The silicon photomultiplier and its possible applications

P.Buzhan, <u>B.Dolgoshein*</u>, A.Hyin, V.Kantserov, V.Kaplin, A.Karakash, F.Kayoumov, E.Popova, S.Smirnov (MEPhI, Moscow) L.Filatov, S.Klemin ("Pulsar" Enterprise, Moscow)

*) Email: boris@mail.cern.ch

Supported by ISTC project No.1275-99 and INTAS grant No. YSF00-150

- Insensitive to magnetic field
- Dynamic range ~10³/mm²

For further details see: «Advanced study of SiPM» http://www.slac.stanford.edu/pubs/icfa/fall01.html

Single photoelectron (single pixel) spectra

SiPM:

- excellent single photoelectron resolution
- low ENF expected

More about pixel signal resolution: tens of photoelectrons

SiPM consists of a large number of pixel photoelectron counters with binary readout for each pixel, working as analogue device
signal uniformity from pixel to pixel is quite good

Photon detection efficiency $\epsilon = QE \cdot \epsilon_{geom}$

Photon detection efficiency

SiPM: $\varepsilon = QE \cdot \varepsilon_{geom}$, $\varepsilon_{geom} \sim 0.3$ (possible improvement up to ~ 0.5)

- Electronics noise negligible (less than 0.1e because the SiPM gain ~10⁶)
- dark rate noise

Even for room temperature the contribution of the dark rate is rather low (less than 1 ph.e. for a gate of 50 ns)

SiPM gain: temperature and voltage dependence

Photodetector	ΔT for $\Delta M/M=1\%$	$\Delta V/V_0$ for $\Delta M/M=1\%$
ΡΜΤ	~10°	0.5V/1500V= =3·10 ⁻⁴
APD EG&G C30626E*	0.15°	0.4V/400V= =10 ⁻³
APD Hamamatsu S5345 (high capacitance)*	0.3°	0.04V/300V= =1.5·10 ⁻⁴
SiPM M=2·10 ⁶	2.5°	0.05V/50V= =10 ⁻³

*) for APDs M=100 /Karar et al NIM A428(1999) 413/

SiPM dynamic range

Dynamic range is limited due to finite total number of pixels mSignal ~ $m(1-exp(-N_{ph.e}/m))$

SiPM application for sci fiber MIP detection

• SiPM is better than APD for room temperature

• SiPM at room temperature is good enough even compared to VLPC at 6.5°K

SiPM application for scintillator + wavelength shifter (WLS) readout

SiPM: ε =15%, M=2·10⁶, N_{pixel}=576, U_{bias}=53V Tile: Bicron BC-404, 50x50x5 mm³ WLS: Kuraray Y11 Ø1mm x 34 cm More about Sci+WLS readout: TESLA Hadron Tile calorimeter beam test of 3tile+WLS cell

1 GeV π detection with 3 tiles of Bicron BC-404 and 1 mm diameter 34 cm long WLS Kuraray Y11 (with aluminized mylar mirror) coupled to 3 SiPMs

Timing by SiPM: possible application for Cherenkov I maging Counters

SIPM:

• position sensitive (~1 mm²)

 a single photon detection capability with background hits density : 2.10⁻³ 1/ns·mm² (room temperature) 3.10⁻⁴ 1/ns·mm² (-50°C)

FWHM: Laser (40 ps) + electronics (60 ps) => SiPM (100 ps)

B.Dolgoshein "SiPM possible applications"

insensitive to magnetic field

good time resolution (~50 ns rms)

Conclusion

The R&D developments of SiPM show that after tuning of some parameters (photon detection efficiency, gain, timing, dynamic range etc.) one can consider the SiPM as a suitable photodetector for a number of applications