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Next generation high intensity large acceptance fragment separators require a careful design due
to the large high order aberrations induced by the large aperture superconducting magnets needed
to collect rare isotopes obtained from a high energy primary heavy-ion beam hitting a target. In
this paper we propose a fragment separator layout based on various symmetries that satisfies the
baseline requirements. Analytical calculations based on symmetry theories simplify the design to
numerical optimization of a basic cell with only a few magnetic elements. The insight provided by
these calculations resulted in the specification of a simple layout with large acceptance, transmission,
and resolution. The design method may be easily adapted to project-specific needs. The important
effects of energy degraders necessary for full fragment separator design will be addressed in a future
publication.
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I. INTRODUCTION

The next generation of research in nuclear physics requires advanced exotic beam facilities based on heavy-ion
drivers. Over the last few years several projects around the world evolved, and today are in various phases from
pre-conceptual design to commissioning. Among the prominent examples, we mention the RIBF at RIKEN, Japan
[1], the FAIR at GSI, Germany [2], the SPIRAL2 upgrade at GANIL, France [3], and plans for an exotic beam facility
in the US [4, 5]. Although the parameters of the latter facility are not yet firmly settled, the facility is considered to
be the main priority for nuclear physics research in the near future [6, 7].

The main components of a heavy-ion based exotic beam facility are the primary beam production area, driver linac,
fragment separator, in-flight area, gas cell, post-accelerator, and various experimental areas. In this paper we present
the optical design concepts developed for the fragment separator area. The function of the fragment separator is
to separate the isotope of interest from the primary beam and other by-products, and deliver the same with high
efficiency to the experimental areas, while containing the large beam power of the unwanted products and primary
beam. Although the requirements vary somewhat depending on the specific project, the main features of fragment
separators are the same for all heavy-ion based exotic beam facilities.

The production of rare isotopes via projectile fragmentation and fission of fast beams is one of the most important
methods. The reaction kinematics, especially of the fission case, produce these rare isotopes over a large phase space
area. The small production cross-section of many isotopes of interest requires large primary beam powers and high
energy. Often, the particles of interest are only a tiny fraction of all particles produced. The fragment separator should
collect and transmit these, and only these, particles to the experimental areas while minimizing losses. Altogether,
the next generation high-intensity fragment separators require large acceptance, high resolution, and large aperture
superconducting magnets.

It is well known that electromagnetic fields are not enough for separating isotopes, since each isotope is characterized
by a given mass and charge, while the equations of motion of a charged particle in electromagnetic fields depend only
on the mass to charge ratio. To this end, a piece of absorbing material, i.e. energy degrader or wedge, is inserted in
the system, resulting in isotope-dependent energy loss. When combined, magnetic fields and energy degraders make
possible the separation of isotopes (the so-called rigidity-energy loss-rigidity separation method [8]). The design of
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the fragment separators can be split into two tasks: first design the basic optics without the absorber, and later fit
the absorber into the existing system. This is not the only way to approach the design, but it results in a better
performing system and it provides robustness with respect to errors. The inclusion of the absorber and its effect on
the separator optics and performance will be presented in a later publication.

The achievement of large acceptance and high resolution is a challenge in the presence of large aperture supercon-
ducting magnets. It requires high precision treatment of the beam dynamics and correction of high order aberrations.
Depending on the specific task, the layout of the fragment separator could be different: for the in-flight method [9]
there is a two-stage separation where the two stages transmit isotopes along two intersecting lines in the mass-charge
plane, and the isotope selected is the one on the intersection point; if the isotopes are to be stopped in a gas cell
[10] after the first stage of separation, a second stage is also needed, but in this case it is used to slow down and
monochromatize the isotope beam. For examples of designs of some current [11, 12] and next-generation fragment
separators of the first type we refer to [13, 14]. It is interesting that all functions of the system can be obtained by
repetition of the same basic cell. For the in-flight method the cell is repeated four times and for the gas-cell method
three times. This fact highlights the usefulness of applying symmetries to the design of fragment separators.

In this paper we present our design of a fragment separator based on several symmetries. Our approach is based
on the fact that the basic cell mentioned in the previous paragraph should be a dispersive stage, which produces a
high order achromat if repeated. Also, the achromat should be realized by a minimum number of magnets. Overall,
we are searching for the simplest system that satisfies the baseline requirements in terms of acceptance, transmission,
and resolution. In the next section, the symmetries involved will be reviewed and detailed. In section III, the theory
is applied to a third order achromat. In section IV, the layout obtained by applying the theory is presented. We
conclude with a summary in section V.

II. SYMMETRIES APPLIED TO THE DESIGN PRINCIPLE

Any subpart of the system, or the system as a whole, can be represented by a transfer map M, which, if applied to
some initial conditions, gives the final conditions. If the initial conditions are represented by the vector of canonically
conjugate (symplectic) variables ~z = (x, a, y, b, l, δ), then

~zf = M (~zi) . (1)

In ~z the x and y are denoting the horizontal and vertical positions of a particle, a and b are the dimensionless scaled
momenta, δ is the relative energy dispersion, and l is the time of flight difference of the particle relative to the reference
particle up to a scaling factor. The map M can be Taylor expanded with respect to the trajectory of a reference
particle and represented in the form

zm,f =
6

∑

j=1

zj,i{(zm,f | zj) +
1

2

6
∑

k=1

zk,i{(zm,f | zjzk) +
1

3!

6
∑

l=1

zl,i{(zm,f | zjzkzl) + ...}}}. (2)

The coefficients (zm|zj) are the elements of the (first order) transfer matrix, while (zm|zjzk) , (zm|zjzkzl) are the
aberration coefficients. The symmetries applied to the system, as described next, have the effect of constraining the
various coefficients. Often, these constraints cancel many aberrations. We note that some of the symmetries described
next in general are broken by the introduction of absorbers. It will be the subject of a future publication to study to
what extent the symmetries can be restored in a system with wedges.

A. Time-independence “symmetry”

No fields are explicitly time-dependent in the system, which entails that the total (sum of kinetic and potential)
energy is conserved. Of course, if the system is purely magnetic then the kinetic energy is conserved. This condition
results in the following simplifications [15]:

(...|...lil ...) = 0, il > 0, except (l|l) = 1, (3)

(δ|...) = 0, except (δ|δ) = 1.

B. Mid-plane symmetry

Since it is a constraint of the layout considered here that all elements have y = 0 as a symmetry plane, the motion
above and below that plane must be identical. This cancels half of the aberrations, namely [15]:
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(x | xixaiayiybib lilδiδ ) = 0, if iy + ib is odd, (4)

(a | xixaiayiybib lilδiδ ) = 0, if iy + ib is odd,

(y | xixaiayiy bib lilδiδ ) = 0, if iy + ib is even,

(b | xixaiayiy bib lilδiδ ) = 0, if iy + ib is even,

(l | xixaiayiy bib lilδiδ ) = 0, if iy + ib is odd,

(δ | xixaiayiy bib lilδiδ ) = 0, if iy + ib is odd.

C. Symplectic symmetry

All Hamiltonian systems, including charged particles in electromagnetic fields, obey this dynamical symmetry of
fundamental importance. If we denote the Jacobian of the transfer map of any section of the system by M = Jac (M),
the mathematical expression of the symplectic symmetry is [15]

MT JM = J, (5)

where T denotes the transpose of a matrix, and J is a 2n × 2n matrix with block form

J =

(

0 I
−I 0

)

, (6)

I being the n×n unit matrix. This relation imposes many interdependencies among the map elements. A set of such
relations can be derived order-by-order. It has been done up to second order in [16], but due to rapidly increasing
complexity the set of relations involving first, second, and third order coefficients have not been derived so far. With
the help of symbolic computation programs like Mathematica [17] we obtained this set of relations. Due to its length
it can be found in Appendix A. These formulas are generally valid, and might be useful in general optics designs
outside the scope of fragment separators.

