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ABSTRACT 
 
 
 
 

 Exotic isotope accelerators are posed to provide us with unique abilities to 

investigate and test current theories regarding nuclei structure, weak-force interaction 

symmetry, and cosmologic evolution.  Crucial to this powerful experimental tool is 

the design of its fragment separator.  Designs for such a fragment separator can be 

developed through use of symmetry theories and simulation software.  The goals and 

requirements of such designs include mechanical specifications; minimizing the 

effects of beam aberrations, fringe fields and stochastic effects of the systems 

elements; allowing large acceptance; and providing a high intensity beam of pure ions 

to be transported to experiments through the accelerator. 

Beam aberrations create substantial problems in any design, particularly 

beyond the first and second order terms.  Symmetry theories help understanding the 

cause of these aberrations and provide clues to correct the design.  This thesis 

explores a variety of designs have been tested and compared to develop a proposed 

system layout that will best meet the needs and goals of the next generation exotic 

isotope accelerator. 
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I. INTRODUCTION 

 

 

 Prior to a discussion of how symmetry theories can be applied to the design 

of the fragment separator for an exotic isotope accelerator, it is helpful to discuss the 

nature of such an accelerator and a fragment separator.  The design goals, system 

requirements and physical limitations of the next generation of such systems shall 

also be reviewed. 

 

Exotic Isotope Accelerator 

 

 An exotic isotope accelerator provides an important experimental tool to 

study nuclear physics, nuclear astrophysics and the fundamental interactions of 

particles.  The importance of an exotic isotope accelerator as a research tool was 

recognized by the Department of Energy when it identified the Rare Isotope 

Accelerator (RIA) as the highest priority machine of the nuclear physics community 

in the United States on its 20 year plan.  [1, 2]  The next generation of exotic isotope 

accelerators should be able to surpass results obtained by predecessors, such as the 

GSI facility in Germany, the RIKEN facility in Japan, and the TRIUMF facility in 

Canada.  It should also allow the study of nuclear physics beyond the abilities of 
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facilities such as RHIC, which studied the nature of gluon-quark confinement, and 

CEBAF, which probed the gluon-quark structure in hadrons and gluons.  [1]  An 

exotic isotope accelerator can allow the study of how elements are produced in stars 

through the r-process, rp-process, and other methods of nucleosynthesis.  Other 

proposed uses of exotic isotope accelerators include testing various fundamental 

assumptions of the Standard Model and QCD theory.  [1, 2] 

 An example of what an exotic isotope accelerator does can be seen by 

review of recent proposals for the Rare Isotope Accelerator (RIA).  Similar exotic 

beam facilities are operating or currently being designed in other countries around 

the world, including the United States.  These include improvements to the RIKEN 

radioactive isotope factory in Japan, and the substantial upgrade to the GSI 

International Accelerator Facility for beams of ions and antiproton under 

development in Germany; both of which utilize in-flight separation methods.  These 

facilities differ from RIA, which would be capable of post-separation acceleration 

and allow measurement of nuclear reactions at astrophysical energies.  RIA would 

also offer greater primary beam power than either the GSI or RIKEN facilities 

through an acceleration scheme that in nearly 20 times more efficient.  [3]  RIA 

differs from the TRIUMF facility in Canada in that its higher primary beam power 

would yield a higher intensity beam with a wider variety of isotopes.  [3]  RIA 

would also allow for a more flexible combination of ion sources than the TRIUMF 

facility.  [3] 



 
 
 

 

3
 
 
 
 

 

 

 In the proposed next generation of exotic isotope accelerators, nuclei from 

protons to uranium would be accelerated to energies of at least 400 MeV per 

nucleon before being directed at a target.  [1, 2]  This interaction is designed to 

produce a variety of statistically rare isotopes which can be selected and studied.  

By smashing such a high energy beam of nuclei into the target, Coulomb barrier 

potentials can be overcome and multi-body nuclear processes can occur that 

otherwise are limited to cosmic events such as the big bang, or stellar burning and 

stellar evolution.  [1] 

 

Figure 1.  Simplified schematic layout of the Rare Isotope Accelerator (RIA) facility.  [1, 2] 

 The RIA facility, depicted in Figure 1, would have allowed study of isotopes 

in both of the two major branch types of exotic beam facilities.  First, it would have 

allowed study of fast beams through its in-flight high resolution fragment separator.  

[1, 4]  Second, using a gas catcher, very rare isotopes could be accumulated and 
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studied at rest energies or reaccelerated to energies below or just around the 

Coulomb barrier.  [1, 5]  Both branches utilize a fragment separator to select rare 

isotopes from the multitude of those produced by the beam/target interaction. 

 

Fragment Separators 

 

 The fragment separator, such as shown in Figure 2, is the work horse all 

designs of an exotic isotope accelerator.  Its purpose is to allow experimenters to 

study a high intensity beam of isotopes of a selected mass and charge.   
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Figure 2.  Schematic layout of fragment separator from target through fast gas catcher cell. 

 After the accelerated beam of nuclei strikes the target material, a vast array 

of isotopes are produced.  By using magnetic multipoles the resulting beam is 

confined in phase-space and transported along the beam line.  A magnetic dipole 

bending element is then used to create a dispersive array of isobars based upon their 

mass/charge ratio.  The beam is then projected through a wedge of absorbing 

material (i.e., an energy degrader) that further disperses the isobar into isotopes 

based upon their specific mass and charge.  [6, 7]  The resulting beam is then 

focused back into an achromatic image using magnetic multipoles and a second 

magnetic dipole bending element.  [7] 

 In theory, the result is a pure isotope beam that can be selected to be 

transported to the experimenter.  Other isotopes are removed by a combination of 

apertures and a beam dump. 

 Because the dispersion of isotopes falls along a continuous spectrum, a 

second dipole and absorbing wedge are often used to minimize range variations in 

the beam leaving the fragment separator.  By adjusting the types of material used in 

the target and the wedge, as well as the nature and energy of nuclei in the incoming 

accelerated beam, very rare isotopes, including isotopes that are particularly 

unstable and short-lived, can be produced and selected for study.  
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Design Goals 

 

 To achieve the maximum results in the next generation of exotic isotope 

accelerators certain criteria should be met to exceed the capabilities of other current 

and planned exotic isotope accelerators.  In the proposal for RIA, for example, the 

initial acceleration per nuclei was targeted at greater than 900 MeV for protons to 

400 MeV/u for Uranium.  [1]  This allowed for a minimum energy of 400 MeV/u 

for fragments being delivered to the in-flight experimental sections.  Goals of the 

accelerator should also include increasing the yields of isotopes produced by several 

orders of magnitude.  [1] 

 

Design Limitations and Criteria 

 

 Many of the design limitations for a fragment separator will be set by the 

particular goals set for the exotic isotope accelerator.  Some are also set by 

experimental factors.  For example, increasing the resolution of an isotope beam 

will result in lower yields of rare isotopes in the transmitted beam.  Costs also play a 

substantial role as a limiting factor in the design.  In the designs discussed 

subsequently in this paper, critical consideration was given to the cost of the 

magnetic multipoles and the dipole bending elements.  Consideration was also given 

to mechanical and engineering limitations. 
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 From all these considerations, an extensive discussion of which would be 

beyond the scope of this paper, the following design limitations and goals were 

used: 

- Horizontal (multipole) apertures and beam width less than 40 cm. 

- Vertical (dipole) apertures and beam width less than 10 cm. 

- Pole tip field strength for multipoles less than 3 Tesla. 

- Drift lengths between element between 20 cm and 100 cm. 

- Dipole radius of approximately 5 meters and angle of 35 degrees. 

 With respect to each of these elements, cost was a major contributing factor.  

Some of the limitations, such as the minimum drift length and maximum pole tip 

field strengths, reflect mechanical and engineering limitations.  Systems that 

deviated substantially from these limitations would be impractical to build. 
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II. DESIGN TOOLS AND THEORIES 

 

 

 To assist in the design of a fragment separator, many tools and theories are 

available.  Some of these fall into the category of theories that can indicate the 

minimally sufficient criteria that will result in a working design.  Others are 

simulation tools to help the designer apply and test the theory and any proposed 

system design.  Both were employed to develop the designs discussed in the 

following sections. 

