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We report on a successful implementation of a three-dimensional wavelet-based solver for the
Poisson equation with Dirichlet boundary conditions, optimized for use in particle-in-cell simula-
tions. The solver is based on the operator formulation of the conjugate gradient algorithm, for
which effectively diagonal preconditioners are available in wavelet bases. Due to the recursive na-
ture of PIC simulations, a good initial approximation to the iterative solution is always readily
available, which we demonstrate to be a key advantage in terms of overall computational speed.
While the Laplacian remains sparse in a wavelet representation, the wavelet-decomposed potential
and density can be rendered sparse through a procedure that amounts to simultaneous compression
and denoising of the data. We explain how this procedure can be carried out in a controlled and
near-optimal way, and show the effect it has on the overall solver performance. After testing the
solver in a stand-alone mode, we integrated it into the IMPACT-T beam dynamics particle-in-cell
code and extensively benchmarked it against the IMPACT-T with the “native” FFT-based Poisson
solver. We present and discuss these benchmarking results, as well as the results of modeling the
Fermi/NICADD photoinjector using IMPACT-T with the wavelet-based solver.

PACS numbers: 02.60.Cb, 07.05.Tp, 41.75.-i, 52.65.Rr

I. INTRODUCTION

Particle-in-Cell (PIC) simulation [1, 2] is a highly ef-
fective computational technique that has been used ex-
tensively in application areas as diverse as accelerator
physics [3], astrophysics and cosmology [4–10], plasma
physics [2, 11], heavy-ion-beam-driven inertial fusion [12],
hydrodynamics of compressible fluid flows [13], and semi-
conductor device design [14]. For systems such as charged
particle beams, the application domain of this paper, PIC
is often the method of choice due to its high speed and
memory efficiency.

In the PIC setting, there are several important advan-
tages to using a wavelet-based iterative Poisson solver.
One such advantage is the ability to use the solution
from the previous timestep as the initial approximation
used in solving the Poisson equation one timestep later:
this simple idea was found to have a dramatic effect on
the number of iterations to convergence. Another advan-
tage is that, in a variety of wavelet bases, the Poisson
operator remains sparse, while, unlike in the original ba-
sis, there also exist in wavelet bases effectively diagonal
preconditioners for the Poisson operator [15, 16]. This
combination of circumstances favors the use in PIC sim-
ulations of a (preconditioned) iterative algorithm such as
the conjugate gradient. Additionally, the inherently mul-
tiscale wavelet representation provides a natural setting
for the study of physical phenomena unfolding simulta-
neously on many, often widely separated, spatial scales.
One example is an onset and growth of the microbunch-
ing instability in high-intensity electron beams [17, 26].
For problems of this kind resolution requirements vary
considerably across the problem domain, and working in
a wavelet basis gives one the ability to use varying levels
of resolution in different regions in phase space, similar

to that afforded by adaptive mesh refinement techniques
[18, 19]. At the same time, to the extent that the un-
resolved part of the phase-space density distribution can
be identified with noise, different parts of the distribu-
tion can be, if necessary, denoised according to the local
thresholding criteria so as to improve computational ef-
ficiency without compromising simulation fidelity.

Finally, sampling the phase-space distribution den-
sity by a finite number of test particles, with subse-
quent mapping of the density onto the computational
grid, introduces sampling and discretization errors that
can be thought of as “numerical noise”. When density
and potential are wavelet-decomposed (an O(N) oper-
ation), a significant reduction in the data size can be
achieved by setting to zero all wavelet decomposition
coefficients whose magnitudes are below a certain pre-
selected threshold. This thresholding procedure amounts
to simultaneous compression and denoising of the poten-
tial and density data and can be put on a more rigorous
foundation by introducing an entropy-like penalty func-
tion that is used to select the best basis out of a suffi-
ciently broad library of bases [20–24]. In so doing, one is
also furnished with the “near-optimal” (in the sense that
can be made precise) value of the threshold. As described
in the body of the paper, we implemented a simplified
version of this approach so as to maximize computational
speed and minimize the adverse effect on performance of
the full library search. One of our goals was to gain a
better understanding of the properties and limitations of
this compression-and-denoising process, as well as of the
properties of sampling-and-deposition noise itself.

Certainly one principal motivation for developing a
wavelet-based Poisson solver is to take advantage of
wavelet compression. Wavelet compression enables com-
pact storage and easy recall of the beam history. In turn,
it facilitates simulations wherein the beam history is im-
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portant.

An example is simulating the influence of coherent syn-
chrotron radiation (CSR) on the beam as it transits mag-
netic bends in the accelerator lattice. Such bends are
unavoidable in, for example, recirculating linear acceler-
ators and bunch compressors. To compute the scalar
and vector potentials Φ(r, t) and A(r, t), respectively,
and hence the force acting on each particle, requires inte-
grating over the beam history to account for retardation
[25]:

Φ(r, t) = e

∫

dr′dt′
δ
(

t − t′ − 1
c |r − r

′|
)

|r − r′| n(r, t′), (1)

A(r, t) = e

∫

dr′dt′
δ
(

t − t′ − 1
c |r − r

′|
)

|r − r′|
v
′

c
n(r, t′).

Here, v
′ is the particle velocity evaluated at the retarded

time t′ and c is the speed of light. The idea is to evalu-
ate these potentials from the evolutionary history of the
charge density n(r, t) as the beam transits a magnetic
bend. The end result would be a fully three-dimensional
(3D) model of CSR, something that has been notoriously
difficult to achieve (for a survey of CSR codes see [27],
and references therein).

It is with such simulations in mind, combined with a
desire to preserve accurately the influence of the hierar-
chy of spatial scales on the space-charge force, and hence
on the overarching beam dynamics, that we proceed.

We formulated and implemented a 3D wavelet-based
solver for the Poisson equation with general (inhomo-
geneous: U 6= 0) Dirichlet boundary conditions (BCs),
optimized for use in PIC simulations. The solver is
based on the preconditioned conjugate gradient algo-
rithm. We built on previous implementations of wavelet-
based solvers for the Poisson equation with homogeneous
(U = 0) Dirichlet BCs in 1D [15] and periodic BCs in 1D,
2D and 3D [16, 28]. However, our formulation of the dis-
cretized 3D problem, which includes the treatment of the
inhomogeneous BCs and the Laplacian operator, differs
significantly from the periodized and homogeneous prob-
lem.

In Section II we describe formulating the Poisson equa-
tion on the grid and solving it using the wavelet-based ap-
proach. Section III is devoted to the detailed treatment
of noise in PIC simulations and wavelet-based methods
for its removal. In Section IV, we test the wavelet-
based solver by applying it two analytic potential-density
pairs of interest in beam dynamics and astrophysics. We
then proceed to replace the Green-function-based Poisson
solver in the IMPACT-T beam dynamics code [3, 29, 30],
designed and maintained at Lawrence Berkeley National
Laboratory, with the wavelet-based solver, and compare
results produced by the two Poisson solvers evolving the
same initial distributions through a real photoinjector.
Finally, we summarize the main results and discuss pos-
sible applications of the wavelet-based approach to prob-
lems in beam dynamics and astrophysics.

II. WAVELET-BASED POISSON SOLVER

Wavelets and wavelet transforms are a relatively new
concept, introduced in the 1980’s [31–35]. The discrete
wavelet transform (DWT), like the discrete Fourier trans-
form (DFT), is a fast, linear operation on data sets with
size of integer power of two in each dimension, result-
ing in a transformed data set of the same size. Just
like DFT, DWT is also invertible and orthogonal, with
the inverse transform in 1D being the transpose of the
transform. The most important difference between DFT
and DWT is that the individual wavelet functions are
localized in both frequency space (like DFT) and config-
uration space (similar to what windowed DFT attempts
to do). This kind of dual localization makes a number of
operators and functions sparse in the wavelet space. Es-
sential background on wavelets and wavelet transforms is
available in literature [31, 33, 35].

Almost from their inception, wavelets have been used
to solve partial differential equations (PDEs), elliptic in
particular [15, 16, 28, 31, 36]. An introduction to solving
PDEs, including Poisson’s equation, using wavelet for-
malism is provided in [31]. In the context of PIC solvers,
it is necessary to solve the 3D Poisson equation with gen-
eral (inhomogeneous) Dirichlet BCs, which we do herein.

The Poisson equation with Dirichlet BCs is given by

∆u = f, ubnd = g (2)

where ∆ is the continuous Laplacian operator, and ubnd

is defined only on the boundary. The problem is then
discretized and can be solved using a number of concep-
tually different approaches. A wavelvet-based approach
that we present in this paper possesses a number of im-
portant advantages.