D. Mirror symmetry

Basic mechanical systems, including charged particles in electromagnetic fields, possess the so-called time reversal
symmetry [18]. It means that if an initial configuration of such a system evolves forward in time to a final configuration,
then the time-reversed final configuration evolves backward in time towards the time-reversed initial configuration.
Time-reversed configuration means switching the direction of the motion and the sign of the time. Hence, if ~zf =
M (~zi), Mr is the map of the reversed system (the same elements traversed in opposite order), and we define the time-
reversal operator by R (x, a, y, b, l, δ) = (x,−a, y,−b,−l, δ), we obtain Mr (R (~zf )) = R (~zi), or, since ~zi is arbitrary
and R−1 = R,

Mr = R ◦M−1 ◦ R. (7)

This general formula offers a convenient way to compute the map of the reversed system, if one has a method of
explicitly computing the inverse of a transfer map. Indeed, such a method exists by using Differential Algebraic
techniques [15], and is available in codes such as COSY Infinity [19]. The algorithm is based on a fixed point
iteration that converges to the exact result in finitely many steps. While much more memory and time consuming
than the numerical method, the algorithm can be easily implemented in a symbolic algebra computational tool like
Mathematica. Reasonable memory requirements and running time restricts its practical use to low orders.

Equation (7) implies that if a system is mirror symmetric about some transverse section, the reversed system’s map
must be the same as the forward system’s map, which entails that

M◦R ◦M = R. (8)

This relation also contains many restrictions. Up to second order these relations can be found in Appendix B. Due
to these relations, the aberrations of a mirror symmetric system cannot take arbitrary values.

This concludes the section on symmetries. Now we turn our attention to the practical use of these symmetries in
fragment separator designs.
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III. APPLICATION OF THE SYMMETRIES TO DESIGN PRINCIPLES

The isotopes of interest to be separated by the fragment separator are created from essentially a point-like primary
beam hitting a target, and the resulting emittance due to reaction kinematics is dominated by large angular divergence
and energy spread. The main requirement of the fragment separator is that the final position of the particles at the
separation slit should depend only on mass and charge. These conditions require a high order achromat with a large
intermediate dispersion that directly translates into large mass and charge resolutions. Mathematically, a high order
achromat has a transfer map that is the identity map up to the order of the achromat. There are theories of high
order achromats [20], but here the goal is to find the simplest system with the minimum number of magnets and low
residual aberrations. The obvious choice would be to follow a system described by some transfer map with a system
that has a transfer map that is the inverse of the first one. This way, the total map would be exactly identity to all
orders. Unfortunately, such a system is not available. However, the reversed system’s map is almost the inverse, if it
not were for the time-reversal operator. To this end, mirror symmetry can be used in the following way: assume the
first half of the achromat is dispersive and described by Md. If the second half is the reversed layout of the first half,
the total map Mt will be

Mt = R ◦M−1

d ◦ R ◦Md. (9)

Assume that Md commutes with R under composition, [Md,R] = 0. Then,

Mt = R ◦M−1

d ◦Md ◦ R

= R ◦R = I. (10)

Therefore, if the commutator vanishes, we designed an arbitrary order achromat. Unfortunately, the commutator
does not vanish in general. The explicit calculation of the commutator (assuming time-independence and mid-plane
symmetries) shows that, neglecting time-of flight effects that are of no interest here, the following aberration coefficients
should vanish in Md for the whole commutator to vanish completely:

(x | xixaiayiybibδiδ ) = 0, if ia + ib is odd, (11)

(a | xixaiayiy bibδiδ ) = 0, if ia + ib is even,

(y | xixaiayiybibδiδ ) = 0, if ia + ib is odd,

(b | xixaiayiy bibδiδ ) = 0, if ia + ib is even.

To first order, these entail that the first half of the system should be point-to-point imaging and parallel-to-parallel in
both horizontal and vertical planes, and the final angles should be energy independent. The 5 first order conditions
are augmented by 15 aberration coefficients at second order and 35 at third order. The number increases drastically
at higher orders. For more details, we refer to [21].

At this point we know that if we design the achromatic system such that it is mirror symmetric around the middle
where the dispersion is maximized, the first half is imaging and telescopic, and some aberrations are canceled, then
we obtain a high order achromat with large resolution and low residual aberrations. The first half is dispersive, so it
is necessary to include one dipole. The number of quadrupoles is determined by the number of first order conditions
to be satisfied. The 15 second order conditions, however, appear to be too many to satisfy.

To decrease the number of second order conditions we resort again to mirror symmetry. Since the first half can
be realized with a single dipole, we pick another mirror symmetric point to be the middle of the dipole. By doing
this, the whole system will have a double mirror symmetry. To show that this reduces the number of second order
conditions to be met, we make explicit the constraints included in eq. (8). The results show that many commutator
elements vanish if all first order conditions are met. Specifically, if (x|a)d = (a|x)d = (y|b)d = (b|y)d = (a|δ)d = 0, then
mirror symmetry alone about the middle of the dipole results in all second order commutator elements automatically
being zeroed out except 5: (x|aδ)d , (a, xδ)d , (a|δδ)d , (y|bδ)d , and (b|yδ)d. Moreover the following relationships are
established:

(x|x)d = (a|a)d = ±1, (12)

(y|y)d = (b|b)d = ±1, (13)

(x|δ)d (1 + (x|x)d) = 0, (14)

(a|δ)d ((a|a)d − 1) = 0. (15)

Since (x|δ)d 6= 0, it follows that (x|x)d = (a|a)d = −1 and (a|δ)d = 0 automatically. This leaves 4 independent first
order conditions. Some second order aberrations are not independent. The following relations are obtained:

(x|xδ)d + (x|δ)d (x|xx)d = 0, (16)
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2 (a|aδ)d + (x|δ)d (a|xa)d = 0, (17)

2 (a|δδ)d + (x|δ)d (a|xδ)d = 0, (18)

2 (y|yδ)d + (x|δ)d (y|xy)d = 0, (19)

2 (b|bδ)d + (x|δ)d (b|xb)d = 0. (20)

Equation (18) shows that (a, xδ)d and (a|δδ)d are proportional, leaving 4 independent second order conditions to
cancel the five second order terms listed above. The relations derived in [16] show that among the remaining 4
independent first order and 4 independent second order aberrations symplecticity does not impose any additional
constraints. Therefore, we can conclude that a double mirror symmetric system that contains four cells, with only a
half dipole and four superimposed multipoles having quadrupole and sextupole components per cell, will satisfy all our
requirements to second order. The number of multipoles is determined by the 4 first and second order conditions to
be met. Although we found first order solutions with only three quadrupoles per cell (due to the additional symmetry
of (x|x) = (a|a) for all elements affecting the first order transfer matrix), the 4 second order conditions generically
require 4 sextupoles per cell also arranged mirror symmetrically in the two cells. It is envisioned due to cost reasons,
lack of space, and innovative design, that only superimposed multipoles will be used. Also, the 4 quadrupole solution
enables more flexibility regarding the length of the drift spaces and the location of the beam dump. Hence, the number
of multipoles is settled to four. For details of superimposed multipoles, with variable multipole components we refer
to [22].

Assuming that we have satisfied all conditions for a second order achromat, in the following we consider third
order effects. The number of commutator elements at third order that need to be cancelled is 35. This is very large,
so again we look for all the simplifications that might come from application of mirror and symplectic symmetries.
Mirror symmetry, according to eq. (8), gives some interesting results: 21 third order commutator elements are linked
by 11 proportionality relations, reducing the effectively independent commutator elements by 11. The following
proportionality relations are obtained:

(x|xxa) ∝ (x|xaδ) , (x|xyb) ∝ (x|xbδ) (21)

(a|xxx) ∝ (a|xxδ) ∝ (a|δδδ) , (a|xaa) ∝ (a|aaδ) , (a|xyy) ∝ (a|yyδ) , (a|xbb) ∝ (a|bbδ) , (22)

(y|xay) ∝ (y|ayδ) , (y|xxb) ∝ (y|xbδ) , (23)

(b|xxy) ∝ (b|xyδ) , (b|xab) ∝ (b|abδ) . (24)

Additionally, mirror symmetry gives 4 second order and 4 third order proportionality relations among non-commutator
elements. Moreover, it is interesting to note that mirror symmetry also implies that 20 non-commutator third order
aberrations are completely determined by the fixed second order layout. Hence, no octupole may correct any of these
aberrations. Specifically, these are the following: (x|xxx) , (x|xaa) , (x|xyy) , (x|xbb) , (x|ayb) , (a|xxa) , (a|xyb) ,
(a|aaa) , (a|ayy) , (a|abb) , (y|xxy) , (y|xab) , (y|aay) , (y|yyy) , (y|ybb) , (b|xay) , (b|xxb) , (b|aab) , (b|yyb) , (b|bbb) .