The importance of these symmetries comes from their ability to simplify 

otherwise complex optical systems.  In the case of light optics, for example, 

focusing problems are simplified due to the fact that most components (lenses 

mirrors, and drifts) will have rotation symmetry about some optical axis.  In the case 

of charged particle optics, however, the general lack of rotational symmetry in 

components makes focusing problems much more difficult to solve.  In the case of a 

quadrupole, for example, which acts to focus a charged particle beam in much the 

same way as a lens focuses a beam of light, the horizontal and vertical “focal 

lengths” will be different.  If the desired result is to achieve both point to point and 

parallel to parallel focusing of a beam, this means that at least 4 quadrupoles are 

required (two in each plane - horizontal and vertical).  This contrasts with only two 
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lens being needed to achieve the same focusing result when rotational symmetry 

exists (such as in the light optics case).  The trajectory of charged particles is 

affected by magnetic and electric fields.  Rotationally symmetric devices capable of 

creating such field (for example, a solenoid) are generally not strong enough to be 

of use for beam with the energies involved in exotic isotope accelerators. 

 

Symmetry Theories 

 

 A number of symmetry theories can be used to simplify analysis of the beam 

of isotopes traveling through a fragment separator.  While each of these plays a 

different role in the system’s design, they all work to reduce the criteria necessary to 

obtain separation of isotopes within a beam while maintaining a focused beam that 

can then be transported to experimenters. 

 Prior to any discussion of specific theories, a brief aside regarding the 

mathematical notation that will be used is necessary.  With respect to the motion of 

a reference particle such as an isotope, a six-dimensional phase space vector will be 

used to denote to position of a particle.  [7, 8, 9, 10] 

{rk} = (rk1 , rk2 , rk3 , rk4 , rk5 ,rk6 ) = ( xk , ak , yk , bk , tk, δk )  (1) 

 The variables x and y reflect the horizontal and vertical positions of the 

particle with reference to the optic axis of the beam line.  The variables a and b 

reflect the dimensionless horizontal (px/p0) and vertical (py/p0) momentum of the 

particle.  The two remaining variables, t and δ, reflect flight time and change in total 
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energy (E – E0/E0) of the particle.  Changes to the vector representing a particle as it 

moves along the beam line can be used to derive a transfer map between points in 

the system.  This transfer map is generally a complicated, non-linear vector 

function. 

 The transfer map can, however, be thought of as a “matrix” that describes 

changes in the six canonical variables used to express the path of the reference 

particle.  This is done by expanding the transfer map in a Taylor series (sometimes 

referred to as the Taylor map), and truncating the series to eliminate terms beyond a 

particular order.  For example, the change in final position as a function of initial 

conditions of a particle might be expressed as: 

{r1} = T ◦{r0}  where the rt1 coordinate of the vector {r1} can be expressed as 
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When the Taylor map is truncated to include only linear terms, the transfer map 

becomes a real matrix: 
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 (4) 

 To further specify the reference particle vector and particular components of 

the transfer map, subscripts will be used as in the previous example.  For example, 

the transfer map from the beginning of the system to the middle of the dipole 

bending element will be expressed as T M.  While T D and T A reflect the transfer 

maps to the dispersive and achromatic images, respectively.  These same subscripts 

will be used to clarify when coefficients of particular transfer maps are being 

discussed.  For example, (x|xa)D would refer to the second order map coefficient of 

xa in the expansion of the canonical variable x through the dispersive image.  

 

 

Time-Independence Symmetry 

 

 The first symmetry theory considered in the fragment separator design is the 

time-independence symmetry of the system.  This symmetry arises from a design 

that does not utilize time-dependent elements.  Fortunately, the multipoles, dipole 

bending elements, and absorbing wedges utilized in the designs discussed later in 
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this paper are all time-independent.  The result of this symmetry is that the 

generalized coordinates x, a, y, b, and δ do not have explicit time dependence.  

Thus, all terms in the transfer map that involve partial derivatives of these 

coordinates with respect to time will vanish.  This indicates that the transfer map 

coefficient (t|t) = 1.  Also, all coefficients of the form (ri≠5|t) = 0.  Put more 

basically, none of the transfer map coefficients can depend upon time in a time-

independent system.  [9, 10] 

 The time-independence of the magnetic elements in the system also give rise 

to basic energy conservation for particles transported through the fragment 

separator.  In other words, particle transported through the fragment separator are 

not accelerated.  Energy constancy states that the magnetic elements of the system 

will do no work on a particle traveling through the fragment separator.  This relation 

requires that the transfer map coefficient (δ|δ) = 1.  Also, all transfer map 

coefficients of the form (δ| ri≠6 ) = 0.  [8, 9, 10]  From these two symmetries, our 

first order transfer map equation is simplified further: 
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Mid-Plane Symmetry 

 

 Mid-plane symmetry often arises from the symmetry along the optic axis of 

a system.  In a system with midplane symmetry, particles that are symmetric at the 

beginning of the system stay symmetric throughout the system.  In the case of the 

designs discussed in this paper, such symmetry exists around the midplane in the 

gap within the magnetic elements of the system ( y = 0 ).  Because of this symmetry, 

we see that a number of the coefficients in the transfer map will vanish.   

If we let ),,,,,(),,,,,(}{ iiiiiifffffff tbyaxTtbyaxr δδ == , then 

),,,,,(),,,,,( iiiiiiffffff tbyaxTtbyax δδ −−=−− , as a result of the mid-plane 

symmetry.  From this relation the following coefficients of the transfer map can be 

determined to be zero [7, 8, 9, 10], 

0)|( =δδ iiiiii tbyax tbyaxx  if iy+ib is odd (6) 

0)|( =δδ iiiiii tbyax tbyaxa  if iy+ib is odd (7) 

0)|( =δδ iiiiii tbyax tbyaxy  if iy+ib is even (8) 

0)|( =δδ iiiiii tbyax tbyaxb  if iy+ib is even (9) 

0)|( =δδ iiiiii tbyax tbyaxt  if iy+ib is odd (10) 

This allows us to simplify the transfer map matrix.  For example, the first-order 

transfer map matrix equation further reduces to: 
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 (11) 

 Mid-plane symmetry will hold for basic system designs involving multipoles 

and dipole bending elements.  This symmetry works, as is our example, to eliminate 

half of the coefficients in the transfer map matrix.  Introducing the absorbing wedge, 

however, will break this symmetry.  For the purposes of design, it is often helpful to 

design the system without the absorbing wedge and then insert the wedge and shape 

it to minimize effects caused by its introduction to the system. 

 

Mirror Symmetry 

 

 A symmetry theory utilized in the designs discussed subsequently in this 

paper arises from repetitive patterns in the system’s layout.  As an example, 

consider a system where the elements through the middle of a dipole are exactly 

reversed in the second half of that segment of the system.  Another example is the 

case where mirror symmetry exists for the system from the target through the 

dispersive image with respect to the system’s configuration from the dispersive 

image through the final achromatic image.  Both these examples are discussed in 

specific designs later in this paper. 
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 In cases of mirror symmetry, certain relationships in the components of the 

transfer map appear which assist in the design of the system’s layout.  A simple 

example using the layout in Figure 3 illustrates the power of this symmetry in 

designing a Hamiltonian system.   

 

Figure 3.  Layout of 2-cell system with mirror symmetry about plane designated by rd. 

 In the general case pictured above, ri, rd and rf represent vectors composed of 

6 canonically conjugate variables.  The transfer map for the left half of the system is 

designated by T.  Thus, {rd} = T(ri) specifies the motion of the reference particle 

through the left side of the system.  If TR represents the reversed system, we can 

combine this operator with the reflection operator, R( rk) = ( xk –ak yk –bk tk δk ),  

and note that R(ri) = TR ◦ R(rd).  But we also note that {ri} = T -1(rd).  Combining 

these relationships [9, 10]: 

TR◦R(rd) = R◦T -1(rd)   (12) 

 This relationship can be further generalized by noting that {rd} is arbitrary 

and R2 = I ,  

TR = R ◦ T -1 ◦ R (13) 

ri rf 

T TR 

rd 
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 Now we can exploit the convenient choice of layout in our exemplar system.  

As we noted earlier, Ttotal = TR ◦ T = R ◦ T -1◦ R ◦ T.  The significance of this 

relationship become apparent when we apply the commutator equation for a 

Hamiltonian system: [A,B] = A◦B - B◦A.  We see: 

Ttotal = R◦T-1◦{[ R, T ] + T ◦R} = R2 + R◦T-1◦[ R, T ] (14) 

 Now we can clearly see that when the commutator [R, T ] → 0, Ttotal → I.  

[9, 10, 11]  Thus, by designing a system where the commutator terms are zero, the 

transfer map becomes the identity matrix and the system focused its image point-to-

point, parallel-to-parallel.  This relationship can then be exploited when point-to-

point, parallel-to-parallel imaging is a desired goal for our achromatic image, such 

as with a fragment separator. 

