Orthogonal Basis Function Approximation of Particle Distributions In Numerical Simulations of Beams

Balša Terzić
Beam Physics and Astrophysics Group
Northern Illinois University

Jefferson Lab Beam Seminar
April 3, 2008
Motivation

• Studying dynamics of multi-particle systems (charged particle beams, plasma, galaxies...) heavily relies on N-body simulations

• It is important for N-body codes to:
 • be as efficient as possible, without compromising accuracy
 • minimize numerical noise due to $N_{\text{simulation}} < < N_{\text{physical}}$
 • account for multiscale dynamics
 • for some applications: have a compact representation of history

• We present two orthonormal bases which, as a part of an N-body code, address these requirements
 • wavelet basis
 • scaled Gauss-Hermite basis
Outline of the Talk

- Algorithms for N-body simulations
- Wavelet basis
 - brief overview of wavelets
 - wavelet-based Poisson equation solver
 - advantages
 - applications
- Scaled Gauss-Hermite basis
 - mathematical formalism
 - Poisson equation solver
 - applications
- Discussion of further work
Algorithms for N-body Simulations

• **Direct summation**: CPU cost scales as N^2
• **Tree**: direct summation nearby and statistical treatment farther away
• **Particle-In-Cell (PIC)**: particles binned in cells (grid)

\[F = -\nabla\Phi \]

- **system at** $t=t_0$
 - N macro-particles
 - Newton's equations advance particles by Δt
 - system at $t=t_0+\Delta t$

- **interpolate to find** F for each particle

- **bin macro-particles to obtain** particle distribution ρ
 - on a finite $N_x \times N_y \times N_z$ grid
 - solve the Poisson equation
 \[\Delta \Phi = \rho \]
 - on a finite $N_x \times N_y \times N_z$ grid
Algorithms for \textit{N}-body Simulations

- **Direct summation**: CPU cost scales as N^2
- **Tree**: direct summation nearby and statistical treatment farther away
- **Particle-In-Cell (PIC)**: particles binned in cells (grid)

\begin{itemize}
 \item \textbf{Direct summation}: CPU cost scales as N^2
 \item \textbf{Tree}: direct summation nearby and statistical treatment farther away
 \item \textbf{Particle-In-Cell (PIC)}: particles binned in cells (grid)
\end{itemize}

\begin{align*}
 \text{system at } t = t_0 & \\
 N \text{ macro} & \\
 \text{macroparticles} & \\
 \text{Newton's equations} & \\
 \text{advance particles by } \Delta t & \\
 \text{system at } t = t_0 + \Delta t & \\
 \text{interpolate to find} & \\
 F \text{ for each particle} & \\
 F = - \nabla \Phi & \\
 \text{bin macro} & \\
 \text{macroparticles to obtain} & \\
 \text{particle distribution } \rho & \\
 \text{on a finite } N_x \times N_y \times N_z \text{ grid} & \\
 \text{solve the Poisson equation} & \\
 \Delta \Phi = \rho & \\
 \text{on a finite } N_x \times N_y \times N_z \text{ grid} & \\
 \text{use wavelets} & \\
\end{itemize}
Algorithms for N-body Simulations

- Alternative N-body algorithm: analytical function approximation
 - analytical functions form a finite orthogonal basis
 - N macroparticles, but no grid

Newton's equations advance particles by Δt

system at $t = t_0$

N macroparticles

differentiate to get F for each particle

system at $t = t_0 + \Delta t$

$F = -\nabla \Phi$

expand particle distribution ρ in a finite orthogonal basis

$\rho(x,y,z) = \sum_{ijk} \rho_{ijk} \psi_{ijk}(x,y,z)$

solve the Poisson equation $\Delta \Phi = \rho$ in the same basis

$\Phi(x,y,z) = \sum_{ijk} \Phi_{ijk} \psi_{ijk}(x,y,z)$
Algorithms for N-body Simulations

- Alternative N-body algorithm: analytical function approximation
 - analytical functions form a finite orthogonal basis
 - N macroparticles, but no grid

\[
\rho(x,y,z) = \sum_{ijk} \rho_{ijk} \psi_{ijk}(x,y,z)
\]

\[
\Phi(x,y,z) = \sum_{ijk} \Phi_{ijk} \psi_{ijk}(x,y,z)
\]

Use scaled Gauss-Hermite basis

System at \(t = t_0 \)

\(N \) macroparticles

Newton's equations

Advance particles by \(\Delta t \)

\[
F = -\nabla \Phi
\]