Symplecticity did not help in reducing the number of independent second order commutator-aberrations (although
it provides 7 proportionality relations among non-commutator second order aberrations), but the new third order
relations of Appendix A give 14 new proportionality relations among third order commutator elements, if we again
assume all second order conditions satisfied. These are the following:

(x|xxa) ∝ (a|xaa), (a|aaδ) ∝ (x|xaδ), (x|xyb) ∝ (a|ayb) ∝ (b|xab) ∝ (y|xay), (25)

(x|ayy) ∝ (b|aay), (x|ybδ) ∝ (b|abδ) ∝ (y|ayδ), (a|xyy) ∝ (b|xxy), (a|yyδ) ∝ (b|xyδ), (26)

(a|xbb) ∝ (y|xxb), (a|bbδ) ∝ (y|xbδ), (x|abb) ∝ (y|aab), (y|yyb) ∝ (b|ybb). (27)

Since there is no overlap between eq. (21)-(24) and eq. (25)-(27) due to mirror and symplectic constraints, the number
of independent third order conditions is reduced to 10 = 35 (total) − (14 (symplecticity) + 11 (mirror)). Therefore, if
mirror symmetry is obeyed up to third order elements, the number of octupoles per cell needed is 10. Unfortunately,
this number is still too large for practical systems. Therefore, the theory shows that a perfect third order solution is
not possible with a reasonable number of octupoles. This, coupled with the fact that many non-commutator third
order aberrations cannot be altered by any number or placement of octupoles, suggests to break the double mirror
symmetry at third order (while maintaining mirror symmetry with respect to the dispersive image).

The number of multipoles per cell is 4 according to the second order solution. If these multipoles are equipped with
a variable octupole component and made independent, the reasonable number of octupoles to attempt a good third
order solution is 8. Is it possible to obtain a good third order solution with 8 octupoles if 20 are needed for a perfect
one? The answer is a partial yes. If we assume that the primary beam is point-like, then all position dependent
commutator aberrations vanish (in practice these aberrations are usually small). In this approximation, the third
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order commutator terms are the following:

(x|aaa), (x|abb), (x|aδδ), (28)

(a|aaδ), (a|bbδ), (a|δδδ), (29)

(y|aab), (y|bbb), (y|bδδ), (30)

(b|abδ). (31)

Equation (27) reduces the number of independent aberrations by one, resulting in 9 independent third order aberra-
tions. Therefore, in practice we have 8 octupoles to minimize 9 third order aberrations. While there is generally no
unique solution to this problem, in practice one can obtain quite good solutions.

Equation (7) can be used in conjunction with symbolic inversion of maps to compute the effect of not correcting
aberrations (28)-(31). The results show that all aberrations change sign and double in magnitude, but no other
aberrations are introduced. Therefore, if angular aberrations are neglected, a solution can be found with only 5
octupoles. However, the angular aberrations are important for the subsequent separation stages, and neglecting them
might not always be a good choice. The remaining octupoles may be used to correct position-dependent aberrations,
in case some coefficients are unusually large.

In the next section we present a practical realization of the optics of a fragment separator based on these symmetry
theories.

IV. OPTICS OF A FRAGMENT SEPARATOR

The double mirror symmetry of the system implies that only the specific layout of one fourth of the system needs
to be optimized, the map of the whole system being given by symmetry operations. In this cell, according to the
theory, there will be four superimposed multipoles and a half-dipole at the end. The first order layout is determined
by drifts, quadrupoles, and the dipole. Denoting the map of the system from beginning to the end of the cell, i.e. the
middle of the first dipole, by Mm , the map Md up to the dispersive image can be computed utilizing eq. (7). Hence,
we obtain the conditions that the matrix elements in Mm must satisfy (skipping the time-of-flight part) in order to
obey the conditions derived in the previous section. Specifically, we obtain the following first order transfer matrix:

Md =











(a|x)m (x|a)m + (a|a)m (x|x)m 2 (a|a)m (x|a)m

2 (a|x)m (x|x)m (a|x)m (x|a)m + (a|a)m (x|x)m

0 0
0 0
0 0

(32)

0 0 2 (a|δ)m (x|a)m

0 0 2 (a|δ)m (x|a)m

(b|y)m (y|b)m + (b|b)m (y|y)m 2 (b|b)m (y|b)m 0
2 (b|y)m (y|y)m (b|y)m (y|b)m + (b|b)m (y|y)m 0

0 0 1











,

where the subscript m denotes matrix elements at the middle of the first dipole. Looking at the horizontal submatrix,
we notice that (x|δ)d = 2 (a|δ)m (x|a)m and (a|δ)d = 2 (a|δ)m (x|x)m. The conditions (x|δ)d 6= 0 and (a|δ)d = 0 imply
(x|a)m 6= 0 and (x|x)m = 0, since (a|δ)m 6= 0 because it is created only by the half-dipole at the end of the cell. To
maximize resolution, (x|δ)d needs to be maximized, which in turn implies that (x|a)m must be maximized. Therefore,
the beam size in the dipole must be maximized. Essentially, this is just another proof of the well known fact that the
resolution depends on the magnetic flux enclosed by the ray with the largest divergence in the dipole. The telescopic
imaging conditions at the dispersive image require (a|a)m (x|a)m = 0 and (a|x)m (x|x)m = 0. Hence we immediately
obtain (a|a)m = 0. In the vertical plane we need (b|b)m (y|b)m = (b|y)m (y|y)m = 0. These two conditions can be
satisfied simultaneously if (y|y)m = (b|b)m = 0 or (y|b)m = (b|y)m = 0. Other combinations are forbidden by the
symplectic condition. In summary, the fundamental cell must be point-to-parallel and parallel-to point horizontally,
and there is a choice of being point-to-parallel and parallel-to point, or point-to-point and parallel-to-parallel vertically.

At this point the specific layout, subject to all conditions derived above, must be obtained using numerical opti-
mization. Most standard beam optical codes do not allow constrained optimization. In order to avoid non-physical
results such as negative drifts or too large pole tip fields a simple Mathematica notebook was implemented to do a
first order constrained optimization. The optimization parameters were all the drift lengths and quadrupole strengths.
The parameters of the dipole were fixed to reasonable values. Constraints were all drift lengths (to be larger than a
minimum, imposed mainly due to engineering concerns) and a maximum pole tip field in the multipoles, along with
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FIG. 1: (color) First order horizontal beam envelope corresponding to an initial beam emmittance of ±1mm, ±50mrad,
and ±16% energy dispersion. Yellow (light) boxes represent dipoles and the magenta (dark) boxes represent multipoles with
appropriate apertures.

FIG. 2: (color) First order vertical beam envelope corresponding to an initial beam emmittance of ±1mm, ±50mrad, and
±16% energy dispersion. Yellow (light) boxes represent represent dipoles and the magenta (dark) boxes represent multipoles
with appropriate apertures.

maximum values for magnet apertures. As figures of merit we maximized resolution while minimizing the maximum
beam size anywhere in the system, and minimizing the quadrupole strengths in order to limit the size of higher order
aberrations. The best system resulting from an extensive set of optimization runs over the full spectrum of parameter
space is presented in Figures (1)-(2). For more details see [21]. The figures show four cells, i.e. the full achromat,
and the horizontal and vertical beam envelopes. The horizontal multipole aperture is ±40cm, the vertical aperture is
±20cm (assuming rectangular cross-sections), the multipole length is 70cm, while the vertical dipole gap is ±12cm.
The total length of the system is 27m. The maximum quadrupole pole tip field is 3T. Most of the multipole strengths
are small. Parameters of the dipole are 5m radius and 35◦ angle. All drift lengths are at least 25cm. The parameter
list is contained in Table I.

For higher order designs the code COSY Infinity was used [19]. The first order input was supplied by the Mathe-
matica results. Since the number and location of the sextupoles and octupoles was fixed by the theory and practical
considerations, a numerical optimization found the strengths that were needed to satisfy the requirements derived in
the theory section. Some generic fringe field effects were taken into account. These end effects modified only slightly
the magnet strengths. This is not surprising since the theory is valid for any complicated end effects, including over-
lapping fringe fields, as long as the system stays symmetric. Figures (3)-(4) show the third order acceptance of the
fragment separator. The resolution is maximized by maximizing the dispersion, and the all aberrations are below 1
mm in magnitude.