 

 

Symplectic Symmetry 

 

 Symplectic symmetry, like mirror symmetry, provides clues to a system’s 

layout from relationships in the transfer map elements.  The importance of this 

symmetry arises from the fact that it can be shown that the transfer map of a 

Hamiltonian system will have symplectic symmetry.  [9, 10]  To examine how this 

symmetry theory works, let’s again take the case of two vectors ri and rf composed 

of 6 canonically conjugate variables.  Furthermore, let A represent the Jacobian of a 
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transfer map that fulfills the symplectic condition [8, 9, 10];  (A)TJ(A) = J.  AT 

represents the transpose of A, and  
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 In this case, the coefficients of the matrix A represent the partial derivatives 

of components of the final vector with respect to the components of the initial 

vector: 

i

f
fi r

r
c

∂
∂

=  (17) 

 To calculate these coefficients, we remember that the final position vector 

results from operation of the transfer map matrix upon the initial position vector, 

{rf} = T(ri).  The components of this vector can be expressed as a Taylor series 

expansion.  [8, 10] 
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 For example we can express the terms up to second order in the two-

dimensional case:  

xf = (x|x)xi + (x|a)ai + (x|xx)xi
2 + (x|xa)xiai + (a|aa)ai

2 (18) 

af = (a|x)xi + (a|a)ai + (a|xx)xi
2 + (a|xa)xiai + (a|aa)ai

2.   (19) 

Then we can calculate the coefficients, through second order:  

c11 = (x|x) + 2(x|xx)xi + (x|xa)ai  (20a) 

c12 = (x|a) + (x|xa)xi + 2(a|aa)ai (20b) 

c21 = (a|x) + 2(a|xx)xi + (a|xa)ai (20c) 

c22 = (a|a) + (a|xa)xi + 2(a|aa)ai (20d) 

Applying the equations for the symplectic condition, AJAT = J, we find: 
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        This equation has the solution c11c22 – c12c21 = 1.  Using our expanded 

coefficients and grouping terms based on their dependence upon initial coordinates: 

    (x|x)(a|a) – (x|a)(a|x) = 1 from terms independent of initial coordinates 

    (x|x)(a|xa) + 2(a|a)(x|xx) – 2(x|a)(a|xx) – (a|x)(x|xa) = 0 from terms linear in xi 

    (a|a)(x|xa) + 2(x|x)(a|aa) – 2(a|x)(x|aa) – (a|xa)(x|a) = 0 from term linear in ai 

From this symmetry, we can derive the following first order relations for the six 

dimension case: 

 (x|x)(a|a)-(a|x)(x|a)=1 (22a) 

 (y|y)(b|b)-(b|y)(y|b)=1 (22b) 

 (x|x)(a|δ)-(a|x)(x|δ)=(t|x) (22c) 
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 (x|a)(a|δ)-(a|a)(x|δ)=(t|a) (22d) 

 

 The first two equations represent the familiar results of Liouville’s theorem 

of conservation of phase space volume under linear transformation.  [8, 9]  The last 

two equations detail the connection between longitudinal and dispersive effects of 

the system.  [8, 9]  If we impose our system requirements upon these relations, 

minimizing the terms that appear in the commutator equation [(x|a), (a|x), (y|b), 

(b|y) and (a|δ) at first order], we see that the symplectic symmetry leads to the 

following relationships [8]: 

 (x|x)(a|a) = 1  (y|y)(b|b) = 1 (23a-b) 

 (t|x) = 0 (a|a)(x|δ) = (t|a) (23c-d) 

      Similar relations can be calculated at higher order and are given in Appendix 

A.  These relations show that certain transfer map terms are proportional to other 

terms.  From this we can see how minimizing one coefficient causes another 

coefficient to be minimized. 

 

 

COSY Infinity as a Simulator 

 

 Difficulties arise in the study of a fragment separator from the limited 

software available to simulate in-flight beams.  The software must be able to 

accurately and quickly calculate the effects of system components, including fringe 
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fields and higher order effects.  It must also allow for separation of particles from a 

beam based upon charge and mass. 

 COSY Infinity is a differential algebra-based code that allows simulation of 

such a system.  [12]  Although the code is very powerful, it still has some 

limitations.  In particular, the optimizers available for the system do not allow for 

using constrained parameters to fit solutions within a particular variable range.  It 

was not uncommon, for example, for COSY to find a solution that focused the 

achromatic image of a beam by using multipoles substantially beyond the 3 Tesla 

design criteria limit.  Another example occurred when using COSY to fit drift 

lengths between system elements.  In some of these cases the results included non-

physical negative drift lengths, effectively superimposing multipoles on top of each 

other. 

 Despite this drawback, COSY Infinity proved to be an excellent and 

essential tool in simulating the designs discussed later in this paper.  In particular, it 

was used exclusively beyond the initial first order calculations. 

The majority of the Figures shown in this thesis were generated using the 

graphing functions of COSY.  To understand what is depicted in this Figures, it is 

important to know what they represent.  All axes shown are in the scale of meters.  

Colors are used to distinguish between different types of magnetic elements in the 

system; dipoles are shown in yellow (or light gray when viewed in black and white 

print), quadrupoles are shown in red and other multipoles are shown in pink (or 

darker gray in black and white print).  Rays traced by COSY represent the 
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maximum trajectory of isotopes at a standard energy and alternative ray traces 

appear in different colors to shown the effects of isotopes with differing energy.  

These ray traces can be compared with the apertures in the magnetic elements.  

These are depicted in the Figures; the quadrupoles and multipoles have a 40 cm gap 

both horizontal and vertical from the optical axis while the dipole gap is limited to a 

10 cm vertical gap from the optical axis. 

 

MATHEMATICA as a First Order Modeling Tool 

 

 As previously noted, COSY Infinity is a powerful simulation tool.  It does, 

however, suffer from a major drawback of having limited built in optimizers.  

Another powerful computing tool was utilized to address some of the drawbacks 

experienced with COSY.  Using Mathematica software, the beam system can be 

calculated to first order.  The system was limited to dipole and quadrupole elements 

separated by drift lengths.  The elements where expressed in matrix form and pole 

tip field strengths and drift lengths were left as variables. 

 To allow for quicker solution, the NMinimize optimizing function [13] was 

used to constrain the search for each variable within a particular range of values.  

The primary variables in these simulations were the drift lengths between system 

elements and the strengths of the quadrupole magnets.  The program also allowed 

for variation of the lengths of the quadrupole elements, the dipole radius and angle, 

and conditions which needed to be met by the solution.  Once a first order solution 
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was obtained through the Mathematica simulation, the physical layout (drift lengths, 

multipole lengths, dipole radius and angle) was used to set fixed parameters in 

further COSY simulations.  The quadrupole magnet pole tip field strengths obtained 

from the Mathematica simulations were also used as starting values in COSY, but 

COSY was allow to fit the strengths independently.  COSY was also used to correct 

for higher order effects and fringe field effects which could not be simulated in the 

Mathematica model. 
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III. FIRST ORDER DESIGN 

 

 

First Order Criteria 

 

 For the first order design, the only elements we will include will be 

quadrupoles and dipoles.  Any proposed design should address the mechanical and 

engineering constraints applicable to the particular project.  Those constraints which 

were adopted in the designs considered in this paper have previously been 

discussed. 

 For all the designs considered, the system seeks to obtain point-to-point, 

parallel-to-parallel focusing for a segment from the target through the dispersive 

image.  The segment was then reversed after the dispersive image to create mirror 

symmetry around the dispersive image.  As a result of this symmetry, a design after 

the first segment and its inverse will focus the isotope beam point-to-point, parallel-

to-parallel, to an achromatic image after the second segment.  [7, 9]  To maintain a 

high-quality beam with minimal transmission loss, the focused achromatic image 

should have of aberrations of less than 1 mm.  [1] 

 From the symmetry theories previously outlined, only 5 first order terms 

from the transfer map matrix appear in the commutator equation.  By minimizing 
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(x|a), (a|x), (y|b), (b|y) and (a|δ) in the transfer map through the dispersive image, 

the beam aberrations through the first order will also be minimized.  Additionally, 

the first order focusing will not be affected by higher order multiples introduced 

later into the design.  [7, 9, 10, 14]   

 Finally, since we are seeking to separate isotopes, we want to maximize 

dispersion, which we will define by the ratio (x|δ)/(x|x) of the transfer map 

coefficients through the dispersive image.  Since the absorbing wedge will 

subsequently be introduced at the dispersive image to select a particular mass 

isobar, the resolution of the separator will link directly to the dispersion of the 

system segment.   This qualitative factor will help in evaluating the efficiency of a 

proposed design. 

 

Possible Design Layouts 

 

 Within our criteria, multiple designs for a system are possible.  The next 

sections examine a variety of possible first order design layouts. 

 

Non-Symmetric Model 

 

 The non-symmetric model seeks to find the simplest design that will satisfy 

the first order criteria.  This design has no mirror symmetry within the segment from 

the target through the dispersive image.  This design uses only 4 quadrupoles in the 
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segment (2 per plane) to achieve the desired point-to-point, parallel-to-parallel 

focusing.  The result is one focusing (F) and one defocusing (D) quadrupole on each 

side of the dipole in the segment.  For this design, four possible configurations of 

the order of quadrupoles are available. 