Differentiate to get \(F \) for each particle

System at \(t = t_0 + \Delta t \)
Wavelets

Wavelets: orthogonal basis composed of scaled and translated versions of the same localized *mother wavelet* $\psi(x)$ and the *scaling function* $\phi(x)$:

$$\psi^k_i(x) = 2^{k/2} \psi(2^k x - i)$$

$$f(x) = s_0^0 \phi_0^0(x) + \sum_i \sum_k d^k_i \psi^k_i(x)$$

- Discrete Wavelet Transform (DFT) iteratively separates scales
 - $\sim O(MN)$ operation, M size of the wavelet filter, N size of the signal
- **Advantages**:
 - simultaneous localization in both space and frequency
 - compact representation of data, enabling *compression* (FBI fingerprints)
 - *signal denoising*: natural setting in which noise can be partially removed
denoised simulation \leftrightarrow simulation with more macroparticles
Numerical Noise in PIC Simulations

- Any \(N \)-body simulation will have numerical noise
- Sources of numerical noise in PIC simulations:
 - graininess of the distribution function: \(N_{\text{simulation}} \ll N_{\text{physical}} \)
 - discreteness of the computational domain: \(\rho \) and \(\Phi \) specified on a finite grid
- Each macroparticle is deposited onto a finite grid by either:
 - Nearest Grid Point (NGP) dep. scheme
 - Cloud-In-Cell (CIC) dep. scheme

![Diagram](image)

- \(x \) – macroparticle location
- \(\bullet \) – gridpoint location
Numerical Noise in PIC Simulations

- For NGP, at each gridpoint, particle dist. is Poissonian:
 \[P = (n!)^{-1} n_j^n e^{-n} \]
 \(n_j \) is the expected number in \(j^{\text{th}} \) cell; \(n \) integer

- For CIC, at each gridpoint, particle dist. is contracted Poissonian:
 \[P = (n!)^{-1} (an_j)^n e^{-an} \]
 \(a = (2/3)^{(D/2)} \sim 0.54 \) (3D), 0.67 (2D), 0.82 (1D)

- Measure of error (noise) in depositing macroparticles onto a grid:
 \[\sigma^2 = (N_{\text{grid}})^{-1} \sum_{i=1}^{N_{\text{grid}}} \text{Var}(q_i) \]
 \[\sigma_{\text{NGP}}^2 = \frac{Q_{\text{total}}^2}{N N_{\text{grid}}} \]
 \[\sigma_{\text{CIC}}^2 = \frac{a^2 Q_{\text{total}}^2}{N N_{\text{grid}}} \]
 where \(q_i = (Q_{\text{total}}/N)n_i \), \(Q_{\text{total}} \) total charge; \(N_{\text{grid}} \) number of gridpoints

(For more details see Teržić, Pogorelov & Bohn 2007, PR STAB, 10, 034201)

- This error/noise estimate is crucial for optimal wavelet-denoising

- **IDEA:** Solve the Poisson equation in such a way so as to minimize numerical noise – USE WAVELETS
Numerical Noise in PIC Simulations

- In wavelet space:

 \[\text{signal} \rightarrow \text{few large wavelet coefficients } c_{ij} \]

 \[\text{noise} \rightarrow \text{many small wavelet coefficients } c_{ij} \]

- **Denoising by wavelet thresholding:**

 if \(|c_{ij}| < T \), set to \(c_{ij} = 0 \) (choose threshold \(T \) carefully!)

- A great deal of study has been devoted to estimating optimal \(T \)

\[T = 2 \sqrt{\log N_{\text{grid}}} \sigma \]

(\(\sigma \) was estimated earlier)

Terzić, Pogorelov & Bohn 2007, PR STAB, 10, 034201
Wavelet Denoising and Compression

- Whenever the discrete signal is analytically known, one can compute the **Signal-to-Noise Ratio (SNR)** which measures its quality

\[SNR \sim \sqrt{\frac{N}{ppc}} \]

\(N_{ppc} \): avg. # of particles per cell
\(N_{ppc} = \frac{N}{N_{\text{cells}}} \)
Wavelet Denoising and Compression

- Whenever the discrete signal is analytically known, one can compute the Signal-to-Noise Ratio (SNR) which measures its quality

\[\text{SNR} \sim \sqrt{N_{\text{ppc}}} \]

\[N_{\text{ppc}} : \text{avg. # of particles per cell} \quad N_{\text{ppc}} = N/N_{\text{cells}} \]

2D superimposed Gaussians on 256×256 grid
Wavelet Denoising and Compression

- Whenever the discrete signal is analytically known, one can compute the Signal-to-Noise Ratio (SNR) which measures its quality

\[\text{SNR} \sim \sqrt{\frac{N}{\text{ppc}}} \]

\[N_{\text{ppc}} : \text{avg. \# of particles per cell} \quad N_{\text{ppc}} = \frac{N}{N_{\text{cells}}} \]