One can notice that at the dispersive image plane some aberrations are still present. This is mainly due to three
uncorrected non-commutator aberrations: (x|aa)d , (x|bb)d , and (y|ab) . Simplecticity implies (x|bb)d ∝ (y|ab)d . Hence,
there are two independent aberrations that spoil the second order imaging at the dispersive image. These could be
corrected by two additional sextupoles if needed. The energy degrader is placed at the dispersive image plane. If the
optical effects of the wedge require, this additional correction can be easily done. The wedge-related problems will be
the subject of future studies.
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Elements Pole tip field Pole tip field

at 20cm (T ) at 40cm (T )

Quadrupoles

Q1 0.735908066925816 1.4718

Q2 −0.275268960725948 −0.5505

Q3 −1.517467263959876 −3.0349

Q4 1.098340326114576 2.1967

Sextupoles

S1 0.0236150243179790 0.0944

S2 0.0299512624188839 0.1198

S3 −0.2895539864520602 −1.1582

S4 0.2343973615723920 0.9375

Octupoles

O1 −0.6031246413700748 −4.8250

O2 −0.5936465751515769 −4.7492

O3 −0.0346912656080776 −0.2775

O4 0.0806132116400085 0.6449

O5 −0.0574106457754529 −0.4592

O6 0.0970943207183211 0.7767

O7 −0.0098751282909198 −0.0790

O8 −0.0012015622273029 −0.0096

Drifts Length (cm)

L1 57

L2 51

L3 69

L4 29

L5 28

TABLE I: Parameter list for the case of a beam of 8Tm rigidity. The drifts, quadrupoles, and sextupoles are for one cell only
in the order they appear in the beamline (from left to right in the figures). The 8 octupoles are from the first two cells in the
order they appear in the beamline. The remaining elements are given by the symmetries detailed in section IV. Some generic
fringe fields are taken into account. The numerical values of the magnet strengths depend on the specific fringe field model
applied. We note that, due to the large strengths of the first two octupoles, the ocupole windings might be on a smaller bore
than the rest of the coils since the beam size is small at the location of the respective multipoles. Also, work in progress on
more advanced optimization methods might result in solutions with reduced octupole strengths.

FIG. 3: (color) Third order horizontal envelope corresponding to acceptance (initial beam emmittance of ±1mm, ±40mrad

horizontally and ±50mrad vertically, and ±10% energy dispersion).
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FIG. 4: (color) Third order vertical envelope corresponding to acceptance (initial beam emmittance of ±1mm, ±40mrad

horizontally and ±50mrad vertically, and ±10% energy dispersion).

FIG. 5: (color) Alternate design, which cancels the positional aberrations at the dispersive plane at the detriment of some
angular aberrations.

Another solution is possible if there is only one separation stage. In this situation the angular aberrations at the
achromatic image plane are not important. Explicit calculation based on (7) shows that the two angular commutator
aberrations (a|xδ)d and (b|yδ)d contribute only to angular aberrations at the achromatic image. Therefore, one can
choose to correct with the 4 sextupoles available (x|aa)d, (x|bb)d , (x|aδ)d , and (y|bδ)d . This way the dispersive image
stays imaging and at the achromatic image plane all positional aberrations stay small. An example of such a solution
is shown in Figure (5). However, for the two-stage separation the large angular aberrations become detrimental in the
second stage of separation. In this case it is worthwhile to choose the 6 sextupole solution described in the preceding
paragraph.

Preliminary studies indicate that the symmetries are beneficial even if random errors are present in the system.
Some properties of the symmetric layout survive if the errors are not too large. One important factor determining
the quality of the system is the magnitude of the residual aberrations. In this aspect the solution shown in Figures
(1)-(4) is far superior to all alternatives mentioned and studied. Figure (6) shows the fifth order acceptance, a good
measure of the residual aberrations. All alternate designs gave poor results in this respect. Again, for details we refer
the reader to [21].

V. SUMMARY AND CONCLUSION

We have shown that symmetries provide a powerful tool in the conceptual design of fragment separator optics and
related charged particle optical devices. We derived many relationships of general interest stemming from symplectic
and mirror symmetries, which might prove useful for generic optical design. The combination of analytical and
numerical computation and optimization lead to the layout of a fragment separator that is a good starting point for
studies of the full separator, including energy degraders [23].

We concluded that the separator can be obtained by applying symmetry operations to a basic cell that is point-to-
parallel and parallel-to-point both horizontally and vertically. This cell, in turn, has a minimum number of magnets
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FIG. 6: (color) Fifth order horizontal envelope corresponding to acceptance (initial beam emmittance of ±1mm, ±25mrad

horizontally and ±50mrad vertically, and ±10% energy dispersion) of the solution shown in Figures (1)-(4).

and some useful properties. The acceptance, resolution, and transmission were optimized, taking into account the
large aberrations induced by the large aperture superconducting magnets. Correction of higher order aberrations,
coupling between different orders, magnitude of residual aberrations, and the number of magnets are all minimized
by preservation of symmetries. Even random errors in the system have less of an effect as long as symmetries are
maintained. This is true even for complicated fringe fields, including overlapping fields. The qualitative conclusions
remain unaffected. Ongoing work related to accurate fringe field computation for the rectangular aperture multipoles
envisioned for the fragment separator might slightly change the quantitative predictions. Other work in progress
includes the effects of material-beam interactions in the design. In summary, we have provided a symmetry-based
approach to a next-generation high-intensity large-acceptance and high resolution fragment separator optics for a
future exotic beam facility that can be easily adapted to specific scenarios.
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APPENDIX A: RELATIONS DUE TO SIMPLECTICITY

Relations between aberration coefficients up to third order due to symplecticity are the following:

−2(a|xx)(x|xa) + 2(a|xa)(x|xx) + (a|xxa)(x|x) − (a|x)(x|xxa) − (a|xxx)(x|a) + (a|a)(x|xxx) = 0

−2(a|xx)(x|aa) + 2(a|aa)(x|xx) + (a|xaa)(x|x) − (a|x)(x|xaa) − (a|xxa)(x|a) + (a|a)(x|xxa) = 0

2(a|aδ)(x|xx) − 2(a|xx)(x|aδ) + (a|xaδ)(x|x) − (a|x)(x|xaδ) − (a|xxδ)(x|a) + (a|a)(x|xxδ) = 0

−(a|x)(x|xaa) + (a|xaa)(x|x) − (a|xxa)(x|a) + (a|a)(x|xxa) = 0

−2(a|xa)(x|aa) + 2(a|aa)(x|xa) − (a|x)(x|aaa) + (a|aaa)(x|x) − (a|xaa)(x|a) + (a|a)(x|xaa) = 0

2(a|aδ)(x|xa) − 2(a|xa)(x|aδ) − (a|x)(x|aaδ) + (a|aaδ)(x|x) − (a|xaδ)(x|a) + (a|a)(x|xaδ) = 0

−2(a|xδ)(x|xa) + 2(a|xa)(x|xδ) + (a|xaδ)(x|x) − (a|x)(x|xaδ) − (a|xxδ)(x|a) + (a|a)(x|xxδ) = 0

−2(a|xδ)(x|aa) + 2(a|aa)(x|xδ) + (a|aaδ)(x|x) − (a|x)(x|aaδ) − (a|xaδ)(x|a) + (a|a)(x|xaδ) = 0

2(a|aδ)(x|xδ) − 2(a|xδ)(x|aδ) + (a|aδδ)(x|x) − (a|x)(x|δδa) − (a|xδδ)(x|a) + (a|a)(x|xδδ) = 0

2(b|ay)(y|xy) − 2(b|xy)(y|ay) + (a|ayy)(x|x) − (a|x)(x|ayy) − (a|xyy)(x|a) + (a|a)(x|xyy) = 0

−2(b|xy)(y|ab) + 2(b|ab)(y|xy) + (a|ayb)(x|x) − (a|x)(x|ayb) − (a|xyb)(x|a) + (a|a)(x|xyb) = 0

2(b|ay)(y|xb) − 2(b|xb)(y|ay) − (a|x)(x|ayb) + (a|ayb)(x|x) − (a|xyb)(x|a) + (a|a)(x|xyb) = 0