 For the first configuration choice, D-F-F-D, no solution was found that 

minimized all 5 critical transfer map terms.  The horizontal and vertical projections 

of this layout are shown in Figures 4 and 5.  The best solution, which only 

minimized 2 terms, also had 2 drift lengths exceeding two meters, and average 

dispersion (~ 1.6). 

 

Figure 4. First order nonsymmetric (DFFD) layout – horizontal projection. 
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Figure 5.  First order nonsymmetric (DFFD) layout – vertical projection. 

 The second configuration choice, D-F-D-F, did minimize all 5 critical 

transfer map coefficients and had very poor dispersion (~.42).  The horizontal and 

vertical projections of this layout are shown in Figures 6 and 7.  The vertical beam 

width, however, was nearly 50 cm. through the 10 cm. dipole gap. 

 

Figure 6.  First Order Nonsymmetric (DFDF) Layout – Horizontal Projection. 
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Figure 7.  First order nonsymmetric (DFDF) layout – vertical projection. 

 The third configuration considered, F-D-D-F, also failed to minimize the 5 

critical transfer map terms.  The horizontal and vertical projections of this layout are 

shown in Figures 8 and 9.  It also suffers for a vertical beam width of more than 35 

cm through the dipole and two large drift lengths.  It also had very poor dispersion 

(~.28). 
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Figure 8.  First order nonsymmetric (FDDF) layout – horizontal projection. 

 

Figure 9.  First order nonsymmetric (FDDF) layout – vertical projection. 

 The final configuration, F-D-F-D, was far superior to the other three.  It 

minimized all 5 critical transfer map terms, and had reasonable dispersion (~1.8).  

The horizontal and vertical projections of this layout are shown in Figures 10 and 

11.  The vertical beam width was within the dipole gap, and the horizontal beam 
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width was only slightly above the desired limit.  Also, the drift length and the 

quadrupole pole tip field strengths were reasonable. 

 

Figure 10.  First order nonsymmetric (FDFD) layout – horizontal projection. 

 

Figure 11.  First order nonsymmetric (FDFD) layout – vertical projection. 
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First Symmetric Model 

 

 Another possible design utilizes mirror symmetry in the cell around the 

middle of the dipole magnet.  Because of this extra symmetry within the layout of 

the segment, the symplectic, midplane, and mirror symmetry theories allow 

determination of conditions in the transfer map through the middle of the dipole that 

achieve point-to-point, parallel-to-parallel focusing at the dispersive image.  The 

first set of such conditions is to require point-to-point, parallel-to-parallel focusing 

in the middle of the dipole. Thus, our criteria for the simulation is to minimize 

(x|x)M (a|a)M (y|b)M and (b|y)M.  [9]  Then, reversing the system after the dipole will 

guarantee such focusing is maintained at the dispersive image.  We can look back to 

the example of the first order transfer map, assuming energy constancy, time 

independence, midplane symmetry, and omitting the r5 time-dependent terms for 

simplification.  We will denote the transfer map through the dispersive image and 

the middle of the dipole by TD and TM, respectively. 
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 To minimize (x|x)M, (a|a)M, (y|y)M, and (b|b)M, we use 4 quadrupoles (2 

focusing and 2 defocusing) in front of the dipole.  As was the case with the non-

symmetric design, 4 configurations are possible. 

 The first case, D-F-F-D, minimized the 4 critical transfer map terms, but had 

a horizontal envelope of more than 70 cm. and the resolution was poor (~1.3).  The 

horizontal and vertical projections of this layout are shown in Figures 12 and 13.   

(24) 
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Figure 12.  First order type I symmetric (DFFD) layout – horizontal projection. 

 

Figure 13.  First order type I symmetric (DFFD) layout – vertical projection. 

 The second case, D-F-D-F, also minimized the 4 critical transfer map terms 

and had reasonable resolution (~1.6).  The horizontal and vertical projections of this 
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layout are shown in Figures 14 and 15.  This design was rejected because the 

horizontal beam width was nearly 65 cm. 

 

Figure 14.  First order type I symmetric (DFDF) layout – horizontal projection. 

 

Figure 15.  First order type I symmetric (DFDF) layout – vertical projection. 
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 For the third case, F-D-D-F, no solution was found that minimized all four 

critical transfer map terms.  The horizontal and vertical projections of this layout are 

shown in Figures 16 and 17.  The horizontal beam width was also larger 65 cm. 

 

Figure 16.  First order type I symmetric (FDDF) layout – horizontal projection. 

 

Figure 17.  First order type I symmetric (FDDF) layout – vertical projection. 
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 The final case, F-D-F-D, did minimize the 4 critical transfer map terms.  The 

design was rejected because of its poor resolution (~1.15). The horizontal and 

vertical projections of this layout are shown in Figures 18 and 19.   

 

Figure 18.  First order type I symmetric (FDFD) layout – horizontal projection. 

 

Figure 19.  First order type I symmetric (FDFD) layout – vertical projection. 
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Second Symmetric Model 

 

 The third design considered is a variation of the previous model.  The 

condition chosen in the middle of the dipole in the previous case was actually more 

restrictive than necessary.  By requiring point-to-parallel, parallel-to-point imaging 

in the middle of the dipole, we also achieve point-to-point, parallel-to-parallel 

focusing at the dispersive image.  Thus, our criteria is for the simulation to minimize 

(x|x)M, (a|a)M, (y|y)M, and (b|b)M.  [9]  To achieve this, 4 quadrupoles (2 focusing 

and 2 defocusing) are used in front of the dipole.  Again, this leads to 4 possible 

configurations to consider. 

 The first case, D-F-F-D, allowed all four critical transfer map terms to be 

minimized.  The horizontal and vertical projections of this layout are shown in 

Figures 20 and 21.  The resolution, however, was poor (~1.2).  The vertical beam 

width was almost 35 cm. and one of the drift lengths was only 10 cm. 
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Figure 20.  First order type II symmetric (DFFD) layout – Horizontal projection. 

 

Figure 21.  First order type II symmetric (DFFD) layout – vertical projection. 

 The second case, D-F-D-F, met all criteria except for the vertical beam 

width, which was 15 cm.  The horizontal and vertical projections of this layout are 

shown in Figures 22 and 23.  The resolution was good (~1.8), and magnet strengths 

and drift were reasonable. 



 
 
 

 

38
 
 
 
 

 

 

 

Figure 22.  First order type II symmetric (DFDF) layout – horizontal projection. 

 

Figure 23.  First order type II symmetric (DFDF) layout – vertical projection. 

 The third case, F-D-D-F, also met all criteria.  The horizontal and vertical 

projections of this layout are shown in Figures 24 and 25.  The resolution was very 
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good (~2.25), and the vertical beam width was only 12 cm.  The magnet strengths 

and drift lengths were also reasonable. 

 

Figure 24.  First order Type II symmetric (FDDF) layout – horizontal projection. 

 

Figure 25.  First order type II symmetric (FDDF) layout – vertical projection. 
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 The final case, F-D-F-D, minimized all 4 critical transfer map terms, but had 

poor resolution (~1.3).  The horizontal and vertical projections of this layout are 

shown in Figures 26 and 27.  Also, the vertical beam width was 20 cm.  

 

Figure 26.  First order type II symmetric (FDFD) layout – horizontal projection. 

 

Figure 27.  First order type II symmetric (FDFD) layout – vertical projection. 
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Triplet Model 

 

 In the triplet model, mirror symmetry is maintained around the dipole, but 

only three quadrupoles are used on each side of the dipole.  At initial glance, this is 

a surprising result since the condition for a solution seeks to minimize 4 transfer 

map terms at the middle of the dipole.  We would normally expect that 4 

independent quadrupoles are required to achieve a solution except in an exotic or 

trivial case. 

 The reduction in the number of independent quadrupoles needed to achieve a 

solution arises from a “hidden” constraint in the system.  For all of the elements in 

the system (i.e., quadrupoles, drifts and dipole), the map terms (x|x) = (a|a).  [7, 9, 

15]   

 The solutions for this layout also reflect a number of simulation solutions 

from the symmetric design where the pole tip field strength of one of the 4 

quadrupoles was at least an order of magnitude less than the other three.  In all these 

cases, the configuration was F-D-F.  The best results for this layout met all criteria 

and had very good resolution (~2.22).  The horizontal and vertical projections of this 
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layout are shown in Figures 28 and 29.  The magnet strengths and drift lengths were 

reasonable.  The vertical beam width was about 14 cm. 

