

1

Status of the Tail Catcher/Muon Tracker

Presented by Victor Rykalin

for NICADD NIU

CALICE DECEMBER 7-8 2004

Outline

Current status.

Plans.

Current status

- Status of the TCMT
 - a) **TCMT design** (TCMT for the test beam)
 - b) Calibration and monitoring
 - c) Scintillator strips
 - d) Detectors (SiPM) and electronics
 - e) On-Site tests

TCMT design

- Fine" section (8 layers)
 2 cm thick steel
- "Coarse" section (8 layers)
 10 cm thick steel
- 5mm thick, 5cm wide strips
- Tyvek/VM2000 wrapping
- Alternating x-y orientation
- Si-PM photo detection
- Common readout with Hcal
- Along the beam 142 cm
- Height 109 cm
- Weight ~10 tons

Cart being designed with about 10 ton load capacity.

□ Will have the capability for forward-backward and left-right motion.

Tail Catcher one cassette view

Mech. prototype

Brief summary of the FNAL-NICADD extruded scintillator characteristics.

 Thickness:
 $\sigma \sim 0.6 \%$ (Over 300 m)

 Width:
 $\sigma \sim 0.2 \%$ (Over 300 m)

 LY non-uniformity
 $\sigma \sim 4 \%$ (across 10 cm)

 LY non-uniformity
 $\sigma \sim 2.2 \%$ (10*10 cm²)

 LY non-uniformity
 $\sim 3 \%$ (Hexagonal cell 9 cm²)

 Light Yield
 66 % of BC408

 ~100%
 of Kuraray SCSN-81

Rad. Hardness < 5 % LY degradation after 1 Mrad (gamma)

FNAL-NICADD extruder line

Output range

30-200kg/h

QC on scintillator strips

ATTENUATION LENGTH MEASUREMENT SETUP

Number:	Batch:	L1 (Long)	L2 (Short)			
1	1	41.3 cm	38.0 cm			
101	6	59.9 cm	48.8 cm			
121	7	69.0 cm	49.3 cm			
161	9	64.1 cm	51.4 cm			
182	10	31.3 cm	24.1 cm			
Ref	-	43.7 cm	24.1 cm			

Thickness 4.98±0.03 mm

Calibration(Proposed by Sten Hansen, FERMILAB)

Pulser Card Block Diagram

LED information

LED3-UV-XXX-30 Series 3mm Ultraviolet LED

Chip				Absolute Max. Ratings				Electro-Optical Data @20mA			Viewing	
LED Part No.	Material	Peak Wave Length	Emitted Color	Lens Appearance	Δλ	Pd	lf	Peak		Vf V)	lv (mcd)	Angle 2 θ 1/2
		λp(nm)			(nm)	(mW)	(mA)	If (mA)	TYP	MAX	ТҮР	(deg)
LED3-UV-395-30	InGaN	395	BLUE UV	WATER CLEAR	60	100	30	100	3.7	4.0	11.0	30
LED3-UV-400-30	InGaN	400	BLUE UV	WATER CLEAR	60	100	30	100	3.7	4.0	12.0	30
LED3-UV-405-30	InGaN	405	BLUE UV	WATER CLEAR	60	100	30	100	3.7	4.0	12.0	30

nicadd

UV LED R&D

- 1. <u>All LEDs show good</u> <u>reproducibility in the</u> <u>characteristic behavior</u>
- 2. <u>~\$1 UV LED is a</u> promising candidate for the calibration of each scintillator strip+SiPM.
- 3. <u>R&D is under way</u>

	LED 1	LED 2	LED 3	LED 4	LED 5	LED 6	LED 7	LED 8	LED 9	LED 10
4.14V										
slope	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019
intercept	0.0062	0.0062	0.0061	0.0062	0.0062	0.0062	0.0062	0.0062	0.0062	0.0063
R ²	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
5-14V										
slope	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019	0.0019
intercept	0.0063	0.0063	0.0062	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0064
R ²	1	1	1	1	1	1	0.9999	0.9999	1	1

Detectors and electronics

- Layout of electronics
- New setup for the SiPM commissioning was prepared
- Encapsulation test of the SiPM bonds was performed
- The measurements before and after encapsulation were carried out

Layout of electronics

Encapsulation of the wire bonds

* Easy to damage

* Experience of the D0 SiMT

<u>* Availability of the</u> equipment at FNAL Si Det. lab.

Encapsulation setup

New setup and tests results .

- 1. <u>Allows to have</u> <u>reproducible light</u> <u>flux during the tests</u>
- 2. <u>Meets mechanical</u> problems(bent legs, different distance between them)
- 3. Simple and robust
- 4. <u>We are going to</u> evaluate each sensor (working point)

nicadd

Data was taken: before at 25.3C, after at 24.9C, thus small difference in absolute value of counts, but the slope is the same and the behavior or noise is the same

On-Site test and results

- Different lengths of the cable were tested.
- Currently we are comfortable with length of 30 cm with electronics we have.
- The real electronics(FLC_PHY3) tests are necessary with longer cables.
- Some assistance from electronics experts will be requested during current visit to DESY.

Plans

- LED calibration system: to test a single prototype of the current driver.
- LED: to perform a long time stability tests with temperature tracking.
- Electronics: To perform a test with real electronics for one cassette prototype. We expect to test one board at NICADD.
- SiPM sensors: to find a working point for each sensor.
- Mechanics: To make an over all design.

Schedule

Strips : Done

SiPM : 25 ok!, will need more starting Feb.

Cassette: Mech. Prototype done, 1st ready Feb.05

LED System: design ready this year, prototype ready in Jan. 05

Stack & Cart:Construction starts Feb. 05