Musings of a Meandering Mathematician

Balša Terzić, Ph.D.
Center for Advanced Studies of Accelerators
Jefferson Lab

Department of Mathematics, Christopher Newport University,
November 17, 2010
Outline

• The Big Picture
 – What can I do with a math/physics degree?

• Academia/Research Centers/National Labs:
 – My experiences and reflections

• If more education is what you desire…
 – How can I best prepare for graduate school?
 – Tips and advice: courtesy of hindsight
The Big Picture

- What can I do with a math/physics degree? *Anything!*
 - Industrial research and development
 - Energy, transportation, telecommunication, defense...
 - Finance
 - Wall Street, hedge funds, investment banking, quant...
 - Software development and IT
 - High-school teaching
 - College and university teaching
 - Government and academic research
 - National laboratories and universities
 - Even politics!
 - Graduate degree required
Why Math?

• Inherent honesty
 – Objective: no “schools of thought”
 – Security in consistency

• Inherent beauty
 – Inter-connectedness

• Universal language of science and nature
 “The laws of nature are but the mathematical thoughts of God.”
 – Euclid

• Finally:
 “Physics is becoming too difficult for the physicists.”
 – David Hilbert
My Meandering Path

BS, Math & CS
Liberty University

PhD, Applied Math
Florida State University

Postdoc,
Dept. of Physics
Northern Illinois University

Postdoc,
Dept. of Astronomy
University of Florida

Scientist, CASA
Jefferson Lab

?
Undergraduate Preparations at Liberty

• Set from the start: always knew that I’d be a scientist
• For me, math came alive when used to solve a physical problem
• Most interesting physical problems that can be solved with pen & paper were already solved: *computers to the rescue!*
• Computer training:
 – Mathematical software: Mathematica, Maple, Matlab...
 – Programming: C, Fortran
 – Numerical analysis
• Honor’s project on *neural networks*:
 – *Taught a computer to play a game*
 2 players taking turns, 15 coins, each player must take 1-3 coins, taker of the last coin loses
 Computer won!
Chaos in Grad School at Florida State

- **Chaos:** *Exponential sensitivity to initial conditions*
- Discovered by Poincaré in 1880s, but came to life after the advent of computers
 - Edward Lorenz and weather prediction “Butterfly effect”
- Chaos is an *intrinsic* property of all nonlinear systems:
 - Weather prediction
 - Population dynamics
 - Celestial mechanics: solar system, stellar orbits
- **Common misconception:** chaotic = random. **No!** chaotic ≠ random
 Chaos limits our ability to quantitatively predict the future after a point (weather few days, planets few million years...)
Chaos in Grad School at Florida State

• My PhD thesis investigated manifestations of chaos in galactic dynamics:
 – *Elliptical galaxies* have dense centers and often supermassive central black holes, which induce chaos in stellar orbits
 – This limits the shapes of elliptical galaxies (Explains why very flat ellipticals have never been observed)

• Theoretical connection between chaos in a conservative physical system and Riemannian geometry
 – Geodesics in Riemannian manifold + metric *are equivalent to* orbits in a Hamiltonian system
 – Established analogies between fields to enable *cross-fertilization*
More Chaos & Black Holes at UF as a Postdoc

• More chaos theory: quantifying chaos in low-dimensional systems using statistical and differential-geometric approach

• I continued studying the role of chaos in galaxies:
 – Chaotic motion leads to rapid settling of early stages of galaxies toward equilibrium (chaos as a conduit for “violent relaxation”)
 – How chaotic motion caused by the central black hole binary acts as a “galactic blender” and vacates the galaxy center

• Developed a new family of models for:
 (dwarf & giant) elliptical galaxies, DM halos, central bulges in spirals...
 – Flexed math muscles in creatively inverting Abel integral (projected ↔ deprojected quantities)
Postdoc at Northern Illinois: A Career Change

• **Sobering realization:**
 – Theoretical astrophysics is underfunded \(\rightarrow\) job prospects bleak
 – Mathematics education made me flexible by providing me with a useful set of skills:

 Use them elsewhere, make it a career! Math is math!