2D superimposed Gaussians on 256×256 grid

ANALYTICAL

\[N_{\text{ppc}} = 3 \quad \text{SNR} = 2.02 \]
Whenever the discrete signal is analytically known, one can compute the Signal-to-Noise Ratio (SNR) which measures its quality

\[SNR \sim \sqrt{N_{ppc}} \]

\[N_{ppc} : \text{avg. # of particles per cell} \quad N_{ppc} = \frac{N}{N_{cells}} \]

2D superimposed Gaussians on 256×256 grid

ANALYTICAL

\[N_{ppc} = 3 \quad SNR = 2.02 \]

\[N_{ppc} = 205 \quad SNR = 16.89 \]
Wavelet Denoising and Compression

• Whenever the discrete signal is analytically known, one can compute the Signal-to-Noise Ratio (SNR) which measures its quality

\[SNR \sim \sqrt{N_{\text{ppc}}} \]

\[N_{\text{ppc}} : \text{avg. \# of particles per cell} \quad N_{\text{ppc}} = \frac{N}{N_{\text{cells}}} \]

2D superimposed Gaussians on 256×256 grid

• denoising by wavelet thresholding: if \(|c_{ij}| < T \), set to 0

ANALYTICAL

\(N_{\text{ppc}} = 3 \quad \text{SNR}=2.02 \)

\(N_{\text{ppc}} = 205 \quad \text{SNR}=16.89 \)
Whenever the discrete signal is analytically known, one can compute the **Signal-to-Noise Ratio (SNR)** which measures its quality

\[SNR \sim \sqrt{N_{\text{ppc}}} \]

\[N_{\text{ppc}} : \text{avg. \# of particles per cell} \quad N_{\text{ppc}} = \frac{N}{N_{\text{cells}}} \]

2D superimposed Gaussians on 256×256 grid

- denoising by wavelet thresholding: \(|c_{ij}| < T \), set to 0
- **Advantages:**
 - increase in SNR by \(c \leftrightarrow c^2 \) more macroparticles (here \(c=8.3, c^2=69 \))
 - compact storage in wavelet space (in this example 79/65536: 0.12%)
Wavelet-Based Poisson Equation Solver

Poisson equation in physical space

\[\Delta u = f \]

discretize Poisson equation on a \(N_x \times N_y \times N_z \) grid

\[L U = F \]

transform discretized Poisson eq. to wavelet space

\[\text{wavelet-threshold source } F_w, \text{ operator } L_w \]

Preconditioned Conjugate Gradient in wavelet space

\[|AX - B|_2 \leq \varepsilon^2 |B|_2 \]

precondition Laplacian \(L_w \) with diagonal preconditioner \(P \)

\[(PL_w P) P^{-1} U_w = PF_w \]

solution \(U \) on the \(N_x \times N_y \times N_z \) grid

BCs: using Green's functions

\[u_{\text{bnd}} = g \]

\[\Delta u = f \]

DWT

\[L_w U_w = F_w \]

\[k (L) \sim O(N_x^2) \]

\[k (L_w) \sim O(N_x^2) \]

\[k (PL_w P) \sim O(N_x) \]
Preconditioned Conjugate Gradient (PCG)

- convergence rate depends on condition number k
 \[|u - u'|_2 \leq \left(\frac{\sqrt{k - 1}}{\sqrt{k + 1}} \right)^i |u|_2 \]
- preconditioning (diagonal in wavelet space): $k \sim O(N_x^2) \rightarrow k \sim O(N_x)$
- good initial approximation: solution at previous time step
Preconditioned Conjugate Gradient (PCG)

- convergence rate depends on condition number k
 \[|u - u'|_2 \leq \left(\frac{\sqrt{k - 1}}{\sqrt{k + 1}} \right)^i |u|_2 \]
- preconditioning (diagonal in wavelet space): $k \sim O(N_x^2) \rightarrow k \sim O(N_x)$
- good initial approximation: solution at previous time step

<table>
<thead>
<tr>
<th>no preconditioning</th>
<th>$U^i=0$ initial guess</th>
<th>75.2</th>
</tr>
</thead>
</table>

average over 30000-step run

typical realistic beam simulation

- $\#$ of PCG iterations
- simulation step #
Preconditioned Conjugate Gradient (PCG)

- convergence rate depends on condition number k
 $$|u - u'| \leq \left(\frac{\sqrt{k - 1}}{\sqrt{k + 1}}\right)^i |u|_2$$

- preconditioning (diagonal in wavelet space):
 $$k \sim O(N^2_x) \rightarrow k \sim O(N_x)$$

- good initial approximation: solution at previous time step

```plaintext
no preconditioning  $U' = 0$ initial guess  75.2
preconditioned  $U' = 0$ initial guess  60.7
```

average over 30000-step run

typical realistic beam simulation

Diagram:
- Graph showing the number of PCG iterations vs. simulation step number.
- Graph compares no preconditioning ($U' = 0$ initial guess) and preconditioned ($U' = 0$ initial guess) cases.

