帚Fermilab niciond

Status of the Tail-Catcher/Muon- Tracker

Presented by Victor Rykalin

for NICADD NIU

CALICE DECEMBER 7-8 2004

Outline

- Current status.

Plans.

Current status

- Status of the TCMT
a) TCMT design (тСмт for the test beam)
b) Calibration and monitoring
c) Scintillator strips
d) Detectors (SiPM) and electronics
e) On-Site tests

TCMT design

- Fine" section (8 layers) 2 cm thick steel
- "Coarse" section (8 layers) 10 cm thick steel
- 5 mm thick, 5 cm wide strips
- Tyvek/VM2000 wrapping
- Alternating x-y orientation
- Si-PM photo detection
- Common readout with Hcal

- Along the beam - 142 cm
- Height - 109 cm
- Weight ~ 10 tons

Very preliminary mechanical support drawing.

Plotted by ingridf an D2-Dec-04, File: NIU_LCD.pff
Good quality steel plates from scrap is available (0.75 and 4 inches thick).
Maximum size for the thicker plates is $1.066 \mathrm{~m} \times 1.2 \mathrm{~m}$.
Cart being designed with about 10 ton load capacity.
Will have the capability for forward-backward and left-right motion.

Tail Catcher one cassette view

Brief summary of the FNAL-NICADD extruded

 scintillator characteristics.```
Thickness: }\quad\sigma~0.6% (Over 300 m
Width: }\quad\sigma~0.2% (Over 300 m)
LY non-uniformity }\sigma~4%\quad(across 10 cm)
LY non-uniformity }\sigma~2.2% (10*10 cm2
LY non-uniformity ~ % (Hexagonal cell 9 cm}\mp@subsup{}{\mathbf{2}}{\mathrm{)}
Light Yield 66% of BC408
 ~100% of Kuraray SCSN-81
Rad. Hardness < 5% LY degradation after 1 Mrad (gamma)
```


## FNAL-NCADD extruder line



Output range
$30-200 \mathrm{~kg} / \mathrm{h}$

## QC on scintillator strips

ATTENUATION LENGTH MEASUREMENT SETUP
$\mathrm{K} 2 \mathrm{~K}(\mathrm{~L} 2=26.2 \mathrm{~cm})$

- FNAL/NICADD (L2=34.7 cm)


Batch:
L1 (Long)
L2 (Short)
Number:


| $\mathbf{1}$ | 1 | 41.3 cm | 38.0 cm |
| :---: | :---: | :---: | :---: |
| $\mathbf{1 0 1}$ | 6 | 59.9 cm | 48.8 cm |
| $\mathbf{1 2 1}$ | 7 | 69.0 cm | 49.3 cm |
| $\mathbf{1 6 1}$ | 9 | 64.1 cm | 51.4 cm |
| $\mathbf{1 8 2}$ | 10 | 31.3 cm | 24.1 cm |
| Ref | - | 43.7 cm | 24.1 cm |

Thickness $4.98 \pm 0.03 \mathrm{~mm}$


## QC on scintillator strips



## Calibration and monitoring

- Individual LED driver for the each strip
- Preliminary driver design has been proposed


Block diagram of current switch at LED

- Read-out schema is under discussion



## Calibration(Proposed by Sten Hansen, FERMLAB)

Pulser Card Block Diagram


## LED information

LED3-UV-XXX-30 Series 3 mm Ultraviolet LED

| LED Part No. | Chip |  |  | Lens <br> Appearance | Absolute Max. Ratings |  |  |  | Electro-Optical <br> Data @20mA |  |  | Viewing <br> Angle <br> $2 \theta 1 / 2$ <br> (deg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Peak Wave Length $\lambda$ p(nm) | Emitted Color |  | $\begin{gathered} \Delta \lambda \\ (\mathrm{nm}) \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{Pd} \\ (\mathrm{~mW}) \end{gathered}$ | $\begin{gathered} \text { If } \\ (\mathrm{mA}) \\ \hline \end{gathered}$ | Peak$\text { If }(\mathrm{mA})$ | $\begin{aligned} & \text { Vf } \\ & \text { (V) } \end{aligned}$ |  | Iv <br> (med) |  |
|  |  |  |  |  |  |  |  |  | TYP | MAX |  |  |