• Accepted an offer to switch to accelerator physics at NIU rather than continue in theoretical astrophysics
 – My postdoc mentor was also a “recovering astrophysicist”
 – I relegated astrophysics to a hobby

• **No regrets**
 – Accelerator physics is as dynamic and versatile field, every bit as much in need of mathematical prowess as astrophysics
Postdoc at Northern Illinois: Wavelets

- **Wavelets**: orthogonal basis of functions $\varphi^k(x) = 2^{k/2} \varphi(2^k x - i)$

 ![Wavelet Functions](image)

 Compact support: finite non-zero domain

 Hierarchy of frequencies: $2^{k/2}$

 Fast Wavelet Transform available

- **Why wavelets?**
 - Simultaneous localization in frequencies and space
 - Good correlation with various signal types (irregular): *data compression*

 FBI fingerprint file is compressed in using wavelets

 - Preserves hierarchy of scales

 - Wavelet space is advantageous for solving some PDEs (preconditioner)

 - **Wavelet denoising**: removal of numerical noise by coefficient thresholding
Postdoc at Northern Illinois: Wavelets

Illustrative example of wavelet denoising: Monte-Carlo realization
Analytic distribution sampled by N point particles, deposited on the 256x256 grid
Signal-to-Noise Ratio (SNR): quality of representation (SNR ~ N^{1/2})

ANALYTICAL

![Analytical wavelet denoising example](image)
Illustrative example of wavelet denoising: Monte-Carlo realization Analytic distribution sampled by N point particles, deposited on the 256x256 grid Signal-to-Noise Ratio (SNR): quality of representation ($SNR \sim N^{\frac{1}{2}}$)
Illustrative example of wavelet denoising: Monte-Carlo realization
Analytic distribution sampled by N point particles, deposited on the 256x256 grid
Signal-to-Noise Ratio (SNR): quality of representation ($SNR \sim N^{\frac{1}{2}}$)
Postdoc at Northern Illinois: Wavelets

Illustrative example of wavelet denoising: Monte-Carlo realization
Analytic distribution sampled by N point particles, deposited on the 256x256 grid
Signal-to-Noise Ratio (SNR): quality of representation (SNR ~ $N^{\frac{1}{2}}$)

Denoising by wavelet thresholding: if $|c_{ij}| < T$, then $c_{ij}=0$
More physics out of the simulation:
 Increase SNR by A, equivalent to representation with A^2 particles
Compression: Distribution compactly stored in wavelet space (79/65536 coeffs)
Postdoc at Northern Illinois: Wavelets

• Developed a code for N-body simulations of charged particle beams in accelerators based on wavelet methodology
 – Nifty mathematical “trick” led to substantial improvements
 – Opened an avenue for further use of wavelets in accelerators
 – Established a “theme” for many of my future projects

• Mentored a Master’ degree student to an award-winning thesis based on wavelets and their use in solving elliptical PDEs

• Made a transition into accelerator physics

• All the while, kept the astrophysics as a “hobby”:
 – Mentored students in astrophysical projects
 – Taught a graduate class in astrophysics and cosmology
Scientist at Jefferson Lab

- **The night is darkest before the dawn**

 Before Jefferson Lab offered me a permanent position, I was:

 – Unemployed (“soft money” turned into mush!)

 – Mailing out hundreds of job applications to no avail
 (Bad job climate: many faculty searches were cancelled)

 – Interviewing for a quant jobs
 (My inside voice screaming “What are you doing?! You’re a scientist!!”)

- **The dawn is brilliant!**

 – Virginia is a nice change from Illinois!

 – Permanent position – finally can grow roots!

 – Work is very interesting:

 • Plenty of problems for *math muscle flexing*

 • On-site supercomputer (CPUs and GPUs)

 • Brilliant group of scientist in my group and at JLab in general
Jefferson Lab: The Big Picture

- Jefferson Lab’s next big project: electron-ion collider
 - Particles are collided at high energy to study their constituents
- We are developing a design to compete with Brookhaven NL
- On the order of a billion $ project!
- Part of the design:
 - Numerical simulations of collisions at IP
 - Executed in parallel on JLab’s supercomputer
Jefferson Lab: Evolutionary Algorithm

- Motion of particles in the ring: oscillatory around design orbit in both x- and y-directions
- In a collider, frequencies (tunes) of each beam should be kept away from resonances (they destroy the beam)
- Problem:
 Find an optimal working point (tunes for each beam) with minimal number of function evaluations (expensive!)
- Problem-solving tool: Evolutionary algorithm
 - Optimizes a non-linear function using natural selection/recombination
 - Independent variables: 4 tunes (2 for each beam)
 - Objective function: collider’s luminosity
Collider Optimization With Evolutionary Algorithm