 

Figure 28.  First order triplet (FDF) layout – horizontal projection. 

 

Figure 29.  First order triplet (FDF) layout – vertical projection. 
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Other Designs Considered 

 

 In addition to the previously discussed first order layouts, other design 

variations were considered.  These included varying the dipole radius from 25 to 40 

degrees, varying the dipole radius from 4 to 6 meters, varying the lengths of the 

multipoles used, and using combinations of more than 2 sets of focusing-defocusing 

quadrupole doublets.  For these configurations, as well as the layout designs 

discussed above, the ranges for drift lengths and multipole strengths were also 

varied.  Also, the starting values for the variables in each type of simulation were 

varied. 

 With respect to variation in the dipole radius and angle, solutions within the 

ranges tested were fairly easy to obtain and consistent with those for the 35 degree 

angle, 5 meter radius dipole models.  Changes in the dipole radius and angle did 

effect dispersion, but not dramatically.  Ultimately, the radius and angle used in the 

selected layout were chosen because of the physical footprint from a possible site 

for the RIA facility. 

 For example, using a 25 degree dipole angle in the 2nd symmetric layout and 

the F-D-D-F configurations yielded a solution with dispersion of approximately 
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1.46.  All other criteria of the first order design were satisfied.  The horizontal and 

vertical projections of this layout are shown in Figures 30 and 31.   

 

Figure 30.  First order type II symmetric (FDDF) layout – 25 degree dipole – horizontal projection. 

 

Figure 31.  First order type II symmetric (FDDF) layout – 25 degree dipole – vertical projection. 

 When the dipole angle was increased to 45 degrees, a similar solution was 

found for the same layout.  The horizontal and vertical projections of this layout are 
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shown in Figures 32 and 33.  This solution, however, had dispersion of 2.27, and a 

wider vertical beam width.  Otherwise, all first order criteria were satisfied. 

 

Figure 32.  First order type II symmetric (FDDF) layout – 45 degree dipole – horizontal projection. 

 

Figure 33.  First order type II symmetric (FDDF) layout – 45 degree dipole – vertical projection. 
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 In each simulation type, the length of the quadrupoles did prove to be a 

critical variable.  Repeated testing showed that there was an optimal length for the 

quadrupoles, but that this optimal length varied from 60 cm. to 1.25 cm. in different 

layouts.  As the length of the quadrupole elements was increased or decreased from 

its optimal value, it became more difficult to find solutions that had reasonable 

values for beam width, drift lengths and quadrupole strengths.  The quadrupole 

length selected for each proposed segment design was the optimal length for that 

particular design as determine by repeated simulation.  

 

Selection of First Order Design 

 

 Using the various symmetry theories, a variety of different systems of 

quadrupoles and dipoles were found to satisfy the first order criteria for a fragment 

separator design.  From all the first order systems previously discussed, 3 were 

selected as possible design layouts:  the best non-symmetric design (F-D-F-D 

configuration), the best symmetric design (F-D-D-F configuration of 2nd symmetric 

design), and the triplet design.  All three of these designs minimized all 5 critical 

commutator terms in the transfer map through the dispersive image.  All 3 had 

reasonable values for the drift lengths and pole tip field strengths.  Also, all three 

had reasonable horizontal and vertical beam widths. 

 Table 1 gives a comparison of the three designs.  The first order objective 

reflects the sum total of all 5 critical transfer map terms through the dispersive 
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image.  The triplet design was very similar in terms of results to the symmetric 

design.  It was selected for further consideration, however, because it represented a 

substantial number of solutions to the symmetric model simulation where the pole 

tip field of one of the four quadrupoles was substantially weaker than those of the 

other three.  

 

 

 

 

 

 

 

 

Table 1 

Comparison of the Components for the Three Best First Order Design Layouts. 

 

   BEST SYMMETRIC BEST NONSYMMETRIC BEST TRIPLET
1st Order Map 
Elements      
x|a   1.433648E-11  1.704820E-11  1.221245E-15
a|x   1.746147E-09  4.429634E-11  1.276756E-15
y|b   2.795170E-11  1.749401E-11  1.554312E-15
b|y   2.078318E-08  4.528335E-11  1.433765E-04
a|δ   1.685740E-11  4.946276E-04  1.443290E-15
        
1st order objective  2.258847E-08  4.946277E-04  1.433765E-04
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max. X-projection 
(meters) 0.420  0.550  0.400
max. Y-projection 
(meters) 0.130  0.090  0.140
Xδ/xx   2.352  1.969  2.224
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IV. SECOND ORDER DESIGN 

 

 

 

Second Order Criteria 

 

 For the second order system, the layout will be modified to correct for the 

aberrations introduced by second order effects.  This is done by superimposing 

sextupoles onto the quadrupole magnets.  [9, 14]  The quadrupole positions and 

strengths remain fixed.   

 At first order, we looked at a system which obeyed energy constancy, time-

independence and mid-plane symmetry.  The position of a particle traveling to the 

dispersive image in such a system can be expressed as follows [4, 7]: 

 00000 )|()|()|()|( δδδδ xxxaaxxxxx DDDD +=++=  (25) 

000 )|()|( ybbyyyyy DDD =+=  (26) 

 The right most solution of these equations has been simplified by using the 

first order focusing criteria for the dispersive image: (x|x)D = (y|y)D = 1 and (x|a)D = 

(y|b)D = 0.  At second order, the equations for the position of a particle traveling to 

the dispersive image are as follow [4, 7]: 
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The effect of the second order terms is to skew the focal plane of the system 

at the dispersive image.  This skew can be expressed by the tilt angle θ where [4]: 

)|)(|(
)|(tan
δ

δθ
axxx

x
−=  (29) 

This we be illustrated by examples presented later in this chapter.  If we apply the 

symplectic and mirror symmetry relations to these equations, however, we can 

simplify the second order equations.  Another consideration is the requirement that 

the beam be focused at the achromatic image.  This is, in fact, the real design goal of 

our system.  To accomplish this, we will seek to minimize all the second order 

coefficients from the transfer map through the dispersive image that appear in the 

commutator equation.  As specified in Table 2, there are 15 second order terms 

appearing in the commutator equation: 

 

Table 2 

Second Order Terms Appearing in the Commutator Equation. 

(x|xa)D (x|aδ)D (x|yb)D  

(a|xx)D (a|xδ)D (a|aa)D (a|yy)D (a|bb)D (a|δδ)D  

(y|xb)D (y|ay)D (y|bδ)D  

(b|xy)D (b|ab)D (b|yδ)D 



 
 
 

 

51
 
 
 
 

 

 

By examining the proportionality relations from the design’s symplectic symmetry, 

we see that five of the coefficients are simultaneously minimized along with the 

other 10.  These relations are listed below in Table 3 [8]: 

 

Table 3 

Symplectic Relations Between Second Order Commutator Terms. 

(a|aa) α (x|xa)    (x|yb) α (b|ab) α (y|ay)  

(a|bb) α (y|xb)     (a|yy) α (b|xy) 

 

The symplectic condition also yields several useful relations of proportionality 

between non-commutator terms.  These are listed in Appendix A.  This analysis 

leads to the primary criteria for the second order system.  It should minimize the 

coefficients (x|aδ)D, (a|xx)D, (a|xδ)D, (a|aa)D, (a|yy)D, (a|bb)D, (a|δδ)D, (y|bδ)D, 

(b|ab)D, (b|yδ)D.  Satisfying this criterion will result in a system that is focused 

point-to-point, parallel-to-parallel at the achromatic image. 

 The secondary criteria would be to achieve a focused dispersive image that 

minimizes the skewing effect of the second order aberrations.  This effect become 

problematic when the absorbing wedge in introduced because of stochastic effects 

within the wedge itself.  These effects are at a minimum when the image plane is 

perpendicular to the beam at the dispersive image. 
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Theory Applied to Positioning of Sextupoles 

 

 We have already determined that sextupoles will be used to correct the 

second order aberrations in the optical system.  Superimposing sextupoles onto the 

existing quadrupole in the system is a cost effective approach.  Such a system would 

generally be easier to build than one with independent sextupoles.  Will such 

placement allow the second order aberration to be corrected?     

 The method to determine optimal placement of sextupoles is discussed 

extensively by Brown. [14]  Using this method, the coupling coefficients can be 

mapped as a function of the beam through the system.  [2, 14]  This was done by 

plotting independent changes throughout the system for each of variables, x, a, y, b, 

and δ with COSY.  The transfer map and coupling coefficients can then be 

determined as a function of position in the system.  This was done for each of the 

three selected first order system designs.  The results are contained in the plots 

shown in Figures 34, 35 and 36. 
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Figure 34.  Plot of sextupole coupling coefficients as a function of position within the fragment 

separation for symmetric design layout. 
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Figure 35.  Plot of sextupole coupling coefficients as a function of position within the fragment 

separation for triplet design layout. 
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Nonsymmetric Layout Coupling
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Figure 36.  Plot of sextupole coupling coefficients as a function of position within fragment separator 

for nonsymmetric design layout. 

