

R&D at SDDL

Victor Rykalin NICADD NIU

ANNA PLA FERMILAB

SDDL R&D, directions

1. MINERVA R&D:

Triangle profile - current Rectangle profile - future

- 2. Current status R&D for MINERVA, plans.
- 3. CALTEC strands R&D: PAST
- 4. R&D plans for CALTEC.

MINERVA

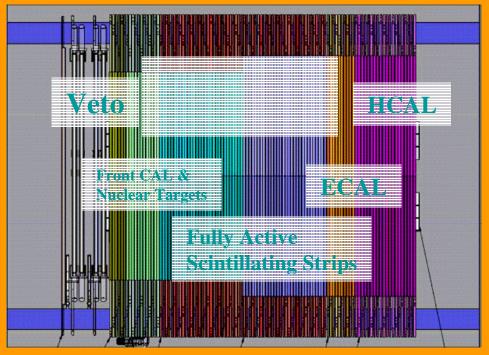
STATUS-approved PAC (Physics Advisory Committee) April 15 2004

What is MINERVA Main INjector ExpeRiment v-A

NICADD NIU has sighned a MOU and SOW for 2006

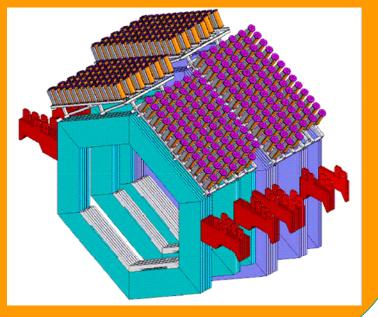
Neutrino Scattering Uncertainties and their Role in Long Baseline Oscillation Experiments

D. A. Harris⁴, G. Blazey¹⁰, A. Bodek¹³, D. Boehnlein⁴, S. Boyd¹², W.K. Brooks¹¹ A. Bruell¹¹, H. Budd¹³, R. Burnstein⁶, D. Casper², A. Chakravorty^{6,7}, M.E. Christy⁵ J. Choqika¹³, M.A.C. Cummings¹⁰, P. deBarbaro¹³, D. Drakoulakos¹, J. Dumnore², R. Ent¹¹, H. Gallagher¹⁵, D. Gaskell¹¹, R. Gilman¹⁴, C. Glashausser¹⁴, W. Hinton⁵, X. Jiang¹⁴, T. Kafka¹⁵, O. Karnaev⁶, C.E. Keppel^{5,11}, M. Kostin⁴, S. Kulagin⁸, G. Kumbartzki¹⁴, S. Manly¹³, W.A. Mann¹⁵, K. McFarland¹³, W. Melnitchouk¹¹ J.G. Morfin⁴, D. Naples¹², J.K. Nelson¹⁶, G. Niculescu⁹, I. Niculescu⁹, W. Oliver¹⁵ V. Paolone¹², E. Paschos³, A. Pla-Dalmau⁴, R. Ransome¹⁴, C. Regis², P. Rubinov⁴ V. Rykalin¹⁰, W. Sakumoto¹³, P. Shanahan⁴, N. Solomey⁶, P. Spentzouris⁴, P. Stamoulis¹ G. Tzanakos¹, S.A. Wood¹¹, F.X. Yumiceva¹⁶, B. Ziemer², M. Zois¹ ¹University of Athens; Athens, Greece ²University of California, Irvine, Irvine, California, USA ³University of Dortmund, Dortmund, Germany ⁴Fermi National Accelerator Laboratory; Batavia, Illinois, USA ⁵ Hampton University; Hampton, Virginia, USA ⁶Illinois Institute of Technology; Chicago, Illinois, USA Saint Xavier University; Chicago, Illinois, USA ⁵Institute for Nuclear Research, Moscow, Russia ⁹ James Madison University, Harrisonburg, Virginia, USA ¹⁰Northern Illinois University; DeKalb, Illinois, USA ¹¹Thomas Jefferson National Accelerator Facility; Newport News, Virginia, USA ¹² University of Pittsburgh; Pittsburgh, Pennsylvania, USA ¹³University of Rochester; Rochester, New York, USA ¹⁴ Rutgers, The State University of New Jersey, Piscataway, New Jersey. USA ¹⁵Tufts University; Boston, Massachusetts, USA ¹⁶William and Mary College, Williamsburg, Virginia, USA