−2(b|xb)(y|ab) + 2(b|ab)(y|xb) − (a|x)(x|abb) + (a|abb)(x|x) − (a|xbb)(x|a) + (a|a)(x|xbb) = 0

−2(b|xy)(y|ay) + 2(b|ay)(y|xy) − (b|y)(y|xay) + (b|xay)(y|y) − (a|xyy)(x|a) + (a|a)(x|xyy) = 0

−2(b|xy)(y|ab) + 2(b|ab)(y|xy) − (b|y)(y|xab) + (b|xab)(y|y) − (a|xyb)(x|a) + (a|a)(x|xyb) = 0

−(b|y)(y|aay) + (b|aay)(y|y) − (a|ayy)(x|a) + (a|a)(x|ayy) = 0

−2(b|ay)(y|ab) + 2(b|ab)(y|ay) − (b|y)(y|aab) + (b|aab)(y|y) − (a|ayb)(x|a) + (a|a)(x|ayb) = 0

−2(b|yδ)(y|ay) + 2(b|ay)(y|yδ) + (b|ayδ)(y|y) − (b|y)(y|ayδ) − (a|yyδ)(x|a) + (a|a)(x|yyδ) = 0

−2(b|yδ)(y|ab) + 2(b|ab)(y|yδ) + (b|abδ)(y|y) − (b|y)(y|abδ) − (a|ybδ)(x|a) + (a|a)(x|ybδ) = 0

−2(a|yy)(x|xa) + 2(a|xa)(x|yy) + (b|xay)(y|y) − (b|y)(y|xay) − (a|xyy)(x|a) + (a|a)(x|xyy) = 0

−2(a|yy)(x|aa) + 2(a|aa)(x|yy) + (b|aay)(y|y) − (b|y)(y|aay) − (a|ayy)(x|a) + (a|a)(x|ayy) = 0

2(a|aδ)(x|yy) − 2(a|yy)(x|aδ) + (b|ayδ)(y|y) − (b|y)(y|ayδ) − (a|yyδ)(x|a) + (a|a)(x|yyδ) = 0

−2(a|yb)(x|xa) + 2(a|xa)(x|yb) − (b|y)(y|xab) + (b|xab)(y|y) − (a|xyb)(x|a) + (a|a)(x|xyb) = 0

−2(a|yb)(x|xa) + 2(a|xa)(x|yb) − (b|y)(y|xab) + (b|xab)(y|y) − (a|xyb)(x|a) + (a|a)(x|xyb) = 0

−2(a|yb)(x|aa) + 2(a|aa)(x|yb) − (b|y)(y|aab) + (b|aab)(y|y) − (a|ayb)(x|a) + (a|a)(x|ayb) = 0

2(a|aδ)(x|yb) − 2(a|yb)(x|aδ) − (b|y)(y|abδ) + (b|abδ)(y|y) − (a|ybδ)(x|a) + (a|a)(x|ybδ) = 0

2(a|yy)(x|xx) − 2(a|xx)(x|yy) + (a|xyy)(x|x) − (a|x)(x|xyy) + (b|y)(y|xxy) − (b|xxy)(y|y) = 0

−2(a|xx)(x|yb) + 2(a|yb)(x|xx) + (a|xyb)(x|x) − (a|x)(x|xyb) + (b|y)(y|xxb) − (b|xxb)(y|y) = 0

2(a|yy)(x|xa) − 2(a|xa)(x|yy) − (a|x)(x|ayy) + (a|ayy)(x|x) + (b|y)(y|xay) − (b|xay)(y|y) = 0

−2(a|xa)(x|by) + 2(a|by)(x|xa) − (a|x)(x|ayb) + (a|ayb)(x|x) + (b|y)(y|xab) − (b|xab)(y|y) = 0

2(a|yy)(x|xδ) − 2(a|xδ)(x|yy) + (a|yyδ)(x|x) − (a|x)(x|yyδ) + (b|y)(y|xyδ) − (b|xyδ)(y|y) = 0

−2(a|xδ)(x|yb) + 2(a|yb)(x|xδ) + (a|ybδ)(x|x) − (a|x)(x|ybδ) + (b|y)(y|xbδ) − (b|xbδ)(y|y) = 0
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2(a|yb)(x|xx) − 2(a|xx)(x|yb) + (a|xyb)(x|x) − (a|x)(x|xyb) − (b|xxy)(y|b) + (b|b)(y|xxy) = 0

−2(a|xx)(x|bb) + 2(a|bb)(x|xx) + (a|xbb)(x|x) − (a|x)(x|xbb) − (b|xxb)(y|b) + (b|b)(y|xxb) = 0

2(a|yb)(x|xa) − 2(a|xa)(x|yb) − (a|x)(x|ayb) + (a|ayb)(x|x) − (b|xay)(y|b) + (b|b)(y|xay) = 0

−2(a|xa)(x|bb) + 2(a|bb)(x|xa) − (a|x)(x|abb) + (a|abb)(x|x) − (b|xab)(y|b) + (b|b)(y|xab) = 0

2(a|yb)(x|xδ) − 2(a|xδ)(x|yb) + (a|ybδ)(x|x) − (a|x)(x|ybδ) − (b|xyδ)(y|b) + (b|b)(y|xyδ) = 0

−2(a|xδ)(x|bb) + 2(a|bb)(x|xδ) + (a|bbδ)(x|x) − (a|x)(x|bbδ) − (b|xbδ)(y|b) + (b|b)(y|xbδ) = 0

2(a|yb)(x|xa) − 2(a|xa)(x|yb) + (a|xyb)(x|a) − (a|a)(x|xyb) + (b|b)(y|xay) − (b|xay)(y|b) = 0

2(a|bb)(x|xa) − 2(a|xa)(x|bb) + (a|xbb)(x|a) − (a|a)(x|xbb) + (b|b)(y|xab) − (b|xab)(y|b) = 0

2(a|yb)(x|aa) − 2(a|aa)(x|yb) + (a|ayb)(x|a) − (a|a)(x|ayb) + (b|b)(y|aay) − (b|aay)(y|b) = 0

2(a|bb)(x|aa) − 2(a|aa)(x|bb) + (a|abb)(x|a) − (a|a)(x|abb) + (b|b)(y|aab) − (b|aab)(y|b) = 0

2(a|yb)(x|aδ) − 2(a|aδ)(x|yb) + (a|ybδ)(x|a) − (a|a)(x|ybδ) + (b|b)(y|ayδ) − (b|ayδ)(y|b) = 0

2(a|bb)(x|aδ) − 2(a|aδ)(x|bb) + (a|bbδ)(x|a) − (a|a)(x|bbδ) + (b|b)(y|abδ) − (b|abδ)(y|b) = 0

(a|xyy)(x|x) − (a|x)(x|xyy) + (b|y)(y|xxy) − (b|xxy)(y|y) = 0

−2(b|xy)(y|ay) + 2(b|ay)(y|xy) + (a|ayy)(x|x) − (a|x)(x|ayy) + (b|y)(y|xay) − (b|xay)(y|y) = 0

2(b|yδ)(y|xy) − 2(b|xy)(y|yδ) + (a|yyδ)(x|x) − (a|x)(x|yyδ) + (b|y)(y|xyδ) − (b|xyδ)(y|y) = 0

2(b|xy)(y|xb) − 2(b|xb)(y|xy) + −(a|x)(x|xyb) + (a|xyb)(x|x) + (b|y)(y|xxb) − (b|xxb)(y|y) = 0

−2(b|xb)(y|ay) + 2(b|ay)(y|xb) − (a|x)(x|ayb) + (a|ayb)(x|x) + (b|y)(y|xab) − (b|xab)(y|y) = 0

2(b|yδ)(y|xb) − 2(b|xb)(y|yδ) − (a|x)(x|ybδ) + (a|ybδ)(x|x) + (b|y)(y|xbδ) − (b|xbδ)(y|y) = 0

−2(b|xy)(y|xb) + 2(b|xb)(y|xy) + (a|xyb)(x|x) − (a|x)(x|xyb) − (b|xxy)(y|b) + (b|b)(y|xxy) = 0

−2(b|xy)(y|ab) + 2(b|ab)(y|xy) + (a|ayb)(x|x) − (a|x)(x|ayb) − (b|xay)(y|b) + (b|b)(y|xay) = 0