  

Using these coefficients, the integrated values of the second order transfer map 

coefficients can be determined as a function of the strength and placement of 

sextupoles in the system.  [14]  For example, let’s look at correcting aberrations by 

minimizing the term (x|xx)D.  

 This second order term can be expressed as: 

( ) ∫ ∑+−≅ 22 )|)(|()|(2)|)(|()|()|(
2
1| xaxxSxxdaxaaxaxxxax α  (30) 

This equation is integrated over the bending angle of the dipole, and the variable, S, 

represents the sextupole strength.  [4,14]  The first term on the right hand side of the 

equation represents the aberration caused by the first order effects of the dipole.  

The second term on the right hand side of the equation is the dependent upon the 
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strength of the sextupole and a coupling coefficient.  This coupling coefficient is set 

by the position of the sextupole and first order terms.  Thus, the best place to 

position a sextupole to minimize the (x|xa)D aberration is at a point where the 

absolute value of the coupling coefficient (x|x)(x|a)2 is greatest.  [4, 14] 

 In our systems, the positions of the sextupoles are fixed by superimposing 

them onto the quadrupoles placed in the first order layout.  This method of analysis 

does let us verify the efficiency of this placement.  We see, for example, that the 

coupling coefficients for the non-symmetric layout are generally very small until 

after the dipole.  Since we will only have 2 sextupole after the dipole, we should be 

concerned about whether we can achieve the second order criteria with the non-

symmetric design.  

 

Theory Applied to Number of Sextupoles 

 

 A question also arises about the number of independent sextupoles necessary 

to obtain a focused system.  We can take advantage of the mirror symmetry about 

the dipole midplane in both the symmetric and triplet layouts to show the relations 

between the 10 critical second order commutator terms.  

 In both the symmetric and triplet layouts, the system maintains point-to-

parallel, parallel-to-point focusing to the middle of the dipole.  Thus, from mirror 

symmetry and the symplectic relations we know that (x|x)M = (a|a)M = (y|y)M = 

(b|b)M = 0 and (x|a)M(a|x)M = (y|b)M(b|y)M = -1.  Using these relations, which are 
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calculated in detail in Appendix B, we can express the coefficients for the transfer 

map through the dispersive image solely in terms of the coefficients from the 

transfer map through the midplane of the dipole.  

RTRTTTT MMMRMD
1−==  (31) 

 From this relationship, we see that the majority of the terms appearing in the 

commutator go to zero give the first order criteria.  There are 5 terms, however, that 

can be expressed as functions of the coefficients from the transfer map through the 

middle of the dipole.  These relations reduce to the equations contained in Table 4. 

 

Table 4 

Second Order Relations for Commutator Terms Due to Mirror Symmetry About 

Dipole Midplane. 

(x|aδ)D = +2(a|aδ)M(x|a)M + 2(a|xa)M(a|δ)M(x|a)M
2 

(a|xδ)D = -2(x|xδ)M/(x|a)M – 4(x|xx)M(a|δ)M 

(a|δδ)D = +2(x|xδ)M(a|δ)M + 4(x|xx)M(x|a)M(a|δ)M
2  

(y|bδ)D = +2(b|bδ)M(y|b) + 2(b|xb)M(a|δ)M(x|a)M(y|b)M  
(b|yδ)D = -2(y|xy)M(x|a)M(a|δ)M/(y|b)M – 2(y|δδ)M/(y|b)M

  
 
 

Since (a|x)M = -1/(x|a)M, the second and third equations from the preceding list are 

redundant.  Both (a|xδ)D and (a|δδ)D are minimized if (x|xδ)M=-2(x|xx)M(x|a)M(a|δ)M.  

The first order criteria, requiring point-to-parallel, parallel-to-point focusing through 

the middle of the dipole, coupled with the mirror symmetry around the dipole 
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through the dispersive image, minimizes all but five of the commutator terms, only 

4 of which are independent. 

 Each of the four independent equations provides the relation of 

proportionality between two second order terms from the transfer map through the 

middle of the dipole that we reduce a particular commutator terms to zero.  If we 

assume that the eight dipole transfer map terms are independent, these four relations 

reduce the true number of independent variables from eight to four.  One sextupole 

in front of the dipole should be sufficient to set the value of each of these four truly 

independent terms such that all of the commutator terms from the transfer map at 

the dispersive image go to zero.  It is reasonable to assume, therefore, that no less 

than four independent sextupoles placed in front of the dipole will be necessary to 

minimize all second order commutator terms except in the trivial or exotic case. 

 From these calculations, we see the power of coupling the symplectic 

symmetry relationships, which reduced the number of independent commutator 

terms from 15 to 10, with mirror symmetry around the middle of the dipole, which 

further reduced the number of independent terms to 4.  This theory implies that we 

should be able to obtain a solution for our symmetric layout which minimizes all of 

the commutator terms through the dispersive image, satisfying the primary second 

order criteria.  It also suggests, however, that no such solution will exist for the 

triplet design. 
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Selection of Second Order Design 

 

 For each of the selected first order layouts, COSY was used to find the best 

second order layout in terms of satisfying the second order criteria previously 

discussed.  Consideration was also given to a variety of configurations, particularly 

the polarity of the sextupoles.  For each design simulations were run with the 

sextupoles that had symmetry in pole tip field strength about the dipole, and further 

with both identical and reversed polarity about the dipole.  Simulations were also 

run which allowed all sextupoles in the system to be independent of each other in 

terms of strength and polarity through the dispersive image.  Lastly, simulations 

were run where all sextupole through the achromatic image were allowed to be 

independent of each other in terms of strength and polarity. 

 Table 5 summarizes the second order transfer map terms of the uncorrected 

layouts through the dispersive image that appear in the commutator equation.  The 

highlighted terms reflect the independent commutator terms which need to be 

minimized.  The second order objective is the sum of these commutator terms. 
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Table 5 

Comparison of the Second Order Commutator Terms for Three Best Design 

Layouts Before Aberration Correction 

 

 

 

 

 

 

2nd Order Map Elements Symmetric  Non-Symmetric  Triplet 

x|xa 
minimized by 
a|aa 4.710524E-12  4.347484E-01  5.551115E-16

x|aδ   1.276111E+01  7.001756E+00  1.069018E+01
x|yb   6.125859E-09  2.608219E-01  0.000000E+00
a|xx   2.922003E-13  3.663833E-05  0.000000E+00
a|xδ   2.373888E-01  1.127275E+00  2.434154E-01
a|aa   6.882331E-11  4.496187E+00  3.053113E-16
a|yy   2.112838E-12  2.866070E-04  1.387779E-16
a|bb   0.000000E+00  7.743024E-05  1.003214E-16
a|δδ   2.791317E-01  3.556413E-01  2.706263E-01

y|xb 
minimized by 
a|bb 0.000000E+00  1.553750E-04  0.000000E+00

y|ay 
minimized by 
x|yb 6.125860E-09  5.412787E+00  6.106227E-16

y|bδ   5.869844E+00  8.108049E+00  6.855612E+00

b|xy 
minimized by 
a|yy 4.225705E-12  2.762103E-05  2.478425E-16

b|ab 
minimized by 
x|yb 6.125859E-09  2.599582E-01  3.654482E-16

b|yδ   1.078842E+00  1.180336E+00  1.075645E+00
        
2nd order objective  2.022632E+01  2.253047E+01  1.913548E+01
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 For the non-symmetric model, the uncorrected system at second order had a 

substantial skew.  Figures 37 and 38 show the uncorrected second order plot for the 

non-symmetric layout. 

 

Figure 37.  Uncorrected second order best nonsymmetric layout – horizontal projection. 
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Figure 38.  Uncorrected second order best nonsymmetric layout – vertical projection. 

 This uncorrected system had seven of the ten critical map elements which 

still need to be minimized even after the symplectic relationship had been 

considered.  The mirror symmetry relationship considered for the symmetric and 

triplet design could not be applied here because of the lack of symmetry about the 

dipole. 

 The best second order focusing of this system required the use of 8 

independent sextupoles through the achromatic image.  This best fit did not 

minimize all independent commutator terms, nor was it able to focus at the 

dispersive image.  The largest aberrations at the achromatic image were 

approximately 3 cm. in the vertical plane and 2 mm. in the horizontal plane.  The 

horizontal and vertical projections of this layout are shown in Figures 39 and 40.   
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Figure 39.  Best nonsymmetric layout after correction of second order aberrations – horizontal 

projection. 