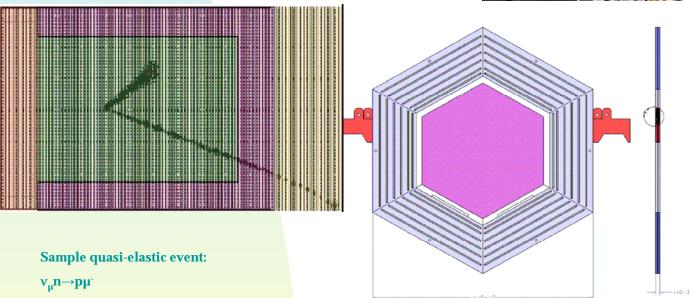

ABSTRACT

The field of oscillation physics is about to make an enormous leap forward in statistical precision: first through the MINOS experiment in the coming year, and later through the NOSA and TZK experiments. Because of the relatively poor understanding of neutrino interactions in the energy ranges of these experiments, there are systematics that can arise in interpreting far detector data that can be as large as or even larger than the expected statistical uncertainties. We describe how these systematic errors arise, and how specific measurements in a dedicated neutrino scattering experiment like MINERA can reduce the cross section systematic errors to well below the statistical errors.

1. Introduction


Over the past 5 years the field of neutrino oscillations has moved from seeing decade-old anomalies in cosmic ray ¹⁾ and solar ²⁾ neutrino data to cross checks of these anomalies (SNO data ³⁾ and angular distributions in atmospheric neutrino

Detector Overview


The MINERvA detector takes advantage of the unprecedented high intensity of the NuMI neutrino beam to build a detector capable of full reconstruction of exclusive final states.

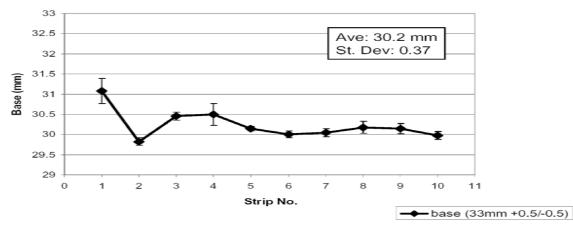
The fully active scintillator target is surrounded by nuclear targets and calorimeters. Interactions in the scintillator (CH_n) can be compared with interactions in the upstream Pb and Fe targets to probe nuclear effects.

Sample events

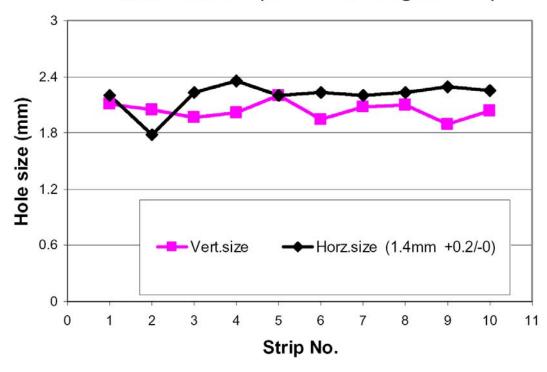
DECALE 1:1

Pb+20%Fe

Proton and muon tracks resolved and energy deposited shown as size of hit.


extruded scintillator

11/30/2005


5

Mech. measurements

MINERVA RUN (8.20 cm/s; 75 kg/h; 2.5 in)

MINERVA RUN (8.20 cm/s; 75 kg/h; 2.5 in)

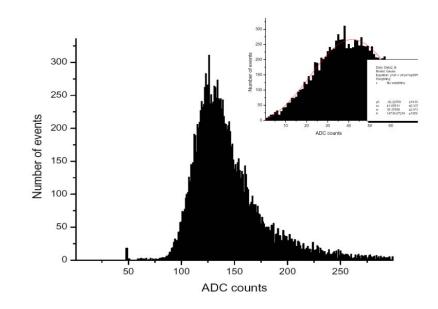
Cosmic test results, absolute LY, final. The results presented at IEEE NSS 2005.