Terzić JLab Beam Seminar, April 2008 21
Preconditioned Conjugate Gradient (PCG)

- convergence rate depends on condition number k
 \[|u - u^i|_2 \leq \left(\frac{\sqrt{k-1}}{\sqrt{k+1}} \right)^i |u|_2 \]
- preconditioning (diagonal in wavelet space): $k \sim O(N_x^2) \rightarrow k \sim O(N_x)$
- good initial approximation: solution at previous time step

Typical realistic beam simulation

<table>
<thead>
<tr>
<th>Initial Guess</th>
<th>Preconditioning</th>
<th>Average over 30000-step run</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U^i = 0$</td>
<td>no</td>
<td>75.2</td>
</tr>
<tr>
<td>$U^i = 0$</td>
<td>preconditioned</td>
<td>60.7</td>
</tr>
<tr>
<td>$U^i = U^{i-1}$</td>
<td>no</td>
<td>4.8</td>
</tr>
</tbody>
</table>
Preconditioned Conjugate Gradient (PCG)

- convergence rate depends on condition number $k \quad |u-u'|_2 \leq \left(\frac{\sqrt{k-1}}{\sqrt{k+1}}\right)^i |u|_2$
- preconditioning (diagonal in wavelet space): $k \sim O(N_x^2) \rightarrow k \sim O(N_x)$
- good initial approximation: solution at previous time step

![Graph showing typical realistic beam simulation](image)

<table>
<thead>
<tr>
<th></th>
<th>no preconditioning</th>
<th>preconditioned</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U^i=0$ initial guess</td>
<td>75.2</td>
<td>60.7</td>
</tr>
<tr>
<td>$U^i=U^{i-1}$ initial guess</td>
<td>4.8</td>
<td>2.4</td>
</tr>
</tbody>
</table>

considerable computational speedup

(Terzić, Pogorelov & Bohn 2007)
Using PCG in Numerical Simulations

- **Our goal:** develop wavelet-based Poisson solver which can easily be integrated into existing PIC codes

- **First:** test the PCG as a stand-alone solver on examples from:
 - *beam dynamics*
 - *galactic dynamics*

- **Second:** insert the PCG Poisson solver into an existing PIC code (IMPACT-T) and run realistic charged particle beam simulations (Terzić, Pogorelov & Bohn 2007, PR STAB, 10, 034201)
 - compare (conventional FFT-based) IMPACT-T Vs. IMPACT-T with PCG:
 - *rms* properties
 - level of detail
 - computational speed
Conventional IMPACT-T vs. IMPACT-T with PCG

Code Comparison: \textit{rms} Properties

Fermilab/NICADD photoinjector \(32 \times 32 \times 32\) grid 1 nC charge

\begin{align*}
\text{Good agreement} & \quad \text{to a few percent} \\
\text{rms beam radius} & \\
\text{rms normalized transverse emittance} & \\
\text{rms bunch length} & \\
\text{rms normalized longitudinal emittance} &
\end{align*}
Conventional IMPACT-T vs. IMPACT-T with PCG
Code Comparison: Level of Detail & Speed

- transverse charge distribution for the Fermilab/NICADD photoinjector simulation
- very non-axisymmetric beam
- $32 \times 32 \times 32$ grid, $N=200000$
- very good agreement in detail
- **Speed comparison**: IMPACT-T w/ PCG $\sim 10\%$ faster than the conventional serial IMPACT-T

Terzić
Data Compression with PCG

- PCG provides excellent compression of data and operators in wavelet space

 Fermilab/NICADD photoinjector: Real Simulations

 particle distribution **Laplacian operator**

 \[32 \times 32 \times 32 \text{ grid, } N=125 \ 000, \ N_{\text{ppc}} = 4.58 \sim 3.5\% \text{ coefficients retained on average}\]

 \[64 \times 64 \times 64 \text{ grid, } N=1 \ 000 \ 000, \ N_{\text{ppc}} = 4.58 \sim 1.75\% \text{ coefficients retained on average}\]

- compact storage of beam's distribution history needed for CSR simulations
- compact storage of beam's potential needed for modeling halo formation
Ongoing Project: Improving the PCG Solver

- Currently, we (graduate student Ben Sprague and I) are working on a number of improvements to the wavelet-based Poisson equation solver:
 - change from fixed to adaptive grid
 - simplify BC computation (currently a computational bottleneck)
 - further exploit sparsity of operators and data sets
 - use a non-standard operator form to better separate scales
 - use more sophisticated wavelet families (biorthogonal, lifted)
 - explore other preconditioners
 - parallelize and optimize

- Possible future applications of PCG solver:
 - CSR simulations: computation of retarded potentials requires integration over history of the system – compactly represented in wavelet space
 - develop a new PIC code to simulate self-gravitating systems
Scaled Gauss-Hermite Basis