 

Figure 40.  Best non symmetric layout after correction of second order aberrations – vertical 

projection. 

 For the triplet layout the skew, as shown in Figures 41 and 42, was more 

pronounced than in the non-symmetric design. 
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Figure 41.  Uncorrected second order best triplet layout – horizontal projection. 

 

Figure 42.  Uncorrected second order best triplet layout – vertical projection. 

 

Also, only 5 of the 10 critical commutator terms were not minimized in the 

uncorrected system.  It is worthy to note that these 5 commutator terms, (x|aδ)D, 
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(a|xδ)D, (a|δδ)D, (y|bδ)D, and (b|yδ)D, are exactly the same 5 terms we calculated 

would not be minimized by a system with mirror symmetry around the center of the 

dipole coupled with the first order criteria of point-to-parallel, parallel-to-point 

focusing.   Using a system with 3 independent sextupole in front of the dipole, 

no solution was found that minimized all the commutator terms at the dispersive 

image.  The best correction to this layout was one using three independent sextupole 

and reversing polarity after the dipole.  The horizontal and vertical projections of 

this layout are shown in Figures 43 and 44.  This system did maintain mirror 

symmetry about the dispersive image. 

 

 

Figure 43.  Best triplet layout after correction of second order aberrations – horizontal projection. 
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Figure 44.  Best triplet layout after correction of second order aberrations – vertical projection. 

 The corrected second order triplet design minimized all commutator terms 

except (a|aa)D, (a|bb)D, and (b|ab)D, and had an objective function of .043.  This 

solution did focus at the achromatic image by reducing all aberrations to less than 1 

mm. in both horizontal and vertical plane.  The angular aberrations for (a|aa), (a|bb) 

and (b|ab), however, doubled from what they were at the dispersive image.  

Attempts to correct aberrations using 6 independent sextupole through the 

dispersive image did effectively reduce all but the (a|aa) angular aberrations through 

the achromatic image. 

 For the symmetric layout, the skew was very similar to the triplet layout.  

This is shown in Figures 45 and 46. 
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Figure 45.  Uncorrected second order best symmetric layout – horizontal projection. 

 

Figure 46.  Uncorrected second order best symmetric layout – vertical projection. 

 The mirror symmetry at the middle of the dipole coupled with the first order 

criteria again minimized all but the same 5 commutator terms as in the triplet layout.  

Unlike the triplet layout, and as expected from the theory, a solution was found that 
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minimized all commutator elements in the transfer map through the dispersive 

image.  This system utilized 4 independent sextupoles in front of the dipole, and 

maintained mirror symmetry on each side of the dipole.  The horizontal and vertical 

projections of this layout are shown in Figures 47 and 48.   

 

Figure 47.  Best symmetric layout after correction of second order aberrations – mirror symmetry 

maintained about dipole midplane – horizontal projection. 
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Figure 48.  Best symmetric layout after correction of second order aberrations – mirror symmetry 

maintained about dipole midplane – vertical projection.   

 The major difficulty with this system is that it does not maintain focusing at 

the dispersive image.  It did successfully minimize all commutator elements.  It also 

minimized all aberrations to less that 1 mm. at the achromatic image.  Lastly, the 

magnet strengths for the sextupoles remained quite reasonable.  The second order 

transfer and aberration maps through the dispersive image for this design are given 

in Table 6.  The coefficients in this Table are expressed in following manner: (1) the 

Columns correspond to x, a, y, b, and δ, and represent the first term in the 

coefficient; and (2) the rows correspond to the variables appearing in the second 

terms of the coefficient and the sixth column designates the power of each variable 

(x, a, y, b, t, and δ) for each particular row.  Since there are no time dependent 

elements within the system, all rows are independent of t.  For example, the 
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numerical value for the coefficient (x|aa) will be in the first column with the row 

designated by 020000. 

 

 

 

 

 

 

 

 

 

Table 6. 

 

Transfer Map Coefficients and Aberration at Dispersive Image for Best Symmetric 

Layout After Second Order Correction – Mirror Symmetry Maintained About 

Dipole Midplane. 

BEAM MAP ELEMENTS – DISPERSIVE IMAGE – SYMMETRIC DESIGN 
   .7164369E-13 -.1007290E-15  .0000000      .0000000      .6835275E-13 000000 
  -.9999999      .5820138E-07  .0000000      .0000000      .1385417E-06 100000 
  -.1056932E-11 -1.000000      .0000000      .0000000     -2.380637     010000 
   .0000000      .0000000     -.9999999      .1735760E-10  .0000000     001000 
   .0000000      .0000000      .1811107E-11 -1.000000      .0000000     000100 
   .0000000      .0000000      .0000000      .0000000      1.000000     000010 
   2.380637     -.1469933E-10  .0000000      .0000000      2.257262     000001 
  -.2242649     -.7918147E-05  .8214957E-14  .7340649E-15 -.9384621E-05 200000 
  -.1331026E-02  .4485299      .5544759E-13 -.6238808E-13  .5338858     110000 
  -153.4473      .6744441E-03  .8013126E-12 -.5563134E-12  .8134328E-03 020000 
   .6299844E-13  .1847719E-14 -2.328964     -.9033487E-04 -.5377020E-14 101000 
   .1112561E-11 -.6236528E-13 -.1120900E-01  9.128255     -.1231968E-12 011000 
  -4.564127     -.4490182E-04  .5994115E-13 -.3446185E-13 -.5315632E-04 002000 
   .5577954E-13 -.1543478E-13  .8859451E-03  2.328965     -.7198684E-14 100100 
   .1597066E-11 -.5517036E-13 -15.76992      .1120900E-01 -.2397050E-12 010100 
  -.1120899E-01  2.328965      .1747891E-12 -.1183194E-12  2.771873     001100 
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   .5339011      .1890016E-04 -.3013210E-13 -.9843870E-14 -.1727380E-06 100001 
   .1584343E-02 -.5339012      .1086476E-12  .2534200E-13  2.776615     010001 
  -.2508618E-13 -.9604117E-14  2.772547      .1074773E-03  .0000000     001001 
  -7.884962     -.4425137E-03  .3984935E-12 -.8717803E-13 -.5261861E-03 000200 
   .1082783E-12  .2974465E-13 -.1054557E-02 -2.772547      .0000000     000101 
  -2.023820     -.2246580E-04  .3586679E-13  .1171734E-13 -2.285957     000002 
 ------------------------------------------------------------------------------ 
BEAM ABERRATIONS – DISPERSIVE IMAGE – SYMMETRIC DESIGN 
   .7164369E-13 -.1007290E-15  .0000000      .0000000      .6835275E-13 000000 
  -.9999999E-03  .5820138E-10  .0000000      .0000000      .1385417E-09 100000 
  -.5284662E-13 -.5000001E-01  .0000000      .0000000     -.1190319     010000 
   .0000000      .0000000     -.9999999E-03  .1735760E-13  .0000000     001000 
   .0000000      .0000000      .9055534E-13 -.5000000E-01  .0000000     000100 
   .3761407     -.2322495E-11  .0000000      .0000000      .3566474     000001 
  -.2242649E-06 -.7918147E-11  .0000000      .0000000     -.9384621E-11 200000 
  -.6655132E-07  .2242650E-04  .0000000      .0000000      .2669429E-04 110000 
  -.3836181      .1686110E-05  .2003281E-14 -.1390784E-14  .2033582E-05 020000 
   .0000000      .0000000     -.2328964E-05 -.9033487E-10  .0000000     101000 
   .0000000      .0000000     -.5604498E-06  .4564127E-03  .0000000     011000 
  -.4564127E-05 -.4490182E-10  .0000000      .0000000     -.5315632E-10 002000 
   .0000000      .0000000      .4429725E-07  .1164482E-03  .0000000     100100 
   .3992666E-14 -.1379259E-15 -.3942481E-01  .2802249E-04 -.5992624E-15 010100 
  -.5604497E-06  .1164482E-03  .0000000      .0000000      .1385937E-03 001100 
   .8435637E-04  .2986225E-08  .0000000      .0000000     -.2729261E-10 100001 
   .1251631E-04 -.4217820E-02  .8583161E-15  .2002018E-15  .2193526E-01 010001 
   .0000000      .0000000      .4380624E-03  .1698142E-07  .0000000     001001 
  -.1971240E-01 -.1106284E-05  .9962338E-15 -.2179451E-15 -.1315465E-05 000200 
   .8553985E-15  .2349827E-15 -.8331001E-05 -.2190312E-01  .0000000     000101 
  -.5052264E-01 -.5608361E-06  .8953786E-15  .2925117E-15 -.5706663E-01 000002 
 ------------------------------------------------------------------------------ 
 

 Like the triplet design, it was possible to focus the dispersive image at the 

expense of minimizing the critical commutator terms.  The horizontal and vertical 

projections of this layout are shown in Figures 49 and 50.  This result maintained an 

image plane at the dispersive image, but did not minimize all the angular aberrations 

at the achromatic image. 
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Figure 49.  Alternate second order best symmetric layout – eight independent sextupoles through 

dispersive image – horizontal projection. 