2(b|bδ)(y|xy) − 2(b|xy)(y|bδ) + (a|ybδ)(x|x) − (a|x)(x|ybδ) − (b|xyδ)(y|b) + (b|b)(y|xyδ) = 0

−(a|x)(x|xbb) + (a|xbb)(x|x) − (b|xxb)(y|b) + (b|b)(y|xxb) = 0

−2(b|xb)(y|ab) + 2(b|ab)(y|xb) − (a|x)(x|abb) + (a|abb)(x|x) − (b|xab)(y|b) + (b|b)(y|xab) = 0

2(b|bδ)(y|xb) − 2(b|xb)(y|bδ) − (a|x)(x|bbδ) + (a|bbδ)(x|x) − (b|xbδ)(y|b) + (b|b)(y|xbδ) = 0

2(b|xb)(y|ay) − 2(b|ay)(y|xb) + (a|xyb)(x|a) − (a|a)(x|xyb) + (b|b)(y|xay) − (b|xay)(y|b) = 0

−2(b|ay)(y|ab) + 2(b|ab)(y|ay) + (a|ayb)(x|a) − (a|a)(x|ayb) + (b|b)(y|aay) − (b|aay)(y|b) = 0

2(b|bδ)(y|ay)− 2(b|ay)(y|bδ) + (a|ybδ)(x|a) − (a|a)(x|ybδ) + (b|b)(y|ayδ) − (b|ayδ)(y|b) = 0

2(b|xb)(y|ab) − 2(b|ab)(y|xb) + (a|xbb)(x|a) − (a|a)(x|xbb) + (b|b)(y|xab) − (b|xab)(y|b) = 0

(a|abb)(x|a) − (a|a)(x|abb) + (b|b)(y|aab) − (b|aab)(y|b) = 0

2(b|bδ)(y|ab) − 2(b|ab)(y|bδ) + (a|bbδ)(x|a) − (a|a)(x|bbδ) + (b|b)(y|abδ) − (b|abδ)(y|b) = 0

−2(b|xy)(y|xb) + 2(b|xb)(y|xy) − (b|y)(y|xxb) + (b|xxb)(y|y) − (b|xxy)(y|b) + (b|b)(y|xxy) = 0

−2(b|xy)(y|ab) + 2(b|ab)(y|xy) − (b|y)(y|xab) + (b|xab)(y|y) − (b|xay)(y|b) + (b|b)(y|xay) = 0

2(b|bδ)(y|xy) − 2(b|xy)(y|bδ) − (b|y)(y|xbδ) + (b|xbδ)(y|y) − (b|xyδ)(y|b) + (b|b)(y|xyδ) = 0

−2(b|ay)(y|xb) + 2(b|xb)(y|ay) − (b|y)(y|xab) + (b|xab)(y|y) − (b|xay)(y|b) + (b|b)(y|xay) = 0

−2(b|ay)(y|ab) + 2(b|ab)(y|ay) − (b|y)(y|aab) + (b|aab)(y|y) − (b|aay)(y|b) + (b|b)(y|aay) = 0

2(b|bδ)(y|ay)− 2(b|ay)(y|bδ) − (b|y)(y|abδ) + (b|abδ)(y|y) − (b|ayδ)(y|b) + (b|b)(y|ayδ) = 0

−2(b|yδ)(y|xb) + 2(b|xb)(y|yδ) + (b|xbδ)(y|y) − (b|y)(y|xbδ) − (b|xyδ)(y|b) + (b|b)(y|xyδ) = 0

−2(b|yδ)(y|ab) + 2(b|ab)(y|yδ) + (b|abδ)(y|y) − (b|y)(y|abδ) − (b|ayδ)(y|b) + (b|b)(y|ayδ) = 0

2(b|bδ)(y|yδ) − 2(b|yδ)(y|bδ) + (b|bδδ)(y|y) − (b|y)(y|bδδ) − (b|yδδ)(y|b) + (b|b)(y|yδδ) = 0

−2(a|yy)(x|yb) + 2(a|yb)(x|yy) + (b|yyb)(y|y) − (b|y)(y|yyb) − (b|yyy)(y|b) + (b|b)(y|yyy) = 0

−2(a|yy)(x|bb) + 2(a|bb)(x|yy) + (b|ybb)(y|y)− (b|y)(y|ybb) − (b|yyb)(y|b) + (b|b)(y|yyb) = 0

−(b|y)(y|ybb) + (b|ybb)(y|y) − (b|yyb)(y|b) + (b|b)(y|yyb) = 0

−2(a|yb)(x|bb) + 2(a|bb)(x|yb) − (b|y)(y|bbb) + (b|bbb)(y|y)− (b|ybb)(y|b) + (b|b)(y|ybb) = 0

(l|xxx) = −2(a|xδ)(x|xx) + 2(a|xx)(x|xδ) − (a|xxδ)(x|x) + (a|x)(x|xxδ) − (a|δ)(x|xxx) + (a|xxx)(x|δ)

(l|xxa) = 2(a|xx)(x|aδ) − 2(a|aδ)(x|xx) − (a|xaδ)(x|x) + (a|x)(x|xaδ) − (a|δ)(x|xxa) + (a|xxa)(x|δ)

(l|xxδ) = −2(a|δδ)(x|xx) + 2(a|xx)(x|δδ) − (a|xδδ)(x|x) + (a|x)(x|xδδ) − (a|δ)(x|xxδ) + (a|xxδ)(x|δ)
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(l|xxa) = −2(a|xδ)(x|xa) + 2(a|xa)(x|xδ) + (a|x)(x|xaδ) − (a|xaδ)(x|x) − (a|δ)(x|xxa) + (a|xxa)(x|δ)

(l|xaa) = 2(a|xa)(x|aδ) − 2(a|aδ)(x|xa) + (a|x)(x|aaδ) − (a|aaδ)(x|x) − (a|δ)(x|xaa) + (a|xaa)(x|δ)

(l|xaδ) = −2(a|δδ)(x|xa) + 2(a|xa)(x|δδ) + (a|x)(x|aδδ) − (a|aδδ)(x|x) − (a|δ)(x|xaδ) + (a|xaδ)(x|δ)

(l|xxδ) = −(a|xδδ)(x|x) + (a|x)(x|xδδ) − (a|δ)(x|xxδ) + (a|xxδ)(x|δ)

(l|xaδ) = 2(a|xδ)(x|aδ) − 2(a|aδ)(x|xδ) − (a|aδδ)(x|x) + (a|x)(x|aδδ) − (a|δ)(x|xaδ) + (a|xaδ)(x|δ)

(l|xδδ) = −2(a|δδ)(x|xδ) + 2(a|xδ)(x|δδ) − (a|δδδ)(x|x) + (a|x)(x|δδδ) − (a|δ)(x|xδδ) + (a|xδδ)(x|δ)

(l|xxa) = −2(a|xδ)(x|xa) + 2(a|xa)(x|xδ) − (a|xxδ)(x|a) + (a|a)(x|xxδ) − (a|δ)(x|xxa) + (a|xxa)(x|δ)

(l|xaa) = −2(a|aδ)(x|xa) + 2(a|xa)(x|aδ) − (a|xaδ)(x|a) + (a|a)(x|xaδ) − (a|δ)(x|xaa) + (a|xaa)(x|δ)

(l|xaδ) = −2(a|δδ)(x|xa) + 2(a|xa)(x|δδ) − (a|xδδ)(x|a) + (a|a)(x|xδδ) − (a|δ)(x|xaδ) + (a|xaδ)(x|δ)

(l|xaa) = −2(a|xδ)(x|aa) + 2(a|aa)(x|xδ) − (a|xaδ)(x|a) + (a|a)(x|xaδ) − (a|δ)(x|xaa) + (a|xaa)(x|δ)

(l|aaa) = −2(a|aδ)(x|aa) + 2(a|aa)(x|aδ) − (a|aaδ)(x|a) + (a|a)(x|aaδ) − (a|δ)(x|aaa) + (a|aaa)(x|δ)

(l|aaδ) = −2(a|δδ)(x|aa) + 2(a|aa)(x|δδ) − (a|aδδ)(x|a) + (a|a)(x|aδδ) − (a|δ)(x|aaδ) + (a|aaδ)(x|δ)

