Better spatial resolution (needed to study microbunching)
 - Appreciably more accurate (after wavelet thresholding)
 - Orders of magnitude faster

- How accurately can small-scale structures be represented by an approximation?
 - Analytic Monte Carlo cosine
 - Simple grid
 - Thresholded FFT (grid)
 - Thresholded wavelet (grid)

Flat-top with sinusoidally modulated frequency (FERMI@ELETTRA first bunch compressor)
Harnessing the Power of Wavelets: The Present

- Bassi & Terzić 2009:
 - Improved particle representation in Bassi's 2D CSR code by replacing analytic cosine expansion with a wavelet approximation
 - Better spatial resolution (needed to study microbunching)
 - Appreciably more accurate (after wavelet thresholding)
 - Orders of magnitude faster

Flat-top with sinusoidally modulated frequency (FERMI@ELETTRA first bunch compressor)

\[
N = 10^8 \quad \text{cosine expansion: } N_c = 40, M_c = 100 \\
\text{grid resolution: } N_x = 128, N_z = 1024
\]
Harnessing the Power of Wavelets:
The Present

- Bassi & Terzić 2009:
 - Improved particle representation in Bassi's 2D CSR code by replacing analytic cosine expansion with a wavelet approximation
 - Better spatial resolution (needed to study microbunching)
 - Appreciably more accurate (after wavelet thresholding)
 - Orders of magnitude faster

\[N = 10^8 \]
\[\text{cosine expansion: } N_c = 40, M_c = 100 \]
\[\text{grid resolution: } N_x = 128, N_z = 1024 \]
Harnessing the Power of Wavelets: The Future

- In the future, we plan to further harness the power of wavelets:
 - Translate sparsity of operators and datasets in wavelet space to computational efficiency
 - Fast application of discretized operators
 - Efficient preconditioners for other operators?
 - Fast interpolation of discrete data from sparse wavelet representation
 - Use adaptive grid in wavelet-based methods to increase spatial resolution
 - Explore applicability of what we have learned about wavelets to other PDEs
Summary

• We presented two computational approaches to simulating CSR: P2P and MF
 – Demonstrated that the MF approach is better because of:
 • Better spatial resolution (a “must” for small-scale instabilities)
 • Better scaling with the number of particles N
 – We are now working on converting Rui Li’s P2P code into a MF code
 (We hope to start benchmarking it within the next few months)
• Compare with Bassi’s 2D CSR code for consistency
• Closing in on our intermediate goal: having an accurate, efficient and trustworthy code which faithfully simulates CSR
• Long-term goal: being able to quantitatively simulate CSR in real machines, as a first step toward controlling its adverse effects
Auxiliary Slides
Multi-Resolution Analysis and Wavelets

- Multi-Resolution Analysis (MRA) is a decomposition of Hilbert space $L^2(R)$ into a chain of closed subspaces V: $0 \subset \ldots \subset V_{-1} \subset V_0 \subset V_1 \subset \ldots \subset L^2(R)$

- Define an associated sequence of subspaces W as an orthogonal complement of V_{j-1} in V_j: $V_j = V_{j-1} + W_j$. Also: $V_j = \sum_{j' < j} W_j$

- A set of dilations and translations of the scaling function $\phi(x)$:
 $$\{ \phi^j_k(x) = 2^{j/2} \phi (2^j x - k) \}_{k \in \mathbb{Z}}$$
 forms an orthonormal basis of V_j.

- A set of dilations and translations of the wavelet function $\psi(x)$:
 $$\{ \psi^j_k(x) = 2^{j/2} \psi (2^j x - k) \}_{k \in \mathbb{Z}}$$
 forms an orthonormal basis of W_j.