| LED3-UV-395-30 | InGaN | 395 | BLUE UV | WATER CLEAR | 60 | 100 | 30 | 100 | 3.7 | 4.0 | 11.0 | 30 |
| LED3-UV-400-30 | InGaN | 400 | BLUE UV | WATER CLEAR | 60 | 100 | 30 | 100 | 3.7 | 4.0 | 12.0 | 30 |
| LED3-UV-405-30 | $\operatorname{lnGaN}$ | 405 | BLUE UV | WATER CLEAR | 60 | 100 | 30 | 100 | 3.7 | 4.0 | 12.0 | 30 |



> Recommended Mounting
> Hole Size $=\emptyset .032_{-.002}^{+.003}$

## UV LED R\&D

1. All LEDs show good reproducibility in the characteristic behavior
2. $\sim \$ 1$ UV LED is a promising candidate for the calibration of each scintillator strip+SiPM.
3. $R \& D$ is under way

|  | LED 1 | LED 2 | LED 3 | LED 4 | LED 5 | LED 6 | LED 7 | LED 8 | LED 9 | LED 10 |
| :---: | :---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :---: |
| 4.14 V |  |  |  |  |  |  |  |  |  |  |
| slope | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0019 |
| intercept | 0.0062 | 0.0062 | 0.0061 | 0.0062 | 0.0062 | 0.0062 | 0.0062 | 0.0062 | 0.0062 | 0.0063 |
| $\mathrm{R}^{2}$ | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 |
|  |  |  |  |  |  |  |  |  |  |  |
| $5-14 \mathrm{~V}$ |  |  |  |  |  |  |  |  |  |  |
| slope | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0019 |
| intercept | 0.0063 | 0.0063 | 0.0062 | 0.0063 | 0.0063 | 0.0063 | 0.0063 | 0.0063 | 0.0063 | 0.0064 |
| $\mathrm{R}^{2}$ | 1 | 1 | 1 | 1 | 1 | 1 | 0.9999 | 0.9999 | 1 | 1 |




## Detectors and electronics

- Layout of electronics
- New setup for the SiPM commissioning was prepared
- Encapsulation test of the SiPM bonds was performed
- The measurements before and after encapsulation were carried out


## Layout of electronics

## inicind|

 standard 19" Crate (Backplane) analog channels$16 * 20=320$


## Encapsulation of the wire bonds

* Easy to damage
* Experience of the D0 SiMT
* Availability of the equipment at FNAL Si Det. lab.


Encapsulation setup


## New setup and tests results.

1. Allows to have reproducible light flux during the tests
2. Meets mechanical problems(bent legs, different distance between them)

3. Simple and robust
4. We are going to evaluate each sensor (working point)


Data was taken: before at 25.3C, after at 24.9 C , thus small difference in absolute value of counts, but the slope is the same and the behavior or noise is the same


## On-Site test and results

- Different lengths of the cable were tested.
- Currently we are comfortable with length of 30 cm with electronics we have.
- The real electronics(FLC_PHY3) tests are necessary with longer cables.
- Some assistance from electronics experts will be requested during current visit to DESY.



## Plans

- LED calibration system: to test a single prototype of the current driver.
- LED: to perform a long time stability tests with temperature tracking.
- Electronics:To perform a test with real electronics for one cassette prototype. We expect to test one board at NICADD.
- SiPM sensors: to find a working point for each sensor.
- Mechanics: To make an over all design.


## Schedule

Strips: Done
SiPM : 25 ok!, will need more starting Feb.
Cassette: Mech. Prototype done, 1st ready Feb. 05

LED System: design ready this year, prototype ready in Jan. 05

Stack \& Cart:Construction starts Feb. 05