 

 

Figure 50.  Alternate second order aberration for best symmetric layout –eight independent 

sextupoles through dispersive image – vertical projection. 
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 In consideration of all three designs, the non-symmetric design failed to 

meet the criteria set at second order either by minimizing the commutator terms or 

by otherwise focusing at the achromatic image.  The triplet design came much close, 

but also failed to minimize all the second order commutator terms.  The triplet 

design was able to focus the achromatic image, but it failed to minimize all angular 

aberration to 10-3.  The symmetric design was the only one capable of satisfying the 

primary second order criteria of minimizing all the critical commutator terms.  It 

also was the only system that minimized all aberrations at the achromatic image to 

10-3.  The drawback to the design was the loss of a focused image plane at the 

dispersive image.  This could be corrected, as in the triplet design, by sacrificing the 

goal of minimizing all of the critical commutator terms. 
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V. THIRD ORDER DESIGN 

 

 

 

Third Order Design Criteria 

 

 At third order, the design challenges and criteria become increasingly more 

complicated.  In terms of the commutator equations, 35 third order terms appear in 

this equation [8] and are listed in Table 7: 

 

Table 7 

Third Order Terms Appearing in the Commutator Equation. 

(x|xxa)D (x|xaδ)D (x|xyb)D (x|aaa)D (x|ayy)D (x|abb)D (x|aδδ)D (x|ybδ)D  

(a|xxx)D (a|xxδ)D (a|xaa)D (a|xyy)D (a|xbb)D (a|xδδ)D (a|aaδ)D (a|ayb)D (a|yyδ)D (a|bbδ)D (a|δδδ)D 

(y|xxb)D (y|xay)D (y|xbδ)D (y|aab)D (y|ayδ)D (y|yyb)D (y|bbb)D (y|bδδ)D 

(b|xxy)D (b|xab)D (b|xyδ)D (b|aay)D (b|abδ)D (b|yyy)D (b|ybb)D (b|yδδ)D 

 

 From the symplectic relations, we can reduce the number of independent 

commutator terms from 35 to 21.  [8]  These relations are listed in Table 8. 
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Table 8 

Symplectic Relations Between Third Order Commutator Terms. 

(x|xxa) ∝  (a|xaa)     (a|aaδ) ∝  (x|xaδ) 

(x|xyb) ∝  (a|ayb) ∝  (b|xab) ∝  (y|xay)  (x|ayy) ∝  (b|aay) 

(x|ybδ) ∝  (b|abδ) ∝  (y|ayδ)    (a|xyy) ∝  (b|xxy) 

(a|yyδ) ∝  (b|xyδ)     (a|xbb) ∝  (y|xxb) 

(a|bbδ) ∝  (y|xbδ)     (x|abb) ∝  (y|aab) 

(y|yyb) ∝  (b|ybb) 

 

 This leaves 21 independent third order terms in the commutator equation.  

As it did with second order terms, the symplectic condition also gives relations of 

proportionality between other non-commutator terms.  These are listed in Appendix 

A.  To minimize these terms, the system design will use octupoles superimposed 

onto the existing multipoles.  Given the limited number of multiples our system will 

use, it may not be possible to minimize all the third order commutator terms.  

Bearing this in mind, the primary goal at third order will remain to focus the 

achromatic image point-to-point parallel-to-parallel.  Our primary criteria will seek 

to achieve this goal by minimizing the independent commutator terms.  Attention 

will also be given to minimizing aberrations in the horizontal plane of the dispersive 

image where isobar separation occurs. 
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Theory Applied to the Number of Octupoles 

 

 As was done with the second order system, consideration should be given to 

the number of independent octupoles needed to minimize the critical third order 

commutator terms.  Because both the symmetric and triplet designs utilize mirror 

symmetry about the dipole, we can examine whether this symmetry reduces the 

original number of 35 third order commutator terms.  Just as was done at the second 

order, the third order commutator terms can be expressed as functions for the 

coefficients of the transfer map through the middle of the dipole.  The first and 

second order criteria are then incorporated.  When this is done, as detailed in 

Appendix B, we see that the 35 terms can be minimized by satisfying only 24 

relations involving 26 third order terms from the transfer map through the middle of 

the dipole.  These relations are listed in Table 9. 
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Table 9 

Third Order Relations for Commutator Terms Due to Mirror Symmetry About 

Dipole Midplane 

(a|xxx)D and (a|xxδ)D minimized when (x|xxx)M = - 2(x|xa)(x|xx)/(x|a) 
(a|xaa)D and (a|aaδ)D minimized when (x|xaa)M = 2(x|aa)(x|xa)/(x|a) – 
2(a|aa)(x|xx)(x|a) 
(a|xyy)D and (a|yyδ)D minimized when (x|xyy)M = -2(x|yb)(x|yy)/(x|a) -
2(x|xx)(y|ay)/(y|b) 
(a|xbb)D and (a|bbδ)D minimized when (x|xbb)M = -2(a|bb)(x|xx)(x|a) 
+4(x|bb)(x|yb)/(x|a) 
(a|xδδ)D and (a|δδδ)D minimized when (x|xδδ)M + 2(x|xxδ)M(a|δ)(x|a) + 
6(x|xxx)M(x|a)2(a|δ)2 = -2 (a|δδ)(x|xx)(x|a) -8(x|xa)(x|xx)(x|a)(a|δ)2 

(a|ayb)D minimized when (x|ayb)M = 2(x|aa)(x|yb)/(x|a)  - 4(a|bb)(x|yy)(x|a) 
 +4(x|bb)(y|ay)/(y|b) 
(x|xxa)D and (x|xaδ)D minimized when (a|xxa)M = 0 
(x|xyb)D and (x|ybδ)D minimized when (a|xyb)M = - (x|aa)(x|yb)/(x|a) 
(x|aaa)D minimized when (a|aaa)M = - (a|aa)(x|aa)/(x|a) 
(x|ayy)D minimized when (a|ayy)M = (y|ab)(y|ay)/(x|a)(y|b)2 – (x|aa)(y|ay)/(x|a)2(y|b) 
(x|abb)D minimized when (a|abb)M = - (a|bb)(x|aa)/(x|a) – (a|bb)(y|ab)(x|a)2/(y|b) 
(x|aδδ)D minimized when (a|aδδ)M + (a|xaδ)M(x|a)(a|δ)  +2(a|xxa)M(x|a)2(a|δ)2 = -
(x|aa)(x|aδ)(a|δ)/(x|a)2 – (x|aa)(a|δ)2 
(b|xxy)D and (b|xyδ)D minimized when (y|xxy)M = - (x|xa)(x|yy)(y|b)/(x|a)2 - 
(x|yb)(x|yy)(y|b)/(x|a)2 
(b|xab)D and (b|abδ)D minimized when (y|xab)M = - (a|bb)(x|yy)(y|b) + 
(x|xa)(y|ab)/(x|a) + (x|yb)(y|ab)/(x|a) 
(b|aay)D minimized when (y|aay)M = -2(a|aa)(x|yy)(y|b) + (y|ab)(y|ay)/(y|b) 
(b|yyy)D minimized when (y|yyy)M = -2(xyy)(y|ay)/(x|a) 
(b|ybb)D minimized when (y|ybb)M = -2(a|bb)(x|yy)(y|b) +2 (x|yb)(y|ab)/(x|a) 
(b|yδδ)D minimized when 2(y|xxy)M + (y|xyδ)M/(x|a)(a|δ) + (y|yδδ)M/(x|a)2(a|δ)2 = -
(a|δδ)(x|yy)(y|b)/(x|a)2(a|δ)2 - 2(x|aδ)(x|yy)(y|b)/(x|a)3(a|δ) – 2(x|xa))(x|yy)(y|b)/(x|a)2 
– (x|yb)(x|yy)(y|b)/(x|a)2  
(y|xxb)D and (y|xbδ)D minimized when (b|xxb)M = - (x|bb)(x|xa)/(x|a)2(y|b)  
+ (x|bb)(x|yb)/(x|a)2(y|b) 
(y|xay)D and (y|ayδ)D minimized when (b|xay)M = (a|yb)(x|xa)/(y|b) – 
(a|yb)(x|yb)/(y|b) + (x|bb)(y|ay)/(x|a)(y|b)2 
(y|aab)D minimized when (b|aab)M = -(a|bb)(a|yb)(x|a)2/(y|b) – (a|aa)(x|bb)/(y|b) 
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(y|yyb)D minimized when