Fermi National Accelerator Laboratory

EXTRUDED SCINTILLATOR R\&D FOR MINERVA

Anna Pla-Dalmau Fermilab

Victor Rykalin
NICADD, Northern Illinois University

Minerva Collaboration Meeting
July 29-30, 2005

卉
 FNAL/NICADD EXTRUSION FACILITY

PROGRESS FROM FEBRUARY MEETING

- A few R\&D runs in June
- GOAL: Check feeder performance
- Addressed feeding fluctuations caused by pellet refills
- Back to the die maker in July
- Widen triangle base corners (by 6 mils)
- GOAL: Better shape (bottom corners)
- Continue with extrusion rates of $75 \mathrm{~kg} / \mathrm{h}$
- Reasonable triangular shape and hole
- INPUT: Hole size?

CO-EXTRUDER

- For a 1.25 in. single screw pedestal co-extruder:
- Killion-Davis-Standard
- Crompton-Davis-Standard (\$49,760 +)
- American Kuhne (\$41,920, 8-10 wk delivery)
- PURCHASE ORDER PLACED
- Delivery September 30, 2005
- Die
- PURCHASE ORDER PLACED
- Ball/socket die for co-extruder + transfer line $(\$ 2,500)$
- Co-extrusion adapter for current and future dies $(\$ 4,500)$

華

CO-EXTRUDER

華

FNAL/NICADD EXTRUSION FACILITY

華

FNAL/NICADD EXTRUSION FACILITY

NEXT STEP

- Electrical installation
- Minimal - 2 days
- Material ordered (early July)
- Co-extruder installation
- 1 month - October 2005
- Hook-up machine (hopefully plug-and-play)
- Run triangle die with capstocking
- Titanium dioxide needed - rest available

COST UPDATE - CO-EXTRUDER INSTALLATION

	Estimated Materials Cost (\$)	Comments
OD Die and sizing tooling	$\$ 10,000.00$	To develop square strip
Titanium dioxide concentrate (250 lbs @ \$3/lb)	$\$ 50.00$	NEEDED 9/30/05 - To test co-extruder
SUBTOTAL	$\$ 10,750.00$	
16.1\% FNAL Indirect charges	$\$ 1,730.75$	
TOTAL	$\$ 12,480.75$	

- Do we purchase all TiO2 at once (1,000 lbs)?
- Do we purchase the next die now FY05?
- Do we keep cost for 2 more die sets in the project cost as "contingency"? At least for one. To cover calibrator maintenance or spare.

SCHEDULE - R\&D, PROTOTYPE

- $R \& D=$ die tuning
- November + December 2005 - ID die tuning
- January + February 2005 - OD die tuning
- My concerns:
- 1 - module prototype - when?
- VST - when?
- Anything else needed?

COST UPDATE - R\&D, PROTOTYPE

- 1 ID plane $\rightarrow 128$ strips
- 1 ID module $\rightarrow 4$ planes $\rightarrow 512$ strips for ID
- 1 OD plane $\rightarrow 48$ strips
- 1 OD module $\rightarrow 4$ planes $\rightarrow 192$ strips
- 1 strip (3.3x0.85x200 cc) $\rightarrow 561$ cc $\rightarrow 583 \mathrm{~g}$
- 1 ID + OD module \rightarrow ~ 410 kg
- ASSUME 1-MODULE $\rightarrow 500$ kg (1,100 lbs)
- Is this what it is needed?
- Anything else for assembly tests?

COST UPDATE - R\&D, PROTOTYPE

	Estimated Materials Cost (\$)	Comments
ID		
Polystyrene pellets (2 gaylords @ 1,632 lbs/gld. @ \$1.15/lb)	\$3,753.60	To prepare triangular strip
Dopants (35 bottles @ \$155/ ea)	\$5,425.00	To prepare triangular strip
Liquid nitrogen (3 dewars @ \$126/ea)	\$378.00	To dry and purge polystyrene
SUBTOTAL	\$9,556.60	
16.1\% FNAL Indirect charges	\$1,538.61	
TOTAL	\$11,095.21	
$O D$		
Polystyrene pellets (3 gaylords @ 1,632 lbs/gld. @ \$1.15/lb)	\$5,630.40	To prepare square strip
Dopants (50 bottles @ \$155/ ea)	\$7,750.00	To prepare square strip
Liquid nitrogen (4 dewars @ \$126/ea)	\$504.00	To dry and purge polystyrene
SUBTOTAL	\$13,884.40	
16.1\% FNAL Indirect charges	\$2,235.39	
TOTAL	\$16,119.79	
Prepare 1-module		
Polystyrene pellets (1 gaylords @ 1,632 lbs/gld. @ \$1.15/lb)	\$1,876.80	To prepare prototype
Dopants (12 bottles @ \$155/ ea)	\$1,860.00	To prepare prototype
Liquid nitrogen (1 dewars @ \$126/ea)	\$126.00	To dry and purge polystyrene
SUBTOTAL	\$3,862.80	
16.1\% FNAL Indirect charges	\$621.91	
TOTAL	\$4,484.71	

COST UPDATE - PRODUCTION

- TOTAL scintillator volume:
$-2.23 E 7 \mathrm{cc}=23,192 \mathrm{~kg}$ (51,130 lbs)
- Add 5\% fabrication scrap and 5\% assembly scrap - 56,370 lbs (35 gaylords of pellets)
- Add amount needed for capstocking: 3 gaylords of pellets
- TOTAL PS needed: 38 gaylords
- NEED INPUT:
- ID vs OD ratio
- What institution places order \rightarrow indirect charges

COST UPDATE - PRODUCTION