- Gauss-Hermite orthonormal basis: (solution to quantum harmonic oscillator)
 \[\psi_n(x) = \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} H_n(x) e^{-x^2} \]

- Orthonormal: Basis functions:
 - oscillatory
 - exponentially decaying

Basis functions:
- \(0, 1, 2, 4, 5\)

- Infinite expansion (2D):
 \[f(x, y) = \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} a_{lm} \psi_l(x) \psi_m(y) \]
 finite: \(\sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \rightarrow \sum_{l=0}^{L} \sum_{m=0}^{M} \)

- Scaled and translated version:
 \[f\left(\frac{x}{\alpha_1} + \bar{x}, \frac{y}{\alpha_2} + \bar{y}\right) = \sum_{l=0}^{L} \sum_{m=0}^{M} a_{lm} \psi_l(x) \psi_m(y) \]
 \[\begin{align*}
 \sigma_x^2 &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x-\bar{x})^2 f(x, y) \, dx \, dy \\
 \sigma_y^2 &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (y-\bar{y})^2 f(x, y) \, dx \, dy \\
 \bar{x} &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) \, dx \, dy \\
 \bar{y} &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) \, dx \, dy \\
 \end{align*} \]

\(\alpha_1 = \frac{1}{\sqrt{2 \sigma_x}}, \quad \alpha_2 = \frac{1}{\sqrt{2 \sigma_y}} \)
Scaled Gauss-Hermite Basis

- Define collocation points:
 \[\{\tilde{\gamma}_j\}_{j=0}^N \] roots of \(H_{L+1}(x) \)
 \[\{\tilde{\beta}_k\}_{k=0}^M \] roots of \(H_{M+1}(y) \)

- At collocation points:
 \[f(\tilde{\gamma}_j, \tilde{\beta}_k) = \sum_{l=0}^L \sum_{m=0}^M a_{lm} \psi_l(\gamma_j) \psi_m(\beta_k) \]

- Take advantage of the relation for Hermite polynomials:
 \[\sum_{k=0}^{n} \frac{H_k(x) H_k(y)}{2^k k!} = \frac{H_{n+1}(x) H_n(y) - H_n(x) H_{n+1}(y)}{2^{n+1} n! (x-y)} \]
 to obtain
 \[a_{lm} = \sum_{j=0}^{L} \sum_{k=0}^{M} \frac{1}{C_{jk}} f(\tilde{\gamma}_j, \tilde{\beta}_k) \psi_l(\gamma_j) \psi_m(\beta_k) \quad 0 \leq l \leq L, \ 0 \leq m \leq M \]

 \[C_{jk} = \sum_{l=0}^{L} [\psi_n(\gamma_j)]^2 \sum_{m=0}^{M} [\psi_m(\beta_k)]^2 \quad 0 \leq j \leq L, \ 0 \leq k \leq M \]

- This formalism is general and can easily be extended to higher dimensions
Poisson Equation in Scaled Gauss-Hermite Basis

- Poisson equation:
 \[
 \Delta \Phi \left(\frac{x}{\alpha_1} + \bar{x}, \frac{y}{\alpha_2} + \bar{y} \right) = \left[\partial_x^2 + \partial_y^2 \right] \Phi \left(\frac{x}{\alpha_1} + \bar{x}, \frac{y}{\alpha_2} + \bar{y} \right) = \kappa f \left(\frac{x}{\alpha_1} + \bar{x}, \frac{y}{\alpha_2} + \bar{y} \right)
 \]
 \[
 \Phi \left(\frac{x}{\alpha_1} + \bar{x}, \frac{y}{\alpha_2} + \bar{y} \right) = \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} b_{lm} \psi_l(x) \psi_m(y)
 \]

where \(b_{lm} \) are given by the difference relation:

\[
2 \alpha_1^2 \sqrt{l(l-1)} b_{n-2m} + 2 \alpha_2^2 \sqrt{m(m-1)} b_{lm-2} = \kappa a_{lm}
\]

with “boundary” coefficients:

\[
b_{nm} = \begin{cases}
 \frac{\kappa}{2 \alpha_2^2 \sqrt{(m+2)(m+1)}} a_{l+2m}, & m=0,1 \land l \geq 2, \\
 \frac{\kappa}{2 \alpha_1^2 \sqrt{(l+2)(l+1)}} a_{lm+2}, & l=0,1 \land m \geq 2,
\end{cases}
\]

- No need to invert the difference equation: compute “boundary” first, and then work inside \(\rightarrow \) computationally simple and efficient
Simulating Multiparticle Systems with Scaled Gauss-Hermite Expansion