There are four main reasons that a wavelet-based Pois-
son solver is of interest:

1. Solving the problem in wavelet space enables re-
taining information about the dynamics over the
hierarchy of scales spanned by the wavelet expan-
sion.

2. Wavelet formulation also allows for natural removal
of numerical noise (denoising) by thresholding of
the wavelet coefficients.

3. By the same token, relevant data sets (the parti-
cle distribution and potential) can be represented
compactly using only a fraction of the wavelet co-
efficients.

4. Finally, there are three significant advantages to
carrying out the inversion of the Laplacian in the
transform space, as opposed to the original coordi-
nate space of the problem. The first one is that the
wavelet-decomposed Laplacian remains symmetric
and sparse, so that an iterative method such as con-
jugate gradient (CG), which references the sparse L
only through multiplication, immediately becomes
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attractive. The second advantage is that precon-
ditioners exist that are effectively diagonal in the
transform space. The third advantage of employing
an iterative solver in a PIC simulation comes from
the nature of the simulation process itself: the Pois-
son equation is solved repeatedly, once per simula-
tion timestep, with the source term changing only
slightly from one solve to the next. This means
that every time the Poisson equation is solved, the
solution from the previous timestep can serve as
a reasonable initial approximation to the solution,
and the number of iterations necessary to converge
to the solution will be significantly reduced.

The new solver is outlined in Fig. 1.

A. Discretizing the Physical Problem

The Poisson equation solved by PIC codes is defined on
a computational grid which contains all the particles used
in the simulation. The discretization takes the Poisson
equation with Dirichlet BCs from its continuous form
given in Eq. (2) to

LU = F, Ubnd = G (3)

where the Laplacian operator L, potential U , and density
F are all defined on the computational grid, and G is
specified on the surface of the grid.

In this paper, the discretized Laplacian operator L is
given in terms of the finite difference scheme involving a
3-point stencil:

L ≡ Lx + Ly + Lz

≡ h−2
x (δ−x − 2 + δ+

x )

+ h−2
y (δ−y − 2 + δ+

y )

+ h−2
z (δ−z − 2 + δ+

z ), (4)

where δ− and δ+ are backward and forward shift oper-
ators, respectively, in the coordinate noted in the sub-
script. hx, hy, and hz denote grid spacing in x-, y- and
z-coordinates, respectively. The approximation to the
second derivative, say, Dxx provided by the above finite
difference 3-point stencil is a second-order approxima-
tion:

Dxx = h−2
x (δ−x − 2 + δ+

x ) + O(h2
x). (5)

Since exp(iω) and exp(−iω) are the eigenvalues of δ+

and δ−, respectively, the spectral response of the 3-point
discretized Laplacian is given by the transfer function
S(ω):

Sx(ω) = e−iω − 2 + eiω (6)

= −(2 − 2 cosω).

Figure 2 shows the transfer function for the continuous
operator ∆ (solid line) and for the discretized operator Lx

with a 3-point stencil (dotted line). (Alternatively, the
discretization of the physical problem can be done with
finite-element methods, but that is beyond the scope of
this paper. We will further explore this possibility in
future versions of the algorithm.)

B. Preconditioned Conjugate Gradient Method:
Preconditioning and Convergence Rate

Equation (3) represents a well-known problem in nu-
merical analysis. It can be solved using a number of
iterative methods, such as multigrid, successive over-
relaxation, Gauss-Seidel, Jacobi, steepest descent, or CG.
For the work presented here, we generalized to three di-
mensions the preconditioned conjugate gradient (PCG)
method [37, 38], because it best harnesses advantages af-
forded by operator preconditioning in wavelet space and
a “smart” initial approximation.

The PCG method updates the initial solution along
the conjugate directions until the exit requirement

|LU − F |2 ≤ ε2 |F |2 , (7)

is satisfied in the 2-norm | |2. The convergence rate of
the method is dependent on the condition number κ of
the operator L, defined as the ratio of the largest and
smallest eigenvalues:

∣

∣U − U i
∣

∣

2
≤

(√
κ − 1√
κ + 1

)i

|U |2 , (8)

where U i is the approximation to the exact solution U
after the ith iteration. The closer the condition number is
to unity, the faster the approximation U i approaches the
exact solution U . The condition number of the Laplacian
operator L on a grid is proportional to the square of the
grid resolution (number of grid points in each coordinate)
Ni, i.e., κ(L) ∝ O(N2

i ). More precisely, the condition
number for the 3-point finite-difference stencil is given
by

κ =
4

2 − 2 cos (π/Ni)
. (9)

Large condition numbers lead to slow convergence.
However, in wavelet space, there is an effectively diagonal
preconditioner P for the wavelet-transformed Laplacian
operator Lw [15]. In 1D, it is given by a Ni ×Ni matrix

Pk,l = 2jδk,l, (10)

with 1 ≤ j ≤ n, where n = log2 Ni, and k and l are
such that Ni/2j−1 ≥ k, l ≥ Ni/2j + 1 and PNi,Ni

= Ni

(see Fig. 3). This preconditioner, which becomes di-
agonal wavelet-space, was used to reduce the condition
number of the periodized Laplacian operator to O(1)
[15, 16, 28]. Applying a preconditioner to data is equiv-
alent to multiplying the wavelet-transformed data wi′
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FIG. 1: Flow-chart outlining the wavelet-based Poisson equation solver. The physical space is shown in white boxes, and the
wavelet space in gray. First, the continuous Poisson equation with Dirichlet BCs is discretized on the finite grid in physical
space, thus reducing it to a discrete linear algebra problem. Next, the problem is transformed to wavelet space using discrete
wavelet transforms (WT), where the efficient, diagonal preconditioner (P) was applied to the wavelet-transformed Laplacian
operator Lw. Then, still in wavelet space, the wavelet-thresholding is applied to the source and the preconditioned Laplacian
operator. The resulting linear algebra problem is then solved in wavelet space using a standard preconditioned conjugate
gradient (PCG) method and a “smart” guess provided by the solution to the Poisson equation at the previous step in the PIC
simulation (see Section IIB). Finally, the solution on the grid in wavelet space is transformed using inverse wavelet transform
(iWT) to yield the solution on the grid in physical space.

(i′ = 1, ..., Ndata) by Pi′ ,i′ . Similarly, in 3D, applying
a preconditioner to wavelet-transformed data is equiv-
alent to multiplying each wavelet coefficient wi′,j′,k′ by
P = min (Pi′,i′ , Pj′,j′ , Pk′ ,k′). The preconditioner effec-
tively “bunches up” the eigenvalues of the system, thus
reducing the ratio between the largest and the smallest
one.

After transforming to wavelet space (denoted by the
subscript w) and preconditioning, the linear algebraic
problem in Eq. (3) then becomes

(PLwP )
(

P−1Uw

)

= PFw. (11)

The preconditioner P reduces the condition number of

the Laplacian operator with inhomogeneous Dirichlet
BCs in wavelet space to κ(PLwP ) ∝ O(Ni), thereby
greatly improving the convergence rate. We also observe
that, whereas after preconditioning the condition number
becomes ∝ O(Ni), the ratio between the second largest
and the smallest eigenvalue is roughly constant, indicat-
ing that all but the largest eigenvalue are of the same
order. Figure 4 shows the condition numbers, includ-
ing the ratio between the second largest and the smallest
eigenvalues, as a function of grid resolution Ni.

The number of iterations needed to attain a certain
predefined accuracy also depends on how close the ini-
tial approximation is to the solution. With the possible
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FIG. 2: Transfer function S(ω) for the continuous operator ∆
(solid line) and for the discretized operator L with a 3-point
stencil (dotted line). ωN is the Nyquist frequency, the highest
frequency representable at a given grid resolution.

FIG. 3: 1D diagonal preconditioner Pi,j for Ni = 32 used
for decreasing the condition number of the Ni × Ni wavelet-
transformed Laplacian operator Lw.

exception of the very first timestep, one does not expect
significant changes in the potential from one instant in
time t = ti to the next t = ti +∆t. Thus, the potential at
t = ti serves as a good initial approximation for the con-
jugate gradient iteration at the next timestep t = ti +∆t.

