Wavelet-based Poisson Solver for Use in Particle-in-Cell Simulations

Balša Terzić
Northern Illinois University

Ilya Pogorelov
Lawrence Berkeley National Lab

November 6, 2004
Thank you, Henry
Motivation

• Insight into the dynamics of multi-particle systems heavily relies on N-body simulations

• It is important for N-body codes (Poisson solver) to:
 • account for multiscale dynamics – details do matter!
 • minimize numerical noise due to $N_{\text{simulation}} \ll N_{\text{physical}}$
 • be as efficient as possible, without compromising accuracy
 • for some applications: have a compact representation of system's history

• We present a wavelet-based Poisson solver which addresses all of the requirements listed above
Wavelets

One-Dimensional

(a) Haar wavelet, (b) Morlet wavelet, (c) Daubechies wavelet.

Two-Dimensional

Daubechies’ least symmetric
\(N = 10 \) two-dimensional wavelet.
Wavelet Denoising – An Example

Key Finding: Wavelet denoising in 2D simulation → equivalent of 100-fold more macroparticles.
Wavelet Compression – An Example

- 2D Gaussian distribution
- 1.64×10^6 particles on a 256x256 grid – 65536 coefficients
- Daubechies 12th order wavelets
- thresholding: if |c_{i,j}| < \varepsilon, set to 0
- optimal signal-to-noise ratio (SNR) for a small fraction of coefficients – here < 0.115%
- IDEA: exploit sparsity in wavelet space!
Wavelet-based Poisson Solver

Poisson equation in physical space

\[\Delta u = f \]

boundary conditions

\[u_{\text{bnd}} = g \]

discretize Poisson equation on a \(N \times N \times N \) grid

transform discretized Poisson equation to wavelet space

Constrained Preconditioned Conjugate Gradient (CPCG)

Compress by thresholding source \(f \), operator \(L \), solution \(u \)

precondition Laplacian \(L \) with diagonal preconditioner \(P \)

\[k (L_w) \sim O(N^2) \]

\[k (PL_w P) \sim O(N) \]
Constrained Preconditioned Conjugate Gradient (CPCG)

- iterative solver
- convergence rate:
 \[|u - u^i|_2 \leq \left(\frac{\sqrt{k - 1}}{\sqrt{k + 1}} \right)^i |u|_2 \]
- initial guess: \(u \) at previous time step
- diagonal (cheap!) preconditioner in wavelet space

Strengths:
- removing numerical noise *while* compressing
- hierarchy of scales conserved

Weaknesses: boundary conditions!
- need potential on the surface of the grid
 - Green's functions when known
 - open BCs: *coordinate transforms* to map \(\infty \) onto the surface of the grid
3D 'fuzzy cigar' on a 32x32x32 grid

BCs: grounded rectangular pipe ($V=0$ on the sides), open in z-direction
3D Plummer sphere on a 32x32x32 grid

BCs: open in all directions (analytically specified)
Conclusions

• Presented an iterative wavelet-based Poisson solver (CPCG)
 - wavelet compression and denoising achieves computational speedup
 - efficient preconditioning and sparsity of operators in wavelet space further reduce computational time

• Conceptually verified and thus far quite promising

• Still to be done:
 - optimization (including finding a better preconditioner) and parallelization
 - plugging the algorithm into existing N-body code
 - benchmarking against existing beam simulation codes
 - modeling realistic charged particle beams
 - use it in N-body simulations of self-gravitating systems
 - wavelet formalism can be applied to other PDEs
Auxiliary Slides
Wavelets

• What are wavelets?
 - orthogonal basis of functions
 - family of high- and low-pass filters
 • filters can be derived from the requirements on wavelets, without knowing the shape of the wavelet family \emph{a priori}

\[f(x) = \sum h_i^k \Psi_i^k(x) \]
\[\Psi_i^k(x) = \Psi(2^k x - i) \]

• Why wavelets?
 - simultaneous \textbf{time} and \textbf{frequency} localization (FFT only frequency)
 - \textbf{data compression}: computational speed-up
 - \textbf{denoising}: removing graininess has the same effect as running the same multiparticle N-body simulation with many times more particles
How Do Wavelets Work?

Wavelet analysis (wavelet transform):

- **Approximation** – apply low-pass filter to Signal and down-sample
- **Detail** – apply high-pass filter to Signal and down-sample
- **Wavelet synthesis** (inverse wavelet transform): up-sampling & filtering
- **Complexity**: \(4MN\), \(M\) the size of the wavelet, \(N\) number of cells
 - Recall: FFT complexity \(4N \log_2 N\)
Wavelet Decomposition

The continuous wavelet transform of a function $f(t)$ is

$$\gamma(s,\tau) = \int_{-\infty}^{\infty} f(t) \Psi_{s,\tau}^* (t) dt;$$

$$\Psi_{s,\tau} (t) = \frac{1}{\sqrt{s}} \psi \left(\frac{t - \tau}{s} \right)$$

where ψ is the wavelet function with scale and translation dimensions s and τ, respectively.

![Wavelet Decomposition Illustration](image-url)
2D EXAMPLE: “MICROBUNCHED” DENSITY DISTRIBUTION (with $U=0$ starting guess)

BCs: open in all directions (analytically specified)