- N-body realization of the discrete particle distribution:

$$f(x, y) = \frac{1}{N} \sum_{i=1}^{N} \delta(x-x_i) \delta(y-y_i)$$

- Expanding $f(x,y)$ in scaled Gauss-Hermite basis reduces to the following steps:

1. tabulate the unchanging quantities:

$$C_{jk} = \sum_{l=0}^{L} [\psi_l(\gamma_j)]^2 \sum_{m=0}^{M} [\psi_m(\beta_k)]^2$$

$$p_{lmjk} = \frac{\psi_l(\gamma_j) \psi_m(\beta_k)}{C_{jk}}$$

2. compute $\bar{x}, \bar{y}, \alpha_1, \alpha_2$:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

$$\alpha_1 = \left[\frac{2}{N} \sum_{i=1}^{N} (x_i - x)^2 \right]^{-1/2}$$

$$\gamma_j = \frac{\gamma_j}{\alpha_1} + \bar{x}$$

$$\alpha_2 = \left[\frac{2}{N} \sum_{i=1}^{N} (y_i - y)^2 \right]^{-1/2}$$

$$\tilde{\beta}_k = \frac{\beta_k}{\alpha_2} + \bar{y}$$

3. evaluate $f(\tilde{\gamma}_j, \tilde{\beta}_k)$ at the nodes

4. compute coefficients

$$a_{lm} = \sum_{j=0}^{L} \sum_{k=0}^{M} p_{lmjk} f(\tilde{\gamma}_j, \tilde{\beta}_k)$$
Simulating Multiparticle Systems with Scaled Gauss-Hermite Expansion

- N-body realization of the discrete particle distribution:
 \[f(x, y) = \frac{1}{N} \sum_{i=1}^{N} \delta(x-x_i)\delta(y-y_i) \]

- Expanding $f(x,y)$ in scaled Gauss-Hermite basis reduces to the following steps:
 1. tabulate the unchanging quantities:
 \[C_{jk} = \sum_{l=0}^{L} [\psi_l(\gamma_j)]^2 \sum_{m=0}^{M} [\psi_m(\beta_k)]^2 \]
 \[p_{lmjk} = \frac{\psi_l(\gamma_j)\psi_m(\beta_k)}{C_{jk}} \]

 2. compute $\bar{x}, \bar{y}, \alpha_1, \alpha_2$:
 \[\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \]
 \[\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i \]
 \[\alpha_1 = \left[\frac{2}{N} \sum_{i=1}^{N} (x_i-x)^2 \right]^{-1/2} \]
 \[\alpha_2 = \left[\frac{2}{N} \sum_{i=1}^{N} (y_i-y)^2 \right]^{-1/2} \]
 \[\tilde{\gamma}_j = \frac{\gamma_j}{\alpha_1} + \bar{x} \]
 \[\tilde{\beta}_k = \frac{\beta_k}{\alpha_2} + \bar{y} \]

 3. evaluate $f(\tilde{\gamma}_j, \tilde{\beta}_k)$ at the nodes

 4. compute coefficients
 \[a_{lm} = \sum_{j=0}^{L} \sum_{k=0}^{M} p_{lmjk} f(\tilde{\gamma}_j, \tilde{\beta}_k) \]

function estimation from a discrete sample
Simulating Multiparticle Systems with Scaled Gauss-Hermite Expansion

- Evaluate $f(\tilde{\gamma}_j, \tilde{\beta}_k)$ from a discrete sample (nonparametric density estimation)

\[
f(\tilde{\gamma}_l, \tilde{\beta}_m) = \frac{\int \int f(\tilde{\gamma}_l + \tilde{x}, \tilde{\beta}_m + \tilde{y}) d\tilde{y} d\tilde{x}}{\int \int d\tilde{y} d\tilde{x}}
\]

shifted histogram estimator with “window” $[-h_x, h_x] \times [-h_y, h_y]

- Optimal size of the window:
 \[h_{opt} = \left(\frac{9}{2}\right)^{1/5} \left[\int_{-h_x}^{h_x} f'''(x) \, dx\right]^{1/5} N^{-1/5}\]

- Integrated means square error (IMSE)
 \[IMSE = \frac{5}{4} 2^{-4/5} 9^{-1/5} \left[\int_{-h_x}^{h_x} f'''(x) \, dx\right]^{1/5} N^{-4/5} \sim N^{-4/5}\]

- Other, more sophisticated estimators are available:
 - kernel, adaptive estimators, and others...
Applying Scaled Gauss-Hermite Expansion

- Future application of scaled Gauss-Hermite approximation:
 2D CSR code of Bassi, Ellison, Heinemann and Warnock:
 - particle distribution is sampled by N macroparticles
 - distribution is approximated at each timestep with a cosine expansion
 - beam self-forces are computed from the analytic expansion
- Problems:
 - *unphysical “wigglers”* in the tails of the distribution
 - *computational speed*: each coefficient requires N cosine evaluations
- Problems resolved (?) with scaled Gauss-Hermite:
 - no wiggles – basis functions are exponentially decaying
 - computing coefficients scales more favorably and does not involve evaluation of any expensive function (addition & multiplication)
Applying Scaled Gauss-Hermite Expansion