(l|xaδ) = −2(a|xδ)(x|aδ) + 2(a|aδ)(x|xδ) − (a|xδδ)(x|a) + (a|a)(x|xδδ) − (a|δ)(x|axδ) + (a|axδ)(x|δ)

(l|aaδ) = −(a|aδδ)(x|a) + (a|a)(x|aδδ) − (a|δ)(x|aaδ) + (a|aaδ)(x|δ)

(l|aδδ) = −2(a|δδ)(x|aδ) + 2(a|aδ)(x|δδ) − (a|δδδ)(x|a) + (a|a)(x|δδδ) − (a|δ)(x|aδδ) + (a|aδδ)(x|δ)

(l|xyy) = −2(b|yδ)(y|xy) + 2(b|xy)(y|yδ) − (a|yyδ)(x|x) + (a|x)(x|yyδ) − (a|δ)(x|xyy) + (a|xyy)(x|δ)

(l|xyb) = 2(b|xy)(y|bδ) − 2(b|bδ)(y|xy) − (a|ybδ)(x|x) + (a|x)(x|ybδ) − (a|δ)(x|xyb) + (a|xyb)(x|δ)

(l|xyb) = −2(b|yδ)(y|xb) + 2(b|xb)(y|yδ) + (a|x)(x|ybδ) − (a|ybδ)(x|x) − (a|δ)(x|xyb) + (a|xyb)(x|δ)

(l|xbb) = 2(b|xb)(y|bδ) − 2(b|bδ)(y|xb) + (a|x)(x|bbδ) − (a|bbδ)(x|x) − (a|δ)(x|xbb) + (a|xbb)(x|δ)

(l|ayy) = −2(b|yδ)(y|ay) + 2(b|ay)(y|yδ)− (a|yyδ)(x|a) + (a|a)(x|yyδ) − (a|δ)(x|ayy) + (a|ayy)(x|δ)

(l|ayb) = −2(b|bδ)(y|ay) + 2(b|ay)(y|bδ)− (a|ybδ)(x|a) + (a|a)(x|ybδ) − (a|δ)(x|ayb) + (a|ayb)(x|δ)

(l|ayb) = −2(b|yδ)(y|ab) + 2(b|ab)(y|yδ)− (a|ybδ)(x|a) + (a|a)(x|ybδ) − (a|δ)(x|ayb) + (a|ayb)(x|δ)

(l|abb) = −2(b|bδ)(y|ab) + 2(b|ab)(y|bδ) − (a|bbδ)(x|a) + (a|a)(x|bbδ) − (a|δ)(x|abb) + (a|abb)(x|δ)

(l|xyy) = −2(b|yδ)(y|xy) + 2(b|xy)(y|yδ) + (b|y)(y|xyδ) − (b|xyδ)(y|y) − (a|δ)(x|xyy) + (a|xyy)(x|δ)

(l|xyb) = 2(b|xy)(y|bδ) − 2(b|bδ)(y|xy) + (b|y)(y|xbδ) − (b|xbδ)(y|y) − (a|δ)(x|xyb) + (a|xyb)(x|δ)

(l|ayy) = −2(b|yδ)(y|ay) + 2(b|ay)(y|yδ) + (b|y)(y|ayδ) − (b|ayδ)(y|y) − (a|δ)(x|ayy) + (a|ayy)(x|δ)

(l|ayb) = 2(b|ay)(y|bδ) − 2(b|bδ)(y|ay) + (b|y)(y|abδ) − (b|abδ)(y|y) − (a|δ)(x|ayb) + (a|ayb)(x|δ)

(l|yyδ) = −(b|yδδ)(y|y) + (b|y)(y|yδδ) − (a|δ)(x|yyδ) + (a|yyδ)(x|δ)

(l|ybδ) = 2(b|yδ)(y|bδ) − 2(b|bδ)(y|yδ) − (b|bδδ)(y|y) + (b|y)(y|bδδ) − (a|δ)(x|ybδ) + (a|ybδ)(x|δ)

(l|xyb) = −2(b|yδ)(y|xb) + 2(b|xb)(y|yδ) − (b|xyδ)(y|b) + (b|b)(y|xyδ) − (a|δ)(x|xyb) + (a|xyb)(x|δ)

(l|xbb) = −2(b|bδ)(y|xb) + 2(b|xb)(y|bδ) − (b|xbδ)(y|b) + (b|b)(y|xbδ) − (a|δ)(x|xbb) + (a|xbb)(x|δ)

(l|ayb) = −2(b|yδ)(y|ab) + 2(b|ab)(y|yδ) + (b|b)(y|ayδ) − (b|ayδ)(y|b) − (a|δ)(x|ayb) + (a|ayb)(x|δ)

(l|abb) = −2(b|bδ)(y|ab) + 2(b|ab)(y|bδ) + (b|b)(y|abδ) − (b|abδ)(y|b) − (a|δ)(x|abb) + (a|abb)(x|δ)

(l|ybδ) = −2(b|yδ)(y|bδ) + 2(b|bδ)(y|yδ) − (b|yδδ)(y|b) + (b|b)(y|yδδ) − (a|δ)(x|ybδ) + (a|ybδ)(x|δ)

(l|bbδ) = −(b|bδδ)(y|b) + (b|b)(y|bδδ) − (a|δ)(x|bbδ) + (a|bbδ)(x|δ)

(l|xyy) = 2(a|yy)(x|xδ) − 2(a|xδ)(x|yy) − (b|xyδ)(y|y) + (b|y)(y|xyδ) − (a|δ)(x|xyy) + (a|xyy)(x|δ)

(l|ayy) = 2(a|yy)(x|aδ) − 2(a|aδ)(x|yy) − (b|ayδ)(y|y) + (b|y)(y|ayδ) − (a|δ)(x|ayy) + (a|ayy)(x|δ)

(l|yyδ) = −2(a|δδ)(x|yy) + 2(a|yy)(x|δδ) − (b|yδδ)(y|y) + (b|y)(y|yδδ) − (a|δ)(x|yyδ) + (a|yyδ)(x|δ)

(l|xyb) = 2(a|yb)(x|xδ) − 2(a|xδ)(x|yb) + (b|y)(y|xbδ) − (b|xbδ)(y|y) − (a|δ)(x|xyb) + (a|xyb)(x|δ)

(l|ayb) = 2(a|yb)(x|aδ) − 2(a|aδ)(x|yb) + (b|y)(y|abδ) − (b|abδ)(y|y) − (a|δ)(x|ayb) + (a|ayb)(x|δ)

(l|ybδ) = −2(a|δδ)(x|yb) + 2(a|yb)(x|δδ) + (b|y)(y|bδδ) − (b|bδδ)(y|y) − (a|δ)(x|ybδ) + (a|ybδ)(x|δ)

(l|xyb) = −2(a|xδ)(x|yb) + 2(a|yb)(x|xδ) − (b|xyδ)(y|b) + (b|b)(y|xyδ) − (a|δ)(x|xyb) + (a|xyb)(x|δ)

(l|ayb) = 2(a|yb)(x|aδ) − 2(a|aδ)(x|yb) − (b|ayδ)(y|b) + (b|b)(y|ayδ) − (a|δ)(x|ayb) + (a|ayb)(x|δ)

(l|ybδ) = −2(a|δδ)(x|yb) + 2(a|yb)(x|δδ) − (b|yδδ)(y|b) + (b|b)(y|yδδ) − (a|δ)(x|ybδ) + (a|ybδ)(x|δ)

(l|xbb) = −2(a|xδ)(x|bb) + 2(a|bb)(x|xδ) − (b|xbδ)(y|b) + (b|b)(y|xbδ) − (a|δ)(x|xbb) + (a|xbb)(x|δ)

(l|abb) = 2(a|bb)(x|aδ) − 2(a|aδ)(x|bb) − (b|abδ)(y|b) + (b|b)(y|abδ) − (a|δ)(x|abb) + (a|abb)(x|δ)
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(l|bbδ) = −2(a|δδ)(x|bb) + 2(a|bb)(x|δδ) − (b|bδδ)(y|b) − (b|b)(y|bδδ) − (a|δ)(x|bbδ) + (a|bbδ)(x|δ)

APPENDIX B: RELATIONS DUE TO MIRROR SYMMETRY

The first order relations are the following:

(x|x)
2
− (x|a) (a|x) = 1

(a|a)
2
− (x|a) (a|x) = 1

(x|a) ((x|x) − (a|a)) = 0

(a|x) ((x|x) − (a|a)) = 0

(y|y)
2
− (y|b) (b|y) = 1

(b|b)
2
− (y|b) (b|y) = 1

(y|b) ((y|y) − (b|b)) = 0

(b|y) ((y|y) − (b|b)) = 0

These, combined with symplecticity, give (x|x) = (a|a) and (y|y) = (b|b) . In addition,

(x|δ) ((x|x) + 1) − (a|δ) (x|a) = 0

(a|δ) (1 − (a|a)) + (x|δ) (a|x) = 0

The second order relations are the following:

− (a|xx) (x|a) + (a|x)
2
(x|aa) − (a|x) (x|x) (x|xa) + (x|x) (x|xx) + (x|x)

2
(x|xx) = 0

− (a|xa) (x|a) + 2 (a|a) (a|x) (x|aa) − (a|x) (x|a) (x|xa) + (x|x) (x|xa)

− (a|a) (x|x) (x|xa) + 2 (x|a) (x|x) (x|xx) = 0

− (a|xδ) (x|a) + 2 (a|δ) (a|x) (x|aa) − (a|x) (x|aδ) − (a|x) (x|δ) (x|xa) − (a|δ) (x|x) (x|xa)

+ 2 (x|x) (x|xδ) + 2 (x|δ) (x|x) (x|xx) = 0

− (a|aa) (x|a) + (a|a)
2
(x|aa) + (x|aa) (x|x) − (a|a) (x|a) (x|xa) + (x|a)

2
(x|xx) = 0

− (a|aδ) (x|a) + 2 (a|a) (a|δ) (x|aa) − (a|a) (x|aδ) + (x|aδ) (x|x) − (a|δ) (x|a) (x|xa) − (a|a) (x|δ) (x|xa)

+ (x|a) (x|xδ) + 2 (x|a) (x|δ) (x|xx) = 0

− (a|yy) (x|a) + (b|y)
2
(x|bb) + (x|x) (x|yy) − (b|y) (x|yb) (y|y) + (x|yy) (y|y)

2
= 0

− (a|yb) (x|a) + 2 (b|b) (b|y) (x|bb) + (x|x) (x|yb) − (b|y) (x|yb) (y|b)

− (b|b) (x|yb) (y|y) + 2 (x|yy) (y|b) (y|y) = 0

− (a|bb) (x|a) + (b|b)
2
(x|bb) + (x|bb) (x|x) − (b|b) (x|yb) (y|b) + (x|yy) (y|b)

2
= 0

− (a|δδ) (x|a) + (a|δ)
2
(x|aa) − (a|δ) (x|aδ) + (x|δδ) + (x|δδ) (x|x) − (a|δ) (x|δ) (x|xa)

+ (x|δ) (x|xδ) + (x|δ)
2
(x|xx) = 0

(a|aa) (a|x)
2
− (a|a) (a|xx) − (a|x) (a|xa) (x|x) + (a|xx) (x|x)

2
+ (a|x) (x|xx) = 0
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2 (a|a) (a|aa) (a|x) − (a|a) (a|xa) − (a|x) (a|xa) (x|a) − (a|a) (a|xa) (x|x)

+ 2 (a|xx) (x|a) (x|x) + (a|x) (x|xa) = 0

− (a|aδ) (a|x) + 2 (a|aa) (a|δ) (a|x) − (a|a) (a|xδ) − (a|x) (a|xa) (x|δ) − (a|δ) (a|xa) (x|x) + (a|xδ) (x|x)

+ 2 (a|xx) (x|δ) (x|x) + (a|x) (x|xδ) = 0

− (a|a) (a|aa) + (a|a)
2
(a|aa) − (a|a) (a|xa) (x|a) + (a|xx) (x|a)

2
+ (a|x) (x|aa) = 0

− 2 (a|a) (a|aδ) + 2 (a|a) (a|aa) (a|δ) − (a|δ) (a|xa) (x|a) + (a|xδ) (x|a) + (a|x) (x|aδ)

− (a|a) (a|xa) (x|δ) + 2 (a|xx) (x|a) (x|δ) = 0

− (a|a) (a|yy) + (a|bb) (b|y)
2

+ (a|x) (x|yy) − (a|yb) (b|y) (y|y) + (a|yy) (y|y)
2

= 0

− (a|a) (a|yb) + 2 (a|bb) (b|b) (b|y) + (a|x) (x|yb) − (a|yb) (b|y) (y|b)

− (a|yb) (b|b) (y|y) + 2 (a|yy) (y|b) (y|y) = 0

− (a|a) (a|bb) + (a|bb) (b|b)
2

+ (a|x) (x|bb) − (a|yb) (b|b) (y|b) + (a|yy) (y|b)
2

= 0

(a|aδ) (a|δ) + (a|aa) (a|δ)
2
+ (a|δδ) − (a|a) (a|δδ) − (a|δ) (a|xa) (x|δ) + (a|xδ) (x|δ)

+ (a|xx) (x|δ)
2
+ (a|x) (x|δδ) = 0

(a|x) (b|y) (y|ab) − (b|xy) (y|b) − (b|y) (x|x) (y|xb) − (a|x) (y|ay) (y|y)

+ (y|xy) (y|y) + (x|x) (y|xy) (y|y) = 0

(a|x) (b|b) (y|ab) − (b|xb) (y|b) − (a|x) (y|ay) (y|b) − (b|b) (x|x) (y|xb)

+ (x|x) (y|b) (y|xy) + (y|xb) (y|y) = 0

(a|a) (b|y) (y|ab) − (b|ay) (y|b) − (b|y) (x|a) (y|xb) + (y|ay) (y|y)

− (a|a) (y|ay) (y|y) + (x|a) (y|xy) (y|y) = 0

(a|a) (b|b) (y|ab) − (b|ab) (y|b) − (a|a) (y|ay) (y|b) − (b|b) (x|a) (y|xb)

+ (x|a) (y|b) (y|xy) + (y|ab) (yy) = 0

(a|δ) (b|y) (y|ab) − (b|yδ) (y|b) − (b|y) (y|bδ) − (b|y) (x|δ) (y|xb) − (a|δ) (y|ay) (y|y)

+ (x|δ) (y|xy) (y|y) + 2 (y|y) (y|yδ) = 0

(a|δ) (b|b) (y|ab) − (b|bδ) (y|b) − (a|δ) (y|ay) (y|b) − (b|b) (y|bδ) − (b|b) (x|δ) (y|xb) + (x|δ) (y|b) (y|xy)

+ (y|bδ) (y|y) + (y|b) (y|yδ) = 0

− (b|b) (b|xy) + (a|x) (b|ab) (b|y) − (b|xb) (b|y) (x|x) + (b|y) (y|xy)

− (a|x) (b|ay) (y|y) + (b|xy) (x|x) (y|y) = 0

(a|x) (b|ab) (b|b) − (b|b) (b|xb) − (b|b) (b|xb) (x|x) − (a|x) (b|ay) (y|b)

+ (b|xy) (x|x) (y|b) + (b|y) (y|xb) = 0
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− (b|ay) (b|b) + (a|a) (b|ab) (b|y) − (b|xb) (b|y) (x|a) + (b|y) (y|ay)

− (a|a) (b|ay) (y|y) + (b|xy) (x|a) (y|y) = 0

− (b|ab) (b|b) + (a|a) (b|ab) (b|b) − (b|b) (b|xb) (x|a) + (b|y) (y|ab)

− (a|a) (b|ay) (y|b) + (b|xy) (x|a) (y|b) = 0

(a|δ) (b|ab) (b|y) − (b|bδ) (b|y) − (b|b) (b|yδ) − (b|xb) (b|y) (x|δ) − (a|δ) (b|ay) (y|y) + (b|yδ) (y|y)

+ (b|xy) (x|δ) (y|y) + (b|y) (y|yδ) = 0

(a|δ) (b|ab) (b|b) − 2 (b|b) (b|bδ) − (b|b) (b|xb) (x|δ) − (a|δ) (b|ay) (y|b) + (b|yδ) (y|b)

+ (b|xy) (x|δ) (y|b) + (b|y) (y|bδ) = 0