- Resonances occur when $m_x v_x + m_y v_y = n$
 m_x, m_y, m_s and n are integers
- Green lines: difference resonances (stable)
- Black lines: sum resonances (unstable)
- Restrict search to a group of small regions along diagonal devoid of black resonance lines
- Found an excellent working point near half-integer resonance
 e-beam: $v_x = 0.53$, $v_y = 0.548456$
 p-beam: $v_x = 0.501184$, $v_y = 0.526639$
- Luminosity about 33% above design value in only ~300 simulations
- Main point: have a reliable and streamlined way to find optimal working point
If Academia Is Your Choice...

• Continuing education is always a good choice, because *graduate degrees give you more options*
 – For instance: college teaching, research, quantitative analyst

• During slow economic times, continuing education is even a wiser choice, because you can *wait out the market*

• Having established that academia is your choice, how do you put yourself in a position to succeed?

• Prepare
 – Before you start graduate school
 – Applying to graduate school
 – While in graduate school
 – After you get your degree
Prepare: Before Graduate School

• Major evaluation criteria for admittance to graduate school:
 – Grades
 • High GPA is a must
 • Strong & diverse curriculum
 Computer programming proficiency for applied math/physics grads
 – GRE: required standardized entrance exam
 • General: analytic, verbal & quantitative
 • Sometime specialized subject test is required as well
 – Activities
 • Internships, undergraduate research, summer schools...
 – Recommendation letters
 • Professors’ words carry weight
Prepare: Applying to Graduate School

- **Tiered approach**
 Pick at least 3 tiers of schools to which to apply
 - **Tier 1:** Top schools – Why not? Dreaming is free!
 - **Tier 2:** Near-the-top schools – Decent chance, but no sure thing!
 - **Tier 3:** Good schools – Excellent chance, not a bad option

- **Get all the paperwork in order and on time**
 - Admission committee does not like to hunt around for your stuff
 - You want to make it easy for them to like you
 - The shape of your application is the direct reflection of you

- **Familiarize yourself with professors and their research**
 - However, you don’t have to have all the answers at the start
Prepare: While in Graduate School

• **Commit**
 – *Don’t look back:* second-guessing degrades your resolve
 – *Minimize distractions:* rally family support; no side jobs
 – *Go full-time:* part-time *may* be possible for MS, never for PhD
 • *Tuition and assistantship are paid for by the school through teaching and research assistantships (TA/RA)*

• **Explore**
 – Shop around for an interesting MS/PhD project
 – Approach professors and ask them about their research
 – Ask older graduate students

• **Pick your advisor wisely**
 – Your success and happiness will directly depend on your advisor
 – Before you sign up, look at your advisor’s track record
Prepare: After You Get Your Degree

• Graduate degree = more options

• What now?
 – Research career: postdoc, publications, professorship
 – Teaching: teaching professorship
 – Make money: Wall Street, quantitative analyst...

• By the end of your studies, things will be clearer
 – You will develop ideas about the future
 – Your graduate experience will shape your life and show the path forward
Virginia is Not Only For Lovers...

• ...it’s for scholars too – there are fine graduate schools nearby:
 – University of Virginia, College of William and Mary, Hampton University, University of Richmond, Old Dominion University...

• Strengthened by their proximity to JLab and NASA Langley
 – Focus on nuclear physics, accelerator science & material science

• My group, Center for Advanced Studies of Accelerators (CASA) teamed up with ODU to create Center for Accelerator Science http://www.jlab.org/accelerator-center.html

• Also at Jefferson Lab:
 – Internships: http://www.jlab.org/div_dept/admin/HR/jobline/student.html

• All the info you need is online, so look around!
Summary

• Getting a degree in math/physics is empowering!
 – Analytical and problem-solving skills will always be in demand
 – Opportunities are nearly endless
 – Graduate education opens even more opportunities

• My personal path:
 – What drew me to academia and math
 – Math education afforded me flexibility to meander through different fields of physics

• If grad school is what you want – benefit from my hindsight
 – Tips and thoughts on how to give yourself a best chance to succeed
 – Take charge – Be a tailor of your own destiny!