- Typical simulation: $N=10^6$
- “Wiggles” in cosine expan.
- Reduced by orders of mag. in scaled GH

$$\begin{align*}
N_x &= N_y = 4 \\
N_x &= N_y = 10 \\
N_x &= N_y = 16
\end{align*}$$

128x128 grid
Applying Scaled Gauss-Hermite Expansion

- Scaled Gauss-Hermite expansion is computationally appreciably faster:
 - cosine expansion: \(t_{\cos} \sim O(LMN_{\text{part}}) \)
 - scaled Gauss-Hermite: \(t_{\text{sGH}} \sim O((L+M)N_{\text{part}}) + O(L^2M^2) \)

- ratio \(t_{\cos} / t_{\text{sGH}} \sim O(L) + O(N_{\text{part}}/L^2) \) (assume \(L=M \))
Applying Scaled Gauss-Hermite Expansion

- Scaled Gauss-Hermite expansion is computationally appreciably faster:
 - cosine expansion: \(t_{\cos} \sim O(LMN_{\text{part}}) \)
 - scaled Gauss-Hermite: \(t_{s\text{GH}} \sim O((L+M)N_{\text{part}}) + O(L^2M^2) \)

- ratio \(\frac{t_{\cos}}{t_{s\text{GH}}} \sim O(L) + O(N_{\text{part}}/L^2) \) (assume \(L=M \))

\[\text{\~20 times faster} \]
Scaled Gauss-Hermite Expansion: Loose Ends

- There are several issues with the scaled Gauss-Hermite expansion that we are still exploring/resolving:
 - convergence
 - different estimators for evaluating $f(\tilde{\gamma}_j, \tilde{\beta}_k)$
 - optimal number of basis functions (when is “more” less?)
 - what do we lose by using an analytic expansion?
 - avoid danger of smoothing over physical small-scale structures
 - adequate resolution: can this approach resolve physical small-scale structure?
- When these issues are properly addressed, we will have another tool with which to attack CSR and integration over beam's history
Summary

• Designed an iterative wavelet-based Poisson solver (PCG)
 - wavelet compression and denoising achieves computational speedup
 - preconditioning and sparsity of operators and data in wavelet space reduce CPU load
 - integrated PCG into a PIC code (IMPACT-T) for beam dynamics simulations
 - current efforts: adaptive grid, parallelization, optimization
 - future uses:
 - probe usefulness of wavelet methodology in CSR simulations
 - simulate self-gravitating systems

• Developed a scaled Gauss Hermite approximation (still a prototype):
 - efficient representation of particle distribution
 - Poisson equation solved directly at a marginal cost
 - current efforts: resolving issues of convergence, truncation of expansion
 - future uses (?):
 - in Bassi et al.'s 2D CSR code
 - in Rui Li's 2D CSR code
Auxiliary Slides
Computing BCs: Current Implementation

- Green's function corresponding to a grounded rectangular pipe

\[
\rho^{ln}(z) = \frac{4}{ab} \int_{0}^{a} \int_{0}^{b} \rho(x, y, z) \sin(\alpha_l x) \sin(\beta_m y) \, dx \, dy
\]

\[
\frac{\partial^2 \phi^{lm}(z)}{\partial z^2} - \gamma_{lm}^2 \phi^{lm}(z) = -\rho^{lm}(z)
\]

\[
\phi(x, y, z) = \sum_{l=1}^{N_x} \sum_{m=1}^{N_y} \phi^{lm}(z) \sin(\alpha_l x) \sin(\beta_m y)
\]

EIGENFUNCTIONS
\[\sin(\alpha_l x)\]
\[\sin(\beta_m y)\]

EIGENVALUES
\[\alpha_l = l \pi / a\]
\[\beta_m = m \pi / b\]
\[\gamma_{lm}^2 = \alpha_l^2 + \beta_m^2\]
Computing BCs: Adaptive Grid

V=0

computational grid

V=0
Computing BCs: Adaptive Grid

V=0

computational grid

V=0
Computing BCs: Adaptive Grid

V=0

computational grid
Preconditioner in Wavelet Space
Laplacian in Standard Form in Wavelet Space
Laplacian in Non-Standard Form in Wavelet Space
Wavelet Decomposition

The continuous wavelet transform of a function \(f(t) \) is

\[
\gamma(s, \tau) = \int_{-\infty}^{\infty} f(t) \psi_{s,\tau}(t) \, dt
\]

\[
\psi_{s,\tau}(t) = \frac{1}{\sqrt{s}} \psi \left(\frac{t - \tau}{s} \right)
\]

\(\psi(t) \) mother wavelet with scale and translation dimensions \(s \) and \(\tau \) respectively.
How Do Wavelets Work?