The computational speedup due to operator precondi-
tioning and a good initial approximation is illustrated in
Fig. 5. Using the distribution at the previous step of the
simulation as the initial (“smart”) approximation at the

FIG. 4: Condition number κ for the discretized Laplacian
operator with a 3-point stencil as a function of the resolution
Ni: for the non-preconditioned operator (solid circles; super-
imposed against a solid line ∝ N2

i ); for the operator precondi-
tioned in wavelet space of Daubechies family of order 2 (empty
circles; superimposed against a dotted line ∝ Ni). Asterisks
denote the ratio of the second largest to the smallest eigen-
values after preconditioning in wavelet space of Daubechies
family of order 2 (dashed line is ∝ const.).

next step greatly reduces the number of iterations needed
for convergence. Figure 5 shows the number of iterations
for the first 2000 steps of the simulations of the Fer-
milab/NICADD photoinjector using: no preconditioning
and zero initial approximation (green line); precondition-
ing and zero initial approximation (blue line); no precon-
ditioning and “smart initial approximation” (red line);
and preconditioning and “smart initial approximation”
(black line). Taking the potential at the previous step as
the initial approximation at the next step causes the PCG
to compute only the (small) difference between two con-
secutive steps, usually taking only a few iterations. This
is a significant improvement over the number of iterations
needed for convergence with zero initial approximation.
In both cases, the number of iterations is appreciably
larger when preconditioning is turned off.

C. Implementing Boundary Conditions

We take the beam to pass through a grounded rectan-
gular pipe. Over the four walls of the pipe, U = 0, and
the two open ends through which the beam passes have
open BCs, U(z → ∞) → 0. We choose the compu-
tational grid to have transverse dimensions several (gen-
erally 4-6) times smaller than those of the pipe, and we
compute the potential over the six surfaces of this grid
using a Green function while satisfying the constraints
on U that the pipe imposes. Accordingly, the compu-
tation of BCs reduces to solving the following system of
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FIG. 5: Number of iterations of the PCG algorithm for the
first 2000 steps of a realistic simulation: no preconditioning
and zero initial approximation (green line), preconditioning
and zero initial approximation (blue line), no preconditioning
and “smart initial approximation” (red line), and precondi-
tioning and “smart initial approximation” (black line). The
simulation is done using IMPACT-T PIC code and the Dis-

tribution 1 on the Fermilab/NICADD photoinjector (as de-
scribed later in the text), with N = 125000 particles, resolu-
tion Ni = 32 and Daubechies wavelets of order 2. The compu-
tational speedup is quite similar when wavelet thresholding is
performed (with and without) the Anscombe transformation.
Other wavelet families exhibit the same qualitative behavior.
Averages for the entire 30000-step run are: 75.2 for the green
line, 60.7 for the blue line, 4.8 for the red line, and 2.4 for the
black line.

equations:

ρlm(z) =
4

AB

A
∫

0

B
∫

0

ρ(x, y, z) sin(αlx) sin(βmy)dydx,

(12)

∂2φlm(z)

∂z2
− γ2

lmφlm(z) = −ρlm(z)

ε0
, (13)

φ(x, y, z) =

Mx
∑

l=1

My
∑

m=1

φlm(z) sin(αlx) sin(βmy), (14)

where ρ is the charge distribution, φ is the potential, αl =
lπ/A, βm = mπ/B, γ2

lm = α2
l + β2

m, and the geometry
of the pipe is given by 0 ≤ x ≤ A and 0 ≤ y ≤ B
[29]. Equation (14) is evaluated only on the surface of
the computational grid, and for the predefined number
of expansion coefficients Mx and My, thus yielding Ubnd

from Eq. (3). This is only one of the ways to compute
the potential on the surface of the grid.

An alternative to grounded-rectangular-pipe BCs is
a grounded cylindrical pipe (which is not implemented
here). In the case of a cylindrical pipe, the computation
of BCs reduces to solving

ρlm(z) =
1

πR2
wall

Rwall
∫

0

Jl(ξlmR)

2π
∫

0

ρ(R, θ, z)dθdR, (15)

∂2φlm(z)

∂z2
− ξ2

lmφlm(z) = −ρlm(z)

ε0
, (16)

φ(R, z) =

Mx
∑

l=1

My
∑

m=1

φlm(z)Jl(ξlmR), (17)

where ξlm = jm
l /Rwall and jm

l is the mth root of the lth

Bessel function of the first order Jl(x) (finite at x = 0).
The inhomogeneous Dirichlet boundary-value problem

in Eq. (3) has been made equivalent to the homogeneous
one by transferring the inhomogeneous boundary-value
terms to the source:

F̃ = F − h−2
x (G(hx, 0, 0) + G(N1hx, 0, 0)) (18)

− h−2
y (G(0, hy, 0) + G(0, N2hy, 0))

− h−2
z (G(0, 0, hz) + G(0, 0, N3hz)) ,

where N1, N2 and N3 are grid resolutions in x-, y- and
z-directions, respectively [39]. After this adjustment,
Eq. (7), which assumes U = 0 outside the computational
grid, can be used to iteratively solve the problem for U .

III. NOISE IN PIC SIMULATIONS

The sources of numerical noise in PIC simulations are:
i) sampling noise: the number of simulation particles is
orders of magnitude smaller than the number of parti-
cles in the physical system Nphysical (≈ 1010 − 1011); and
ii) discrete computational domain: all physical quantities
are defined on a discrete, finite-resolution grid instead of
the space-time continuum.

Thresholding the wavelet coefficients can remove the
smallest-scale fluctuations usually associated with nu-
merical noise. However, essential physics that must be
captured in a typical PIC simulation includes various
instabilities and fine structure/substructure formation.
These processes owe their existence to the coupling be-
tween multiple spatial scales on which the system’s dy-
namics unfolds. Uncontrolled denoising carries with it
the obvious danger of “smoothing out” the fine-scale de-
tails that serve as seeds for the onset of these very real
processes. Although we do not explore this subject in
the present study, there are numerous indications that
properly implemented adaptive denoising can enable sig-
nificant reduction in the size of the relevant data sets
without compromising the solver’s ability to resolve the
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physically important multiscale aspects of the system’s
dynamics.

The aims of this Section are: i) to investigate the ori-
gin of noise in generic PIC simulations; ii) to devise and
implement a wavelet-based noise-removing scheme in the
context of beam dynamics simulations; and iii) to use
“toy” models to illustrate the effectiveness of such de-
noising.

A. Origin and Generic Properties of Noise

In PIC simulations, N particles sampling a charge dis-
tribution are deposited on a Cartesian computational
grid with resolution Ni, and grid spacing hi, i = 1, ..., D,
in each coordinate of the D-dimensional system, for the

total of Ngrid ≡
D
∏

i=1

Ni grid points. The average num-

ber of particles per grid point in a simulation is de-
fined as Nppg ≡ N/Ngrid (since the number of cells is

Ncells ≡
D
∏

i=1

(Ni − 1) and the average number of par-

ticles per cell is defined as Nppc ≡ N/Ncell, Nppg and
Nppc are close). In a given realization with the to-
tal number of particles being N , there are nj particles
inside a V -neighborhood of the jth grid point, where
V = [(−h1/2, h1/2), (−h2/2, h2/2), ..., (−hD/2, hD/2)].
Each particle has the same charge q0 ≡ Qtot/N , where

Qtot =
Ngrid
∑

j=1

qj is the total bunch charge and qj = q0nj is

the charge in the V -neighborhood of the jth grid point.
There are two important particle-deposition schemes

in PIC simulations:

1. Nearest Grid Point Deposition Scheme (NGP DS),
whereby a particle only contributes to the near-
est grid point, with the particle-deposition function
centered at each particle (see Fig. 6):

dNGP (x) =

{

q0 if |xi| ≤ hi/2 for all i
0 otherwise

, (19)

where xi, i = 1, 2, ..., D are coordinates; and

2. Cloud-In-Cell Deposition Scheme (CIC DS), where
a particle linearly contributes to each of the vertices
(grid points) of the cell it occupies (2 vertices in 1D,
4 in 2D, 8 in 3D), for which the particle-deposition
function, centered at each particle, is given by (see
Fig. 6):

dCIC(x) = q0

D
∏

i=1

(

1 − |xi|
hi

)

. (20)

In the NGP DS, the probability of a particle being
deposited in the V -neighborhood of the jth grid point is
given by the binomial distribution

P (nj = n|pj) =
N !

n!(N − n)!
pn

j (1 − pj)
N−n, (21)

FIG. 6: Deposition functions dNGP (x) (solid line) and
dCIC(x) (dashed line) in 1D. x denotes the location of each
particle. The NGP DS affects only the nearest grid point to
which it deposits all of its charge. The CIC DS affects the
two closest grid points in each coordinate, as discussed in the
text. Filled circles represent grid points.

where pj ≡ n̄j/N and n̄j is the expectation of the number
of particles in the V -neighborhood of the jth grid point.
In the limit of large N , as pertains to N -body simula-
tions, the binomial distribution converges to the Poisson
distribution with mean n̄j :

P (nj = n|pj) =
n̄n

j e−n̄j

n!
, (22)

where n is an integer.
In what follows, we make use of a “global” measure

of the error associated with the sampling-and-deposition
noise, defined as the algebraic average of variances:

σ2 ≡ 1

Ngrid

Ngrid
∑

i=1

V ar(qi). (23)

For the two particle-deposition schemes considered in this
paper, their values are (cf. Appendix A):

σ2
NGP ≈ q2

0N

Ngrid
=

Q2
tot

NNgrid
, (24)

for the NGP DS, and

σ2
CIC ≈ a2q2

0N

Ngrid
=

a2Q2
tot

NNgrid
, (25)

for the CIC DS, where

a =

(

2

3

)D/2

. (26)

The noise distribution for the CIC DS is therefore a con-

tracted Poissonian, given by Eq. (22) with nj → anj .
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FIG. 7: For the 3D superimposed Gaussians model (top row)
and the polynomial model (bottom row), numerically com-
puted noise distribution over a single noisy realization (solid
lines) versus distribution predicted by Eq. (22) (dashed lines)
for both the NGP DS (left column) and the CIC DS (right
column). Nppg = 6, and Ni = 32. The abscissa represents
error, defined as the difference in the number of particles in
a V -neighborhood of a grid point between the exact distribu-
tion and a randomly sampled noisy distribution. Note that
the graphs for CIC DS and NGP DS would nearly overlap if
the abscissa of the NGP DS were contracted by a factor a.

To summarize, the algebraic average of variances of
noise in a PIC simulation depends sensitively on the pa-
rameters of the simulation and the particle-deposition
scheme and only very weakly on the particle distribution
(cf. Appendix A). For the types of simulations arising
in beam dynamics, this weak dependence appears to be
negligible.

We now demonstrate these findings on analytically
known particle distributions, randomly sampled by N
particles. To reiterate: the validity and applicability of
our findings, however, depend only weakly on our knowl-
edge of the exact distribution. This means that this dis-
cussion on noise in PIC simulations, as well as denoising
via wavelet thresholding to be presented later in this Sec-
tion, are generic and should apply to realistic simulations
of beams.

For our demonstration, we choose three different ana-
lytic particle distributions:

1. superimposed Gaussians, modeling a cathode with

“hot spots” [48]:

F (x, y, z) =

NGauss
∑

i=1

Aie
−m2

i , (27)

m2
i =

(

x − x0
i

ai

)2

+

(

y − y0
i

bi

)2

+

(

z − z0
i

ci

)2

,

where x ∈ [−2, 2], y ∈ [−2, 2], z ∈ [−0.7, 0.7],
NGauss = 3, Ai = [1.0, 0.5, 0.4], ai = [1.0, 0.2, 0.1],
bi = [1.0, 0.2, 0.1], ci = [0.4, 0.07, 0.05], x0

i =
[0.0, 0.5,−0.5], y0

i = [0.0, 0.5,−0.5], z0
i =

[0.0, 0.0, 0.0];

2. a smooth polynomial distribution:

F1D(x) = (x2 − x)(x − x1) (28)

F2D(x, y) = (x2 − x)(x − x1)fy

+ (y2 − y)(y − y1)fx,

F3D(x, y, z) = (x2 − x)(x − x1)fyfz

+ (y2 − y)(y − y1)fxfz

+ (z2 − z)(z − z1)fxfy,

fq =
1

12

[

−q4 + 2(q1 + q2)q
3 − 6q1q2q

2 + cqq + dq

]

,

cq = (q1 + q2)
[

6q1q2 − (q1 + q2)
2
]

,

dq = q1q2

[

−5q1q2 + (q1 + q2)
2
]

,

where q ≡ {x, y, z}, x ∈ [−2, 2], y ∈ [−2, 2], z ∈
[−0.7, 0.7], x1 = −2, x2 = 2, y1 = 2, y2 = −2,
z1 = −0.7, z2 = 0.7; and

3. a constant distribution:

F (x, y, z) = 1, (29)

where x ∈ [−2, 2], y ∈ [−2, 2], z ∈ [−0.7, 0.7].

Figure 7 shows numerically computed distributions of
noise for the first two analytic distributions, versus the
distribution predicted by Eq. (22), for both the NGP
DS and the CIC DS. Agreement between the two is ex-
cellent, within the statistically allowed variations, thus
validating that the noise distribution for the NGP DS
is well-approximated by Eq. (22), and for the CIC DS
by Eq. (22) with n → an. Therefore, the noise in a
discretized charge distribution is, to a good approxima-
tion, a superposition of Ngrid Poisson distributions for
the NGP DS, and a superposition of Ngrid Poisson dis-
tributions contracted by a factor a for the CIC DS.

The (near-)independence of the standard deviation of
noise on types of particle distribution is demonstrated
in Fig. 8. The relations given in Eqs. (24)-(25) are con-
firmed because, from Fig. 8,

σNGP Ngrid/Qtot ≈ N−1/2
ppg , (30)
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σCICNgrid/Qtot ≈ aN−1/2
ppg , (31)

for all three particle distributions. The deviations from

the N
−1/2
ppg law for the NGP DS with Ngrid = 32 for the

superimposed Gaussians and polynomial distribution re-
flect the presence of elongated “tails” of the error distri-
bution. They are due to a significant number of outlying
grid points in the distribution having very little charge,
on average less than the charge of a single particle, which
induces large local sampling errors. This problem is less
severe for the CIC DS because its intrinsic smoothing
spans a volume 2D times larger than the volume of the
NGP DS.

B. Quantifying Noise Level and Denoising

Whenever the distribution is explicitly known, the
quality of the noisy signal can be quantified via Signal-
to-Noise Ratio (SNR), which is defined as [4, 5]

SNR ≡











Ngrid
∑

i=1

q̄2
i

Ngrid
∑

i=1

(q̄i − qi)2











1/2

. (32)

The relationship between the SNR and the stan-
dard deviation of noise σ for the two particle-deposition
schemes is found to be (cf. Appendix B):

SNRNGP ≈ r

σNGP N
1/2
grid

=
r

Qtot
N1/2

ppg, (33)

SNRCIC ≈ r

σCICN
1/2
grid

=
r

aQtot
N1/2

ppg, (34)

where r is a constant dependent on the charge distribu-

tion. From Eqs. (33)-(34), we see that SNR ∝ N
1/2
ppg,

which is a well-known result. Equations (33)-(34) also
state that for the same particle distribution, the CIC DS
will yield a less noisy result than NGP DS, quantified by

a−1 times higher SNR (≈ 1.22, 1.5 and 1.84, for 1D, 2D,
3D, respectively), which shows the smoothing property
of the CIC DS.

Whenever the SNR can be computed, one can also
compute the denoising factor DF , which is defined to be
the ratio of the SNR of the signal after the denoising is
applied and the SNR of the original signal. It is also
related to the ratio of the standard deviations of noise
before and after denoising [5]:

DF ≡ SNRdenoised

SNRnoisy
=

σnoisy

σdenoised
. (35)

Combining Eqs. (33)-(34) and (35), one finds that the

quality of a denoised signal, as measured by the SNR,

represented with Nppg particles per grid point is equiva-

lent to a non-denoised signal with (DF )2Nppg particles

per grid point [5]. This is true regardless of the dimen-
sionality of the simulation.

C. Noise Removal by Wavelet Thresholding in a
Fixed Basis

Denoising in 2D PIC simulations using a fixed wavelet
basis was first done by Romeo and collaborators [4, 5].
(However, we remain unconvinced of the generality of
that work’s central claim that simulations of dynamical
evolution of nontrivial systems where fine scale structure
gives rise to instabilities can, by virtue of denoising in
a fixed wavelet basis, “become equivalent to simulations
with two orders of magnitude more particles” [4].)

After transforming noisy data to wavelet space, the sig-
nal is generally represented by a smaller number of large
coefficients, while the noise is largely mapped to many
small wavelet coefficients. Wavelet thresholding is a pro-
cess whereby the contribution of the wavelet coefficients
deemed to represent noise is eliminated.

Two commonly used thresholding procedures are:

1. hard thresholding, where the coefficients with mag-
nitudes below certain threshold T > 0 are set to
zero:

w̄i =

{

wi if |wi| > T
0 if |wi| ≤ T

, (36)

or

2. soft thresholding, where the coefficients with mag-
nitudes below certain threshold T > 0 are set to
zero and the ones above it contracted by T :

w̄i =

{

sign(wi) ||wi| − T | if |wi| > T
0 if |wi| ≤ T

. (37)

The threshold can be chosen in an objective way by fol-
lowing a procedure detailed in [20–24], where an entropy-
like objective (“cost”, “risk”, “penalty”) function is in-
troduced to search for the best basis out the library of
bases. The underlying idea is that the components of
the signal (density) that correlate well with at least some
basis functions in one or more bases will be represented
compactly in that basis, with a small number of non-
negligible coefficients; and the components of the signal
(density) that do not correlate with any basis functions in
any basis are identified with noise. The procedure elim-
inates the need for a subjective choice of the threshold
(indeed, it yields a near-optimal value of T ), and allows
for quantitative statements in regards to the fidelity of
the estimation of the denoised/compressed signal from its
noisy realization. Alternatively, one could rely on phys-
ical arguments to choose the threshold, as is often done
in practice.

The most widely used noise threshold in the literature
[4, 20, 21, 40] is given in terms of the standard deviation
σ of the noise as

T =
√

2 logNgrid σ. (38)

This is a universal threshold for signals with Gaussian
white noise, which means that no better noise removal
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FIG. 8: For each of the three particle distributions [superimposed Gaussians (top row), polynomial (middle row) and constant
(bottom row), in 1D (left column), 2D (middle column), and 3D (right column)], the normalized standard deviation of noise
(σNgrid/Qtot) for a single random noisy realization as a function of the average number of particles per grid point (Nppg). The
red lines represent the NGP DS and blue the CIC DS.

can be obtained for all signals in all wavelet bases. It
leads to noise removal which is within a small factor of
ideal denoising [20, 21]. A number of variations on this
threshold are shown to perform better in removing dif-
ferent features from a known noisy signal (cf. [40] and
references therein).

Studies of wavelet denoising usually involve dis-
tributions contaminated with additive (distribution-
independent) Gaussian noise [20, 21, 40]. However, in the
previous Section, we showed that the noise in PIC simu-
lations is Poisson-distributed (and weakly distribution-
dependent). The basic assumption behind denoising
techniques is that, regardless of the details of the noise,
the small-scale fluctuations due to noise map to small-
scale members of the wavelet family.

One way to assure that the wavelet thresholding the-
ory outlined in earlier work directly applies to PIC sim-
ulations is to transform Poissonian-distributed density
data into an approximately Gaussian distribution. This
is achieved by using a variance-stabilizing transformation
due to Anscombe [41] (see also [5, 42–45]).

XG = 2

√

XP +
3

8
, (39)

which transforms a Poisson-distributed signal XP into an
approximately Gaussian-distributed signal XG with unit
variance and mean

mG =

√

mP +
3

8
− 1

8m
1/2
P

+
1

64m
3/2
P

, (40)
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with mP being the mean of the Poissonian signal. Ap-
plying the transformation in Eq. (39) produces a bias
in the data [4, 5, 41], which can be removed by ensuring
that the denoised and noisy data have the same mean (in
simulations, this is equivalent to enforcing charge conser-
vation).

When the number of particles per grid point in the PIC
simulation is too low, the noise exhibits a departure from
the Poissonian profile, and the transformation (39) is no
longer applicable. The CIC DS is less sensitive to the low
particle count because it essentially averages out particle
counts (which is what NGP DS is) over 2D neighboring
grid points. Similar averaging over several grid points
(as a part of a Radon transform) has been used to alle-
viate the problem of low particle counts in astronomical
image representation [45]. The rationale is that the sum
of the independent Poisson random variables is a Poisson
random variable with intensity equal to the sum of the
individual intensities [45].

After the Anscombe transformation is applied to data
contaminated with Poisson noise as in Eq. (22), the re-
sulting data is approximately normally distributed, with
variance σNGP = 1 for the NGP DS. For the CIC DS,
the data distribution is a contracted Poissonian, given by
Eq. (22) with nj → anj , which means that the resulting
variance will be appropriately contracted by a factor a,
i.e., σCIC = a. Combining these with Eq. (38) yields
optimal noise thresholds for the Anscombe-transformed
(variance-stabilized) data:

TNGP =
√

2 logNgrid, (41)

TCIC =
√

2 logNgrid a. (42)

We also looked for a threshold in the form of T̃ =
β(Ngrid)σ for data without the Anscombe transforma-
tion. The best approximation to the threshold at which
the SNR(T ) is maximized is empirically found to be
β(Ngrid) = 2

√

log Ngrid. The resulting optimal thresh-
olds for Poissonian data without Anscombe transforma-
tion for the two particle-deposition schemes are then
given by:

T̃NGP = 2
√

log Ngrid
Qtot

(NNgrid)1/2
, (43)

T̃CIC = 2
√

log Ngrid
aQtot

(NNgrid)1/2
. (44)

Thresholds for non-transformed data in Eqs. (43)-(44)
play a role analogous to that of thresholds in Eqs. (41)-
(42) for Anscombe-transformed data (cf. Fig. 9).

In Fig. 9, we show the efficiency of wavelet denois-
ing, quantified by the DF given in Eq. (35), as a func-
tion of the thresholding parameter T for the superim-
posed Gaussians model, for both Anscombe-transformed
(dashed lines) and non-transformed (solid lines) data.

The wavelet coefficients of a noisy realization are sorted
by magnitudes, hard-thresholded with T in the interval
[|wi|min , |wi|max], wavelet-transformed back to physical
space, and their resulting SNRdenoised divided by the
SNRnoisy of the noisy realization to yield DF (T ). The
Figure shows results for the realizations with Nppg = 1
(first column), Nppg = 5 (second column) on a Ni = 32
grid and Nppg = 1 (third column), Nppg = 5 (fourth col-
umn) on a Ni = 64 grid. Top row represents the NGP DS
and bottom the CIC DS. The thresholds TNGP (dashed)

and T̃NGP (solid) are shown as vertical lines in the top

row, and TCIC (dashed) and T̃CIC (solid) as vertical lines
in the bottom row.

We observe that the thresholds for both transformed
and non-transformed data, given in Eqs. (41)-(44), are
extremely close to the ideal threshold at which the DF
peaks. It is also apparent that denoising is at most only
marginally more efficient when the Anscombe transfor-
mation is applied. The same qualitative behavior of the
SNR as a function of the threshold T , as well as ex-
cellent agreement between the predicted noise threshold
and the computed threshold at which the maximum in
SNR occurs (also found for the other analytical mod-
els we studied), point to the generality of the findings.
Recall Eqs. (33)-(34) states that for the same charge dis-
tribution CIC DS will have 1/a ≈ 1.84 (in 3D) times
higher SNR, which means that the relative comparison
of SNR for the two particle-deposition schemes can be
achieved by multiplying the y-values in the bottom row
by 1.84.

In implementing the algorithm, we arranged that one
of the run-time options in the simulation is whether the
data is Anscombe-transformed or not (see Table I).

We can generalize the findings of our study of analyt-
ical models to derive “reasonable expectations” on the
efficiency of wavelet thresholding. From the work pre-
sented in this Section, which we observe to hold for the
three sufficiently different model particle distributions,
we can induce the following: i) as the number of parti-
cles in the simulation N increases, the particle distribu-
tion, as expected, becomes less noisy, and denoising by
thresholding becomes less effective, because there is less
noise to remove; ii) for the same average number of par-
ticles per grid point Nppg, the effectiveness of denoising
increases with resolution Ni; iii) CIC DS provides data
smoothing, which removes some of the original noise and
thus reduces the effectiveness of denoising by threshold-
ing; iv) the thresholds reported earlier in the Section are
excellent approximations to the ideal threshold that max-
imizes the denoising factor DF for charge distributions
in a typical beam simulation. Based on these generaliza-
tions, we can conjecture that simulations using a Poisson
solver with wavelet-thresholding will inherently have less
noise than those done with conventional solvers. How-
ever, it is not possible to quantify directly via the SNR
the effectiveness of denoising in PIC simulations, where
the “exact” signal is not known. One can conceivably
run simulations with varying number of particles and grid
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FIG. 9: Denoising factor (DF ), defined in Eq. (35), as a function of the threshold T for the superimposed Gaussians model
with: Ni = 32 and Nppg = 1 (first column); Ni = 32 and Nppg = 5 (second column); Ni = 64 and Nppg = 1 (third column);
Ni = 64 and Nppg = 5 (fourth column). Daubechies wavelets of order 2 used. The NGP DS is given in the top row, and
the CIC DS in the bottom. Dashed lines represent thresholding with Anscombe transformation, and solid lines thresholding
without Anscombe transformation. The vertical lines denote their corresponding thresholds predicted by Eqs. (41)-(44): TNGP

(dashed lines) and T̃NGP (solid lines) in the top row, and TCIC (dashed lines) and T̃CIC (solid lines) in the bottom row.

resolution, both with and without wavelet thresholding,
to detect empirically the denoising effects. This study is
currently underway, and we will report results in a sepa-
rate publication. An example of such a comparison can
be seen in our Figs. 15-16. Alternatively, one can im-
plement the full library search and best basis selection
approach as discussed in [20–23].

IV. APPLICATIONS

Our goal has been to develop a wavelet-based Poisson
solver that can be easily merged into existing PIC codes
for multiparticle dynamics simulations. As the first step
toward that goal, we tested the PCG as a stand-alone
Poisson solver.

A. Testing the PCG Solver

We tested the PCG solver on two idealized particle
distributions, one from stellar dynamics and the other
from beam dynamics. We used the PCG solver to com-
pute the potential associated with the Plummer spherical
stellar distribution [46] (Fig. 10). Both the density and

potential are analytically known and are given by

F (r) =
3

(1 + r2)5/2
, U(r) = − 1√

1 + r2
, (45)

where r =
√

x2 + y2 + z2. Here we applied open BCs,
which is the natural choice for self-gravitating systems.
The potential on the surface of the rectangular compu-
tational grid is specified analytically. The bottom pan-
els of Fig. 10 demonstrate the substantial computational
speedup gained by preconditioning.

We then applied the algorithm in a more realistic set-
ting in which only the particle distribution is analyti-
cally known, and where the potential on the surface of
the computational grid is computed using the analyti-
cally known Green function (Fig. 11). The density is
an axially symmetric “fuzzy cigar”-shaped distribution
of charged particles (mimicking a “beam bunch”) given
by

F (x, y, z) = d1(R)d2(z), (46)

d1(R) =







1 0 ≤ R ≤ R1,
(R−R2)

2[R−(3R1−2R2)]
2

4(R1−R2)4
R1 ≤ R ≤ R2,

0 otherwise,

(47)
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FIG. 10: Plummer spherical particle distribution (top left) and corresponding potential (top right) at the waist (z ≈ 0)
obtained using the PCG solver. The lower panels show two convergence criteria - correction at the next iteration (bottom
left) and the norm of the residual of the difference equation (bottom right) - with (solid line) and without (dashed line) the
preconditioner. A poor initial approximation was chosen: U(x, t = 0) = 0.

d2(z) =



















1 z12 ≤ z ≤ z21,
(z−z1)

2[z−(3z12−2z1)]
2

4(z12−z2)4
z1 ≤ z ≤ z12,

(z−z2)
2[z−(3z21−2z2)]

2

4(z21−z2)4
z21 ≤ z ≤ z2,

0 otherwise,

(48)

where the beam parameters R1, R2, z1, z2, z12, z21 are
chosen so that 0 ≤ R1 < R2 and z1 < z12 ≤ z21 < z2. We
applied BCs of a grounded rectangular pipe in the trans-
verse direction (i.e., U = 0 on the pipe walls), and open
in the longitudinal (z) direction. As was true for the case
of the Plummer sphere, a high-accuracy solution is ob-
tained in about 30 iterations with preconditioning, and
60 iterations without preconditioning. (In both cases,

U0 = 0 was used as the initial approximation. In Sec-
tion II B, we demonstrated that, when a Poisson solver
is used as a part of a PIC simulation, a practical, com-
putationally near-optimal way to reduce the number of
iterations needed for convergence is to use the solution
from the previous timestep as an initial approximation
at the current timestep.)

B. Integrating PCG into IMPACT-T Code

Upon testing the PCG as a stand-alone Poisson solver,
we replaced the standard FFT-based Poisson solver in
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FIG. 11: Transverse particle distribution (top left) and corresponding potential (top right) at the waist (z ≈ 0) of the “fuzzy
cigar” obtained using the PCG solver. The lower panels show two convergence criteria - correction at the next iteration (bottom
left) and the norm of the residual of the difference equation (bottom right) - with (solid line) and without (dashed line) the
preconditioner. A poor initial approximation was chosen: U(x, t = 0) = 0.

the serial version of IMPACT-T [3, 29] with the PCG
solver. We chose IMPACT-T because it is a modu-
lar, state-of-the-art code for beam dynamics simulations,
with ever-increasing popularity in the accelerator com-
munity. However, the PCG solver is by no means limited
to IMPACT-T – it has been designed to be easily inte-
grated into PIC codes in general.

As we have mentioned already, our approach involves
the introduction of an auxiliary computational grid that
envelops the beam bunch fairy tightly, and whose bound-
aries do not coincide with the boundaries of the physical
system (i.e., the pipe walls) on which the BCs are pre-
scribed. This means that the BCs on the surface of the

computational grid must be calculated before the Poisson
solver is invoked to compute the potential in the grid’s
interior. In our solver, this is accomplished by using the
Green function appropriate for the case of zero poten-
tial on the pipe walls and open BCs in the z-direction.
The parameters Mx and My specify the number of Green-
function expansion coefficients in the x- and y-directions,
respectively.

We use routines for manipulating sparse matrices,
which reduce computational load whenever the Lapla-
cian operator is sparse.

We show all new parameters required by the PCG Pois-
son solver in Table I. Other parameters, such as the grid



15

text code parameter recommended range or allowed values
Mx Mx number of Green expansion functions in x-coord. ≈ Ni

My My number of Green expansion functions in y-coord. ≈ Ni

Niter maximum number of iterations of the PCG 200
ε eps PCG exit requirement tolerance 10−5 − 10−4

thresh L threshold for the wavelet-transformed Laplacian 10−14 − 10−10

wtype wavelet family 2, 3, 6, 10 (Daub); 54, 56, 58 (coif); 61, 62, 63 (sym)
thr charge threshold charge distribution 0 (no), 1 (yes)
den type denoising type 0 (with Anscombe transform), 1 (without)
thr type thresholding type 0 (hard), 1 (soft)
rat x ratio of sizes of pipe and computational box in x-coord. 4-6 (integer valued)
rat y ratio of sizes of pipe and computational box in y-coord. 4-6 (integer valued)
ispar sparse matrix multiplication 0 (disabled), 1 (enabled)

TABLE I: Parameters required for the PCG Poisson equation solver within IMPACT-T.

resolution (Ni), grid size (hx, hy, hz), the number of
particles (N), are passed to the solver routine from the
driver.

For the simulations presented here, we use hard thresh-
olding, Mx = My = 30 and ε = 5 × 10−5.

C. Code Benchmarking: IMPACT-T with PCG vs.
FFT-Based IMPACT-T

We tested the resulting wavelet-based code in a realis-
tic setting by modeling the Fermilab/NICADD photoin-
jector [49] with a nonuniform initial particle distribution
at the cathode, and comparing the simulation results to
actual laboratory measurements. In addition, we per-
formed extensive benchmarking of the PCG- against the
FFT-based IMPACT-T, so as to verify that the two codes
produce consistent results. We also compare their perfor-
mance and point out the advantages of the new wavelet-
based Poisson solver.

To verify agreement between the space-charge compu-
tation of the two versions of the code, we tested them
on two highly nonuniform transverse initial distributions:
i) a considerably nonuniform and asymmetric distribu-
tion generated from a real laboratory snapshot of the
laser-illuminated photocathode in an actual experiment
under suboptimal conditions (Distribution 1); and ii) a
5-beamlet quincunx distribution that can be made by
masking the photocathode (Distribution 2) [47]. We ex-
pect that the non-uniformity and asymmetry of the initial
transverse beam distribution will strongly enhance space-
charge effects vis-á-vis a uniform transverse distribution,
thereby “stressing” the Poisson solvers.

We compare numerical results from simulations of
these two distributions using IMPACT-T with PCG and
the serial version of the FFT-based IMPACT-T code on
several important points: i) rms properties of the beam,
ii) phase-space detail, and iii) computational speed.

Figure 12 shows the rms properties of the beam in
the Fermilab/NICADD photoinjector for Distribution 1

simulated by FFT-based IMPACT-T (black lines), and
IMPACT-T with PCG: without thresholding (green line),

thresholded after Anscombe transform (blue line), and
thresholded without Anscombe transform (red line). Fig-
ure 13 shows the same for the Distribution 2. The
agreement in rms properties between the FFT-based
IMPACT-T and IMPACT-T with PCG is excellent, to
within a few percent.

For Distribution 1, the beam size in the experiment was
measured at different positions of the beam line. Figure
14 compares experiment with numerical simulations us-
ing FFT-based IMPACT-T (red line) and IMPACT-T
with PCG (blue line).

These results clearly demonstrate that simulations us-
ing both the wavelet-based Poisson solver and the FFT-
based solver are in excellent agreement with regard to
the computation of beam moments. They also match
the measured rms beam size reasonably well.

Figures 15-16 show, for the two distributions, inte-
grated transverse cross-sections of the beam at differ-
ent positions down the beamline. Detailed agreement
between FFT-based IMPACT-T and IMPACT-T with
PCG in the configuration space is clearly very good, even
when the number of macroparticles in the latter is 5 times
smaller (also resulting in simulation times being signifi-
cantly shorter).

Keeping all parameters of the simulation and the
number of macroparticles the same, the computational
speed of IMPACT-T with PCG is comparable to that
of FFT-based IMPACT-T. Since fast wavelet transforms
scale as ∝ O(MNgrid), transforms with wavelet fami-
lies having larger-size support M take longer to perform,
yield denser operators, and consequently adversely af-
fect the computational speed. Figure 17 shows the rela-
tive execution times of different “variants” of IMPACT-T
with PCG (no thresholding, thresholding with Anscombe
transform, and thresholding without Anscombe trans-
form) relative to the speed of the serial FFT-based
IMPACT-T for a 30000-step simulation with Distribu-

tion 1 initial conditions in the Fermilab/NICADD pho-
toinjector. We observe that the fastest simulations are
achieved with wavelets having smallest compact support,
as expected. However, simulations with Daubechies fam-
ily of order 6 (M = 12) are faster than some simulations
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FIG. 12: Distribution 1: Simulation results for the Fermilab/NICADD photoinjector performed with Ni = 32, N = 200000,
and the standard version of IMPACT-T (black), IMPACT-T with PCG without denoising (green), IMPACT-T with PCG
with thresholding and Anscombe transformation (blue), and IMPACT-T with PCG with thresholding and without Anscombe
transformation (red): rms beam radius (top left, panel a), rms normalized transverse emittance (top right, panel b; note
that the ordinate is magnified), rms bunch length (bottom left, panel c; note that the ordinate is magnified), rms normalized
longitudinal emittance (bottom right, panel d). For IMPACT-T with PCG, we use Daubechies wavelets of order 2 (M = 4).

with wavelet families having smaller support because the
convergence of the PCG algorithm at each step of the
simulation requires fewer iterations (see Fig. 18).

D. Operator and Data Compression

Formulating the Poisson equation in wavelet space ren-
ders operators and data sets sparse. We exploit this
sparsity by implementing routines for manipulation of
sparse matrices where applicable, which correspondingly

reduces the computational load of the algorithm.

A good choice of a wavelet family should provide
a compact representation of the signal. The work of
Donoho and Johnstone [20, 21] demonstrated that for
a given application there exist the “ideal” wavelet basis
in which the entropy-like “risk” (“cost”) function is min-
imized and optimal compression is achieved. The closer
the actual basis is to the “ideal” basis, the better the
compression that results. In Fig. 19, we compare frac-
tions of wavelet coefficients of the charge retained after
thresholding in a typical realistic simulation on a Ni = 32
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FIG. 13: Distribution 2: The same as in Fig. 12, only for Distribution 2.

grid with N = 125000 particles for 10 different wavelet
families.

Figure 20 shows the average sparsity of the parti-
cle distribution in a typical simulation of the Fermi-
lab/NICADD photoinjector done with IMPACT-T with
PCG on Ni = 32 and Ni = 64 grids (top two rows; left
and right, respectively), the same Nppg = 4.58 and with
10 different wavelet families. The sparsity of the Lapla-
cian operator in wavelet space is shown in the bottom
row.

We find that the average fraction of wavelet coeffi-
cients retained after thresholding is somewhat smaller for
Anscombe-transformed data. Also, the average fraction
of coefficients retained after thresholding halves as the
resolution is doubled, while the number of particles per
grid point remains fixed, for both Anscombe-transformed

and non-transformed data.

For these simulations, optimal compression requires,
on average, only about 3.7% (2.0%) coefficients from
the full expansion, i.e. about 1212 out of 32768 (about
5243 out of 262144) for thresholding after applying the
Anscombe transform and about 6.1% (3.5%), i.e. about
1999 of 32768 (about 9175 out of 262144) for thresh-
olding without the Anscombe transform on a Ni = 32
(Ni = 64) grid. When the number of particles per grid
point Nppg is reduced, the fraction of coefficients retained
after thresholding decreases, because the particle distri-
bution becomes more noisy, and thresholding is more effi-
cient in both compression and noise removal (cf. Section
III).

Therefore, one might expect an even more compact
representation of density for simulations with lower Nppg.
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FIG. 14: Distribution 1: rms beam radius for the Fermi-
lab/NICADD photoinjector: as measured in the lab (black
dots) and as simulated with FFT-based IMPACT-T (red) and
IMPACT-T with PCG (blue). Numerical simulations were
done on a Ni = 32 grid and with N = 200000 particles,
Daubechies wavelets of order 2 and no thresholding. The
configuration of the lattice is different from the one used to
generate Fig. 12

These results are generally valid as long as Nppg is large
enough to resolve the relevant fine-scale structure in the
physical distribution.

V. DISCUSSION AND CONCLUSION

We developed a 3D wavelet-based solver for the Pois-
son equation with Dirichlet BCs and optimized it for
use in PIC simulations. The work represents a natu-
ral extension of the earlier work done on wavelet-based
preconditioned conjugate gradient solvers for the Pois-
son equation with periodized or homogeneous Dirichlet
BCs [15, 16, 28]. Whereas some of the methodology and
treatment presented here was first reported elsewhere,
our formulation of the discretized problem, treatment of
BCs and the Laplacian operator is appreciably different
from the periodized or homogeneous Dirichlet problem.
To our knowledge, the work reported here constitutes the
first application of the wavelet-based multiscale method-
ology to 3D computer simulations in beam dynamics.

We employ wavelet thresholding to remove effects of
numerical noise from simulations. We expect that in sim-
ulations where errors associated with graininess of the
distribution function dominate, this denoising procedure
will translate into greatly improved overall simulation fi-
delity.

Having first tested our method as a stand-alone solver
on two model problems, we then merged it into IMPACT-
T to obtain a fully functional serial PIC code. We

found that photoinjector simulations performed using
IMPACT-T with the “native” Poisson solver (based
on Green functions and fast Fourier transforms) and
IMPACT-T with the PCG solver described in this pa-
per produce essentially equivalent outcomes (in terms
of a standard set of rms diagnostics and transverse
beam spots). This result enables us to move from the
proof-of-concept stage to the advanced optimization and
application-specific algorithm design.

Our results confirm the expectation that one can
achieve significant compression of the charge density data
in realistic simulations. As seen in Fig. 19, for each of
the 10 wavelet bases tested for this paper, of the order
of only 5% or less of the total number of wavelet coef-
ficients remained non-zero after thresholding carried out
according to prescription in [20]. Consistent with the fact
that dynamical evolution in these simulations did not in-
volve development of instabilities, none of the 10 bases
is clearly preferable to others at any point throughout
the simulation. (In terms of overall computational speed,
Daubechies families of order 2 and 6 enjoy a moderate ad-
vantage, as seen in Fig. 17). The above comparison can
be thought of as a (intentionally) simplified version of the
full basis-library search approach of Coifman, Meyer, and
Wickerhauser [22, 23]; clearly, one would like to use the
same basis throughout the simulation and avoid, if pos-
sible, a full library search at every timestep. However, it
is our expectation that an entropy-based basis selection
process will be indispensable in simulations where insta-
bilities such as microbunching are prominently present.
While subjective choice of a basis carries with it an ob-
vious danger of “smoothing away” the physically impor-
tant fine-scale structure that serves as a seed for the in-
stability growth, the search for best basis based on a
clearly defined objective function allows for simultane-
ous compression and denoising, along with a quantifiable
degree of certainty that what has been discarded is ac-
tually noise. We plan to apply and further explore these
ideas in simulations where longitudinal space charge- and
CSR-driven microbunching instability is important.

Our current efforts are focused on several areas that en-
compass both algorithm optimization and applications.
On the optimization side, we continue work on im-
plementing procedures for storage and manipulation of
sparse operators and data sets, which will directly trans-
late into increased computational efficiency. We are also
exploring ways to compute more efficiently the potential
on the boundary of the computational grid (as distinct
from the physical boundaries of the system), so as to
reduce the computational overhead at each step of the
simulation. Finally, we have yet to address the complex
issues of solver parallelization for use with the parallel
version of IMPACT-T on multiprocessor machines.

On the side of applications, we are working on apply-
ing the multiscale wavelet formulation to the problem of
high-precision 3D modeling of CSR and its effects on the
dynamics of beams in a variety of accelerator systems.
Our solver can also be integrated into existing PIC codes
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FIG. 15: Distribution 1: Integrated transverse cross-section of the beam at different positions down the beamline for Fermi-
lab/NICADD photoinjector simulations with FFT-based IMPACT-T with N = 200000 (first row), and IMPACT-T with PCG
with N = 40000: with no thresholding (second row), with Anscombe transforms and thresholding (third row), with thresholding
(fourth row). First column shows the transverse cross-section of the beam leaving the cathode, second at z = 1 m, third at
z = 2 m, and fourth at z = 4 m. Grid resolution is Ni = 32. Daubechies wavelets of order 2 are used.

for modeling self-gravitating systems, such as star clus-
ters, galaxies, or clusters of galaxies. We therefore plan
to cross into astrophysics, which will provide an impor-
tant field of application of our solver.
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FIG. 16: Distribution 2: The same as in Fig. 15, only for Distribution 2 and z = 2 m (second column), z = 4 m (third column),
and z = 6 m (fourth column).
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APPENDIX A: VARIANCE OF NOISE FOR THE
NGP AND CIC DEPOSITION SCHEMES

In this Appendix we consider the process of sampling
a continuous charge density distribution by N particles,
with subsequent deposition of the charge onto a grid. We
limit discussion to the NGP and CIC particle-deposition
schemes. Our goal is to calculate the expectation and
variance of Q(i), the aggregate charge assigned to the ith

node of the lattice, in the two schemes. It is assumed
that each particle carries the same charge q0 ≡ Qtot/N .

The aggregate charge Q(i) deposited onto the node i
can be viewed as the sum of N independent and identi-
cally distributed random variables {Q1, ..., QN}:

Q(i) =

N
∑

k=1

Qk; (A1)

it may be convenient to visualize the sampling process
as particles being added one at a time. All {Qk} are
then distributed as the “prototype” random variable Q,
the charge assigned to the node i when a new particle is
added to the sample. For notational convenience, we also
introduce an auxiliary variable I , which assumes value 1
if the sampled position of a Qk is within the support
Ω(i) of the charge particle-deposition function of the CIC

method, centered on the node i, and zero value other-
wise. (For both NGP and CIC, Ω(i) is defined to be a
D-dimensional cube of edge length 2h, centered on the
node i).

In what follows, we assume that the mesh is sufficiently
fine for the probability density function to be approxi-
mated by a linear function on Ω(i). With this assump-
tion, one readily finds

E[Q|I = 1] = q02
−D, E[Q2|I = 1] = q2

02
−D (A2)

and

V ar(Q|I = 1) =

(

1

2D
− 1

4D

)

q2
0 (A3)

for the NGP DS, and similarly

E[Q|I = 1] = q02
−D, E[Q2|I = 1] = q2

03
−D (A4)

and

V ar(Q|I = 1) =

(

1

3D
− 1

4D

)

q2
0 (A5)

for the CIC DS. Clearly, E[Q|I = 0] = 0 and V ar(Q|I =
0) = 0 for both NGP DS and CIC DS.

We now introduce a new random variable K, the num-
ber of particles for which I = 1; for a given realization,
K will assume a value k between 0 and N (0 ≤ k ≤ N).
For a given k,

E[Q(i)|K = k] = kE[Q|I = 1] (A6)

and

V ar(Q(i)|K = k) = kV ar(Q|I = 1), (A7)

since the {Q1, ..., QN} are independent and identically
distributed (as Q). Since K itself is a random variable,
the expectation and variance of Q(i) has to be calculated
using the double expectation theorem:

E[Q(i)] = E[E[Q(i)|K]] = E[K]E[Q|I = 1], (A8)

V ar(Q(i)) = E[V ar(Q(i)|K)] + V ar(E[Q(i)|K]) (A9)

= E[K]V ar(Q|I = 1) + (E[Q|I = 1])2V ar(K).

E[K] and V ar(K) that enter the expressions above
can be calculated by noting that K is the number of
“successes” (I = 1) in a series of N trials, so that it
is distributed according to a binomial distribution with
“probability of success” Pi equal to the continuous prob-
ability density function integrated over the Ω(i):

E[K] = NPi, (A10)

V ar(K) = NPi(1 − Pi). (A11)

Analogously to Pi, one can define pi as the value of the
integral of the continuous probability density over ω(i),
a D-dimensional cube of edge length h centered on the
node i. With this notation,

Pi ≈ 2Dpi, (A12)
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and, combining Eqs. (A2), (A4), (A8), (A10) and (A12),
we finally obtain

E[Q(i)] = q0Npi (A13)

for both NGP DS and CIC DS, and, combining
Eqs. (A2)-(A5), (A9)-(A12),

V ar(Q(i)) = q2
0NPi

(

1

2D
− Pi

4D

)

≈ q2
0Npi(1 − pi)

(A14)
for the NGP DS,

V ar(Q(i)) = q2
0NPi

(

1

3D
− Pi

4D

)

≈ q2
0Npi

[

(

2

3

)D

− pi

]

(A15)
for the CIC DS.

One possible “global” measure of the error associ-
ated with sampling-and-deposition noise is the norm-like
quantity

σ2 ≡ 1

Ngrid

Ngrid
∑

i=1

V ar(Q(i)). (A16)

In a typical beam dynamics PIC simulation, the charge
density distribution hardly ever possesses highly promi-
nent, strongly localized peaks; in addition, the grid is
always adjusted so as to minimize (or, at least, greatly
reduce) the number of grid points in the regions of zero
density. This means that, although

1

Ngrid
≤

Ngrid
∑

i=1

p2
i ≤ 1, (A17)

(where the lower bound is attained for the uniform distri-
bution, and the upper bound is reached when the whole
distribution is assigned to a single node), in practice the
sum in Eq. (A17) is O(1/Ngrid), and can be neglected in
computing σ2 using Eq. (A16). With this simplification,
for the two particle-deposition schemes considered here
we obtain

σ2
NGP ≈ q2

0N

Ngrid
=

Q2
tot

NNgrid
(A18)

and

σ2
CIC ≈

(

2

3

)D
q2
0N

Ngrid
=

(

2

3

)D
Q2

tot

NNgrid
. (A19)

APPENDIX B: RELATING SNR TO THE
STANDARD DEVIATION OF NOISE σ

Combining Eq. (23) with Eq. (32), we obtain

SNR =

[

Ngrid
∑

i=1

q̄2
i

]1/2

σNgrid
≡ R(Ngrid)

σNgrid
. (B1)

In a PIC simulation, the total charge is conserved for
each resolution level:

Qtot ≡
Ngrid
∑

i=1

q̄i =

Ngrid
∑

i=1

qi = const. (B2)

This means that as the grid is refined from the resolution
level k − 1 to k, where the number of grid points in each
coordinate is Nk

i = 2k, and the total number of grid
points is Ngrid = 2Dk, the contribution of the points on
the coarser grid will be about 1/2D of the new total. The
new, refined grid can be viewed as a superposition of 2D

coarse grids appropriately shifted. If one assumes that
all such shifted grids have the same properties, which
is quite reasonable considering that they all sample the
same charge distribution,

Qtot ≡
2Dk

∑

i=1

q̄k,i ≈ 2D
2D(k−1)

∑

i=1

1

2D
q̄k−1,i (B3)

then

R2(2Dk) ≡
2Dk

∑

i=1

q̄2
k,i ≈ 2D

2D(k−1)
∑

i=1

(

1

2D
q̄k−1,i

)2

(B4)

= 2−D
2D(k−1)

∑

i=1

q̄2
k−1,i = 2−DR2(2D(k−1))

≈ 2−kDR2(20) ≡ r2N−1
grid,

which means that

R(Ngrid) ≈ rN
−1/2
grid , (B5)

where r is essentially a constant which depends on the
distribution q. Combining the relationship given in
Eq. (B5) with Eq. (B1) and Eqs. (24)-(25) establishes the
inverse relationship between the SNR and the standard
deviation of noise for both particle-deposition schemes:

SNRNGP ≈ r

σNGP Ngrid
=

rN1/2

QtotN
1/2
grid

=
r

Qtot
N1/2

ppg,

(B6)

SNRCIC ≈ r

σCICN
1/2
grid

=
rN1/2

aQtotN
1/2
grid

=
r

aQtot

N1/2
ppg.

(B7)

We have thus affirmed that SNR ∝ N
1/2
ppg, which is well

known.


