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ABSTRACT 
 

Modeling and Visualizing the Particle Beam in the Rare Isotope Accelerator.  CHRIS 

ROSENTHAL (Illinois Institute of Technology, Chicago, IL 60616) BELA ERDELYI (Argonne 

National Laboratory, Argonne, IL 60439). 

 

Argonne National Laboratory is actively pursuing research and design for a Rare Isotope 

Accelerator (RIA) facility that will aid basic research in nuclear physics by creating beams of 

unstable isotopes. Such a facility has been labeled as a high priority by the joint Department of 

Energy and National Science Foundation Nuclear Science Advisory Committee because it will 

allow more study on the nature of nucleonic matter, the origin of the elements, the Standard 

Model, and nuclear medicine. An important part of this research is computer simulations that 

model the behavior of the particle beam, specifically in the Fragment Separator. The Fragment 

Separator selects isotopes based on their trajectory in electromagnetic fields and then uses 

absorbers to separate particles with a certain mass and charge from the rest of the beam. This 

project focused on the development of a multivariate, correlated Gaussian distribution to model 

the distribution of particles in the beam as well as visualizations and analysis to view how this 

distribution changed when passing through an absorber. The distribution was developed in the 

COSY INFINITY programming language. The user inputs a covariance matrix and a vector of 

means for the six phase space variables, and the program outputs a vector of correlated, Gaussian 

random variables. A variety of random test cases were conducted in two, three and six variables. 

In each case, the expectation values, variances and covariances were calculated and they 

converged to the input values. The output of the absorber code is a large data set that stores all of 

the variables for each particle in the distribution. It is impossible to analyze such a large data set 
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by hand, so visualizations and summary statistics had to be developed. The first visualization is a 

three-dimensional graph that shows the number of each isotope present after each slice of the 

absorber. A second graph plots any of the six phase space variables against any of the others to 

see the change in the beam’s distribution. Also, the expectation values, variances and 

covariances of the phase space variables were calculated after the absorber. The distribution that 

models the particle beam gives the variability that physicists need to simulate many different 

situations in the Fragment Separator. The statistics and visualizations will allow quick analysis of 

the particle beam. Both of these developments will contribute to the overall viability of the RIA 

proposal. 
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INTRODUCTION 

Argonne National Laboratory (ANL) is actively pursuing research and design for a Rare 

Isotope Accelerator (RIA) facility that will aid basic research in nuclear physics.   The joint 

Department of Energy (DOE) and National Science Foundation (NSF) Nuclear Science Advisory 

Committee stated in their long range plan that “The Rare Isotope Accelerator (RIA) is our 

highest priority for major new construction” [8].  RIA will allow further study on the nature of 

nucleonic matter, the origin of the elements, the Standard Model, and nuclear medicine.  It will 

make this research possible by creating beams of unstable, short-lived isotopes for scientific 

analysis. 

There is a lot of planning that goes into the design for such a facility.  An important part 

of this design is the creation of a computer model of the beam line.  In the Fragment Separator, 

isotopes with a specific mass over charge ratio are selected based on their trajectories in 

electromagnetic fields.  Those with the same mass over charge ratio are further separated by an 

absorber that allows for the selection of a specific isotope by decoupling mass and charge.  This 

project focuses on modeling and visualizing the particle beam in the Fragment Separator.   

The development of such a model requires a multivariate, correlated Gaussian 

distribution to model the particle beam before it passes through the absorber.  Each particle in the 

distribution is given six variables (phase space variables) that track its position, momentum, and 

energy.  This distribution will allow physicists to vary the dependence and mean of the six 

phase-space variables as they run simulations.  This type of flexibility will make it possible to 

test the fragment separator in a variety of conditions as research is done to design RIA. 

As the beam passes through the absorber, the particle distribution changes and new 

particles are developed.  Currently, very large output files of numbers are created as the result of 
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the absorber simulation.  An extension was written to represent the data meaningfully in a 

graphic form and calculate statistics on the large data set.  This will allow physicists and non-

physicists alike to make quick and accurate analysis of the particle beam distribution generated 

by the fragment separator model. 

These two important pieces, creating a multivariate, correlated Gaussian distribution and 

generating graphics to show how the distribution that models the particle beam changes, will be 

integrated into the existing model in the COSY INFINITY language.  “COSY INFINITY is an 

arbitrary order beam dynamics simulation and analysis code.  It allows the study of accelerator 

lattices, spectrographs, beamlines, electron microscopes, and many other devices” [7].  It is 

especially useful in the Fragment Separator simulations because its implementation of 

differential algebra allows it to quickly compute high-order derivatives.   