Wavelet analysis (wavelet transform):

- **Approximation** – apply low-pass filter to Signal and down-sample
- **Detail** – apply high-pass filter to Signal and down-sample
- **Wavelet synthesis** (inverse wavelet transform): up-sampling & filtering
- **Complexity**: \(4MN\), \(M\) the size of the wavelet, \(N\) number of cells
 - Recall: FFT complexity \(4N \log_2 N\)

S - signal
A - approximation
D - detail
Wavelets

- Wavelet transform separates scales
Numerical Noise in PIC Simulations

- In wavelet space:
 - signal \rightarrow few large wavelet coefficients c_{ij}
 - noise \rightarrow many small wavelet coefficients c_{ij}

- Poissonian noise \rightarrow Gaussian noise

- Denoising by wavelet thresholding:
 - if $|c_{ij}| < T$, set to $c_{ij} = 0$ (choose threshold T carefully!)

- A great deal of study has been devoted to estimating optimal T

$$T = 2 \sqrt{\log N_{\text{grid}}} \sigma$$

(σ was estimated earlier)

Terzić, Pogorelov & Bohn 2007, PR STAB, 10, 034201
3D Plummer sphere on a 32x32x32 grid

BCs: open in all directions (analytically specified)
3D 'fuzzy cigar' on a 32x32x32 grid

BCs: grounded rectangular pipe ($V=0$ on the sides), open in z-direction (Green's function solution)
2D EXAMPLE: “MICROBUNCHED” DENSITY DISTRIBUTION (with $U=0$ starting guess)

BCs: open in all directions (analytically specified)
IMPACT-T Vs. IMPACT-T with PCG:

rms properties

Fermilab/NICADD photoinjector \((32 \times 32 \times 32 \text{ grid})\) 1 nC charge

bunch compressor at \(z=5.65\text{m}\) from cathode

- **rms beam radius**
- **rms normalized transverse emittance**

- **rms bunch length**
- **rms normalized longitudinal emittance**
IMPACT-T Vs. IMPACT-T with PCG: level of detail

- transverse charge distribution for the Fermilab/NICADD photoinjector simulation
- 5-beamlets (masked photocathode)
- $32 \times 32 \times 32$ grid, $N=200000$
- very good agreement in detail
IMPACT-T Vs. IMPACT-T with PCG: level of detail

- transverse charge distribution for the AES/JLab low-charge photoinjector simulation
- very non-axisymmetric beam
- $32 \times 32 \times 32$ grid, $N=200000$
- very good agreement in detail
IMPACT-T Vs. IMPACT-T with PCG: level of detail

- transverse charge distribution for the AES/JLab low-charge photoinjector simulation
- very non-axisymmetric beam
- $32 \times 32 \times 32$ grid, $N = 200000$
- very good agreement in detail
Scaled Gauss-Hermite Basis

- Gauss-Hermite orthonormal basis: (solution to quantum harmonic oscillator)

- Hermite polynomials $H_n(x)$ relations:

$$ H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x) $$
$$ H_n'(x) = 2xH_{n-1}(x) $$

- Orthonormal: $\int_{-\infty}^{\infty} \psi_l(x)\psi_m(x)e^{x^2}dx = \delta_{lm}$

$$ \int_{-\infty}^{\infty} \psi_m(x)dx = \delta_m $$
$$ \delta_{lm}, \delta_m \text{ Kronecker delta} $$

Basis functions:
- oscillatory
- exponentially decaying

$$ \psi_n(x) = \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} H_n(x)e^{-x^2} $$

- Infinite expansion (2D): $f(x, y) = \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} a_{lm} \psi_l(x)\psi_m(y) $$

finite: $\sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \rightarrow \sum_{l=0}^{L} \sum_{m=0}^{M}$

- Scaled and translated version:

$$ f\left(\frac{x}{\alpha_1} + \bar{x}, \frac{y}{\alpha_2} + \bar{y}\right) = \sum_{l=0}^{L} \sum_{m=0}^{M} a_{lm} \psi_l(x)\psi_m(y) $$

$$ \left\{ \sigma_{x}^2, \sigma_{y}^2 \right\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left((x-\bar{x})^2 \right) f(x, y) dx \, dy $$

$$ \left\{ \bar{x}, \bar{y} \right\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left\{ x, y \right\} f(x, y) dx \, dy $$

$$ \alpha_1 = \frac{1}{\sqrt{2\sigma_x}}, \quad \alpha_2 = \frac{1}{\sqrt{2\sigma_y}} $$

0, 1, 2, 4, 5