- They satisfy refinement relations:
 $$\phi(x) = \sqrt{2} \sum h_k \phi(2x - k)$$
 $$\psi(x) = \sqrt{2} \sum g_k \phi(2x - k)$$
 Quadrature Mirror Filters $H = \{h_k\}$, $G = \{g_k\}$
 used in the Discrete Wavelet Transform
 (only few of them are non-zero: compact support)

- Projection of function $f(x)$ onto V_j:
 $$(P_j f)(x) = \sum_{k \in \mathbb{Z}} s^j_k \psi^j_k(x) = \sum_{j' < j} \sum_{k \in \mathbb{Z}} d^j_k \phi^j_k(x)$$
 $$s^j_k = \int_{-\infty}^{\infty} f(x) \psi^j_k(x) \, dx$$
 $$d^j_k = \int_{-\infty}^{\infty} f(x) \phi^j_k(x) \, dx$$
How Do Wavelets Work?

Wavelet analysis (wavelet transform):

- **Approximation** – apply low-pass filter to Signal and down-sample
- **Detail** – apply high-pass filter to Signal and down-sample
- **Wavelet synthesis** (inverse wavelet transform): up-sampling & filtering
- **Complexity**: $4MN$, M the size of the wavelet, N number of cells
 - Recall: FFT complexity $4N \log_2 N$
The **continuous wavelet transform** of a function $f(t)$ is

$$\gamma(s, \tau) = \int_{-\infty}^{\infty} f(t) \psi_{s,\tau}(t) \, dt$$

$$\psi_{s,\tau}(t) = \frac{1}{\sqrt{s}} \psi \left(t - \frac{\tau}{s} \right)$$

$\psi(t)$ is the **mother wavelet** with scale and translation dimensions s and τ respectively
Harnessing the Power of Wavelets: The Present

- Bassi & Terzić 2009:
 - Improved particle representation in Bassi's 2D CSR code by replacing analytic cosine expansion with a wavelet approximation
 - Better spatial resolution (needed to study microbunching)
 - Appreciably more accurate (after wavelet thresholding)
 - Orders of magnitude faster

\[\lambda = 100 \mu m \]

\[N = 10^8 \]

- cosine expansion: \(N_c = 40, M_c = 100 \)
- grid resolution: \(N_x = 128, N_z = 1024 \)
Numerical Noise in PIC Simulations

- In wavelet space:
 - signal \rightarrow few large wavelet coefficients c_{ij}
 - noise \rightarrow many small wavelet coefficients c_{ij}

- Poissonian noise \rightarrow Anscombe transformation \rightarrow Gaussian noise

- Denoising by wavelet thresholding:
 - if $|c_{ij}| < T$, set to $c_{ij} = 0$ (choose threshold T carefully!)

- A great deal of study has been devoted to estimating optimal T

 $$T = 2\sqrt{\log N_{\text{grid}}} \sigma$$

(σ was estimated earlier)

Terzić, Pogorelov & Bohn 2007, PR STAB, 10, 034201
Coherent Synchrotron Radiation: Numerical Noise in the Mean Field Simulations

• For NGP, at each gridpoint, density dist. is Poissonian:

\[P = (n!)^{-1} n_j^n e^{-n_j} \]

\(n_j \) is the expected number in \(j^{th} \) cell; \(n \) integer

• For CIC, at each gridpoint, density dist. is contracted Poissonian:

\[P = (n!)^{-1} (an_j)^n e^{-an_j} \]

\(a = (2/3)^{(D/2)} \sim 0.54 \) (3D), 0.67 (2D), 0.82 (1D)

[For more details see Terzić, Pogorelov & Bohn 2007, PR STAB, 10, 034201]

• Measure of error (noise) in depositing macroparticles onto a grid:

\[\sigma^2 = (N_{grid})^{-1} \sum_{i=1}^{N_{grid}} \text{Var}(q_i) \]

\[\sigma_{NGP}^2 = \frac{Q_{total}^2}{NN_{grid}} \]

\[\sigma_{CIC}^2 = \frac{a^2 Q_{total}^2}{NN_{grid}} \]

where \(q_i = (Q_{total}/N)n_i \), \(Q_{total} \) total charge

• This error/noise \(\sigma \) estimate is crucial for optimal noise removal

• Signal with Poissonian noise can be transformed to the signal with Gaussian noise by Anscombe transformation:

\[Y_G = 2 \sqrt{Y_P + \frac{3}{8}} \]

\(Y_P \) = signal with Poissonian (multiplicative) noise

\(Y_G \) = signal with Gaussian (additive) noise