MATERIALS AND METHODS 

The development of the Gaussian distribution that models the particle beam required 

research in both mathematics and computer science.  A random vector [ ]NXXX ,...,1=  follows 

a multivariate, Gaussian distribution [6], [12], [13] if there is a vector [ ]Nµµµ ,...,1=  and a 

symmetric, positive definite covariance matrix S (N x N matrix) such that X has density 
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where , , …,  are the variances of the Gaussian variants and , 

, …, are the covariances. 
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Next, a linear transformation A was applied to X, such that AXY = and .  This meant 

that
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This allowed the density function to be rewritten as 
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 Then Y could generate a correlated Gaussian distribution centered at zero.  In order to 

allow for any mean as an input, Z was defined as a function of µ and S where 

.µ+= YZ  

 Based on this theory, the COSY function developed took a covariance matrix, S, as an 

input to describe the dependence between the Gaussian random variables that were generated.  

The other inputs were the number of variables (n), and a vector (µ ) containing the desired 

means for the variables.  It output the vector Z as a set of correlated Gaussian random variables.  

Generally, it is expected for this calculation to be done in a six-dimensional phase space, but the 

algorithm was generalized for any number of variables. 

 In order to develop such a function, first the covariance matrix S was diagonalized and 

the diagonalization matrix T was stored.  Then, n independent Gaussian random variables were 

generated, using the Eigen values of S as the variances.  Finally, T was multiplied by W, where 

W was the vector formed by the independent Gaussian random variables, and the resulting vector 

was output as a set of correlated Gaussian random variables [9]. 

COSY has a built-in function that writes a matrix as B-1DB, where D is a diagonal matrix 

with the Eigen values on the diagonal.  This Jordan decomposition of sorts was rewritten for 

better integration with the model and to decompose the matrix into the form BDB-1.  However, 

this decomposition does not guarantee that the transformation matrix B is orthogonal.  Without 

this guarantee, BDB-1 does not have to equal the decomposition for S, ADAT.  Therefore, a new 

decomposition, the Schur decomposition which writes a matrix as ADAT (with A being 
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orthogonal) was needed.  To transform from the Jordan BDB-1 form available in COSY to the 

Schur ADAT form needed, the following calculation was performed: 

.1−== BDBADAS T  
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Therefore, the transformation was concisely written as 

.)( 1−= BBBA T  

 Now that the covariance matrix was diagonalized in the proper form, the next step was 

creating the independent Gaussian random variables.  This was done with the Box-Muller 

transform [11].  Given r and φ independently, uniformly distributed random variables in (0,1], 

then 

,)ln(2)2cos(0 rz −⋅= πϕ  
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where z0 is the Gaussian random variable.  A procedure was written in COSY to generate a 

Gaussian random variable based on this transformation and taking a desired variance and mean.  

In this case the variance was the Eigen value from the covariance matrix. 

 Finally, the diagonalization matrix, T, obtained after changing the Jordan decomposition 

to the Schur decomposition was multiplied by the vector of independent, Gaussian random 

variables and this created a vector of correlated, Gaussian random variables.  This procedure was 

then called many times, and the results were analyzed to determine their validity.   

 In order to generate valid covariance matrices to input as test cases, another math 

theorem was used.  If a matrix A is an m x n real matrix with m > n, then A can be written using 

a singular value decomposition of the form   In this case, U is an m x n matrix and V 

is an n x n square matrix, both of which have orthogonal columns such that and 

D is a n x n diagonal matrix [10].  This decomposition was used to generate orthogonal matrices 

(U,V) which could then be used with a diagonal matrix containing the test Eigen values to 

generate a symmetric, diagonalizable test covariance matrix S. 

.TUDVA =

,IVVUU TT ==

 As part of the testing, a statistics procedure was written to recalculate the expectation 

values, variances, and covariances produced and display them alongside the expected input 

values.  Optimizations were added to this computationally intensive code so that the memory for 

the calculation arrays was dynamically allocated.  Another enhancement took advantage of the 

symmetric nature of the covariance matrix, only calculating the upper half of the covariance 

matrix and thereby cutting the runtime of the statistics calculation nearly in half. 

 After completing work on the particle distribution to model the beam before the absorber, 

the project focused on visualizing and analyzing the output files produced by the absorber 

simulation code.  An isotope file is created after each slice of the absorber that shows how many 
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of each type of isotope are present in the beam.  A particle file is created for each isotope present 

in the beam after the last slice and it contains the six phase space variables for each particle of 

that type. 

 Procedures were written in COSY to read in this data, calculate statistics on the data set, 

and visualize the important elements.  The expectation values, variances and covariances were 

calculated for each of the phase space variables.  These values summarized large amounts of data 

and were output to a single file.  One visualization was developed in three-dimensions to show 

the amount of each type of isotope present after each slice of the absorber.  Another visualization 

plots any of the phase space variables against any other phase space variable.  The statistics and 

visualizations were tested with a variety of cases to ensure that they would be accurate 

representations of the data set. 

RESULTS 

The multivariate, correlated Gaussian distribution was developed with the following two-

variable test case [9].  The covariance matrix S, was given as   The Eigen values of S 

are 
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 This test case was used until it was shown that the Eigen values and Eigen vectors could 

be calculated correctly in order to create correlated, Gaussian random numbers.  The 

uncorrelated random variables were created with the Box-Muller transform from a uniform 

random number generator.  However, when tested with 25,000 iterations centered at 100, the 

uniform random number generator was not perfectly uniform (Figure 1).  This non-uniformity 

introduces a small amount of error. 

 The next test was to see if the distribution of one variable was indeed Gaussian.  A single, 

Gaussian, random variable was created using the Box-Muller transform 25,000 times and the 

distribution is shown in Figure 2.  The bell curve is instantly recognizable. 

 A procedure was written to generate somewhat random test cases in two, three and six 

variables.  In the two variable case, rotation matrices were used as orthogonal matrices to create 

symmetric, diagonalizable covariance matrices to use as inputs.  These rotation matrices were of 

the form .  The three variable tests were also created from orthogonal 

matrices.  These were generated in Mathematica® and were of the form 
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The six-variable tests took advantage of the singular-value decomposition to create 6 x 6 

orthogonal matrices that could be used to generate valid covariance matrices.  All of these cases 

created the covariance matrix from an orthogonal matrix A by multiplying , where D 

was a diagonal matrix with the Eigen values on the diagonal. 

ADA **1−

 While many tests were run in two, three, and six variables during development, an 

example of a typical six variable test is as follows.  The covariance matrix generated is given in 
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Figure 7.  The rounded input Eigen values in the D matrix were 12.469, 4.0517, 13.839, 10.531, 

18.005, and 6.1554.  After the matrix was decomposed, the Eigen values were output and they 

were exactly the same out to 15 significant digits.  The input covariance matrix was also 

recalculated and it was exactly the same out to 14 significant digits.  The Jordan transformation 

matrix is given in Figure 8 and the Schur transformation matrix is given in Figure 9.   

 The test created 25,000 sets of six correlated, Gaussian random variables.  All of the 

expectation values were set to zero and the output expectation values are given in Table 1.  The 

variances and covariances were also calculated and the results are shown in Table 2.  These 

variances and covariances should converge to the values given in the input covariance matrix. 

 Other tests were conducted to examine the correlation of two variables.  Figure 3 shows 

two variables with a correlation coefficient of zero.  Figure 4 shows a perfect correlation, where 

the coefficient is one.  Figures 5 and 6 show correlations of 
3
2 and 

4
3

− .  With 25,000 pairs of 

correlated, Gaussian variables in each figure, the shape of the correlation can be seen. 

 The visualizations were checked to ensure that they were accurate and usable in many 

situations.  The 3D isotope visualization was developed with a small data set of three slices.  The 

test data set can be seen in Table 3.  Figure 10 shows the number of each type of isotope present 

before slice one.  Figures 11 and 12 show the number of each type present before slices two and 

three.  Figure 13 shows the final results after slice three.  Each isotope was represented in the 

proper location with a scaled bar to show its height.  The scales on the axes adjusted 

appropriately and new isotopes did show up in the correct locations on subsequent slices. 

 A larger data set with ten slices was also run and the final graph can be seen in Figure 14.  

The isotopes with the top five yields have been colored and the rest are dark blue.  A filter was 
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created to allow physicists to focus on a particular subset of data, and an example of this can be 

seen in Figure 15 where only isotopes with a mass greater than 110 are considered. 

 The 2D plots of any one phase space variable against any other phase space variable were 

tested by using this filtering capability to reduce the data to a very small set.  Adding in one 

particle at a time, it could be seen that the scale was correct and the plot was a good 

representation of the data set.  Figure 16 shows X versus Y, which is the horizontal position of 

the particle versus the vertical position.  This is like looking right at the particle beam.  The data 

set is the same as the ten slice run from Figures 14.  The colors of each dot correspond to the 

colors given to each isotope in Figure 14.  Figure 17 shows X versus A, the horizontal position 

versus the horizontal momentum. 

 The final test was to make sure that the expectation values, variances and covariances 

that summarized all of the particle data in the particle files were accurate.  This was done in a 

similar fashion, were the data set was first filtered to one particle.  Then, as each particle was 

added, the new statistics were calculated by hand and confirmed. 

DISCUSSION AND CONCLUSION 

 The major question was what was causing the small amounts of error in the Gaussian 

distribution.  It is estimated that most of the error in the calculations is due to the non-uniformity 

of the random number generator (Figure 1).  Another generator that is included in COSY 

(RERAN) was tested, but was actually a bit worse (Figure 18).  However, the amount of error 

was small and the distribution will still be quite useful for running a variety of simulations in 

RIA’s Fragment Separator.  Also, the visualizations and statistics will make it possible for 

physicists to analyze the results of different types of absorbers.  Both of these will contribute to 

the research necessary to design a Rare Isotope Accelerator. 
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TABLES AND FIGRUES 
 

 Input Expectation Value Experimental Expectation 
Value (25,000 iterations) 

E(X) 0.00000000000000 -.1164935988960410E-001 
E(A) 0.00000000000000 -.2874439761976170E-001 
E(Y) 0.00000000000000 .5855313062040197E-002 
E(B) 0.00000000000000 -.1004700561425346E-001 
E(L) 0.00000000000000 .4222684426054750E-002 
E(D) 0.00000000000000 -.1427094209738337E-001 

Table 1 – Expectation Values 
 

 X A Y B L D 
X 10.671 .20779 -1.4274 .34818 2.6728 1.3420 
A  11.307 .69172 4.0452 -2.0736 -2.6828 
Y   9.2482 2.3314 1.8719 1.9073 
B    11.326 1.4360 -2.1624 
L     9.2897 -.80201 
D      13.138 

Table 2 – Variances and Covariances 
 

 Before slice 1 Before slice 2 Before slice 3 After slice 3 
 Mass Charge Count Mass Charge Count Mass Charge Count Mass Charge Count
1 132 50 1500 132 50 1200 132 50 1400 132 50 1700 
2 100 38 1200 100 38 1100 100 38 1300 100 38 1000 
3 180 10 1000 180 10 1050 180 10 800 180 10 900 
4 58 80 800 58 80 900 58 80 400 58 80 750 
5 150 20 500 150 20 300 150 20 350 150 20 550 
6    120 8 250 120 8 300 120 8 400 
7       45 93 150 45 93 100 

Table 3 – Test Data Set for Isotopes Graph (three slices) 
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Figure 1 – Uniform Random Distribution 
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Figure 2 –Gaussian Random Distribution 
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Figure 3 – Uncorrelated Gaussian Random Variables 

 

 
Figure 4 – Correlated Gaussian Random Variables (Coefficient = 1) 

 

 
Figure 5 – Correlated Gaussian Random Variables (Coefficient = 2/3) 
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Figure 6 – Correlated Gaussian Random Variables (Coeffecient = -3/4) 
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Figure 7 – Input Covariance Matrix 
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Figure 8 – Jordan Transformation Matrix 
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Figure 9 – Schur Transformation Matrix 
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Figure 10 – Isotope Graph Before Slice One (Test Data Set) 

 
Figure 11 – Isotope Graph Before Slice Two (Test Data Set) 
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Figure 12 – Isotope Graph Before Slice Three (Test Data Set) 

 

 
Figure 13 – Isotope Graph After Slice Three (Test Data Set) 
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Figure 14 – Isotope Graph After Slice Ten (Large Data Set) 

 

 
Figure 15 – Filtered Data Subset (mass > 110) 
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Figure 16 – Particle Plot of X vs. Y (horizontal vs. vertical position) 

 

 
Figure 17 – Particle Plot of X vs. A (horizontal position vs. horizontal momentum) 
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Figure 18 – COSY’s Uniform Random Number Generator (RERAN) 
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