Scaling to the first electron

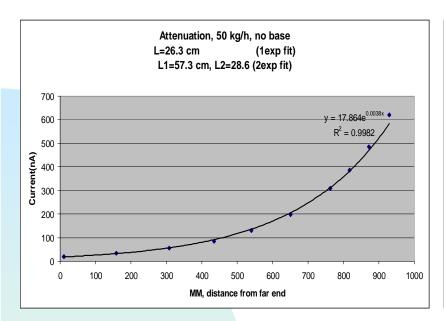
Npe ~ 28

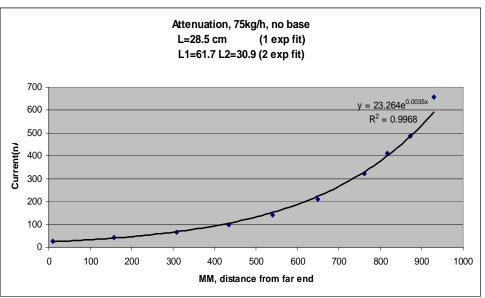
Gauss fit (left edge)~24 $N = \left(\frac{A}{\sigma}\right)^2$

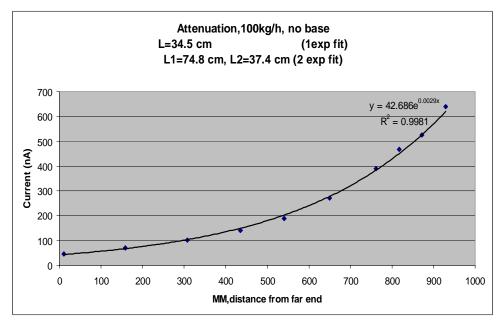

Correction to the scintillator thickness (1.7 cm)


gives ~22 PE,

~ 18 PE.

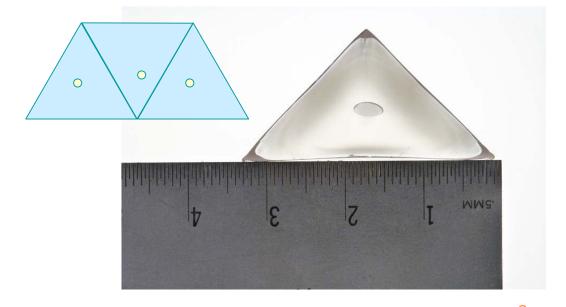

H3178-61 was used


Y11, 1.2 mm, 1.5 m(1m trigger-PMT)


The fibers without reflective end where used!

PROCESSING
RATE
EFFECTS on LAL.

Co-extruded strips, LAL is being measured.



Necessity of the of the next step R&D for MINERVA

- Currently we produce a new type of scintillator co-extruded scintillator.
- There is some dead area in that new guy.
- No test beam so far.
- The tests were only carried out with cosmic rays.
- Lack of information about uniformity of the response.

Besides QC (after extrusion process) test beam is a must!

Possible test beam at FNAL

Where? FNAL, 120 Gev protons

What ? 8 – 9 strips (co-extruded, MINERVA triangle type, 8-9 MRS as readout sensors)

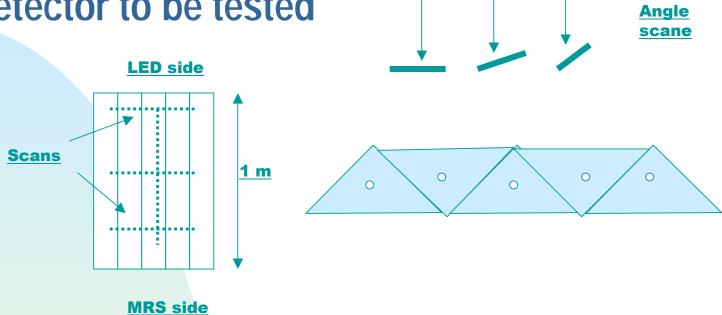
When? Before shutdown, two-three days (during CMS assigned time)

Who? Me and Sasha? Kurt? Mike? At least 2 persons are to participate.

DAQ CAMAC based available, VME based (CALICE HCAL type) is an option.

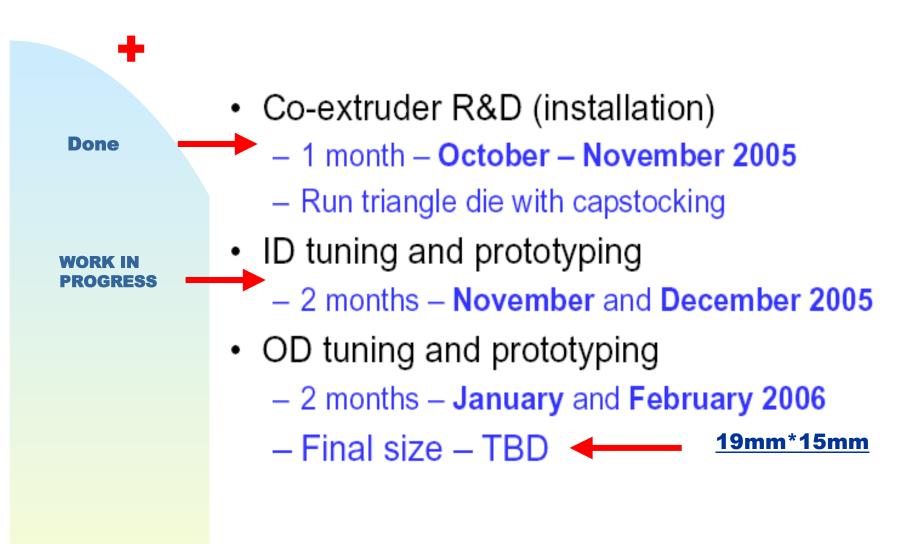
Sensors,

strips, fibers Available.

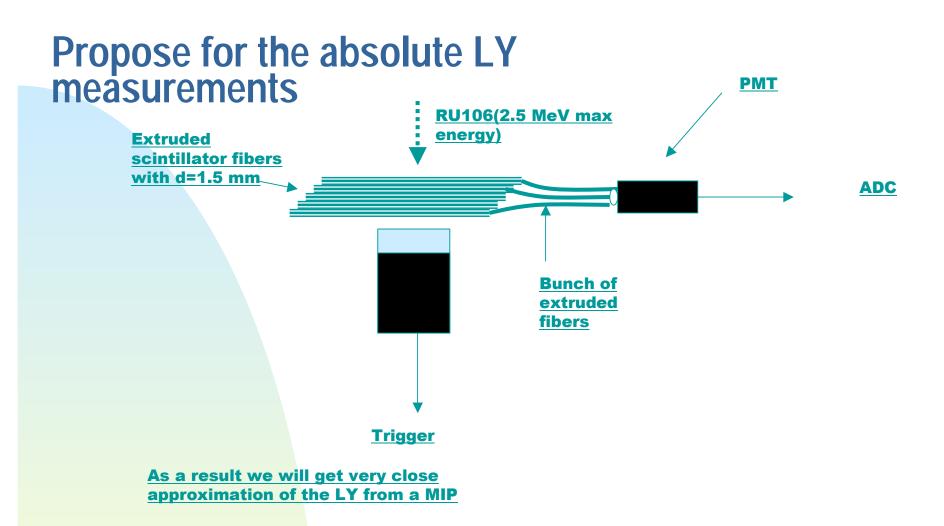

Training RAD worker, Controlled Access.

Mech support,

Moving table Available.


Burocracy Writing MOU. Discussed with Eric Ramberg.

Detector to be tested



Particles - pions 120 Gev

CALTEC strands

- Customer California Institute of Technology.
- Neutrino Detector Prototype.
- Extrusion of scintillator fibers d=1.5 (~3% size variation) mm, L=110 cm. Done.
- Mech. Measurements, Fluorescence.
- Possible application-beam profile measurements.
- Is it possible to perform an absolute LY measurements for the scintillator fibers?

Summary

- Status of the R&D at SDDL was discussed.
- Proposal for extruded triangle profile +
 MRS has been outlined.
- Proposal for the scintillator fibers absolute LY measurements has been outlined.
- http://nicadd.niu.edu/research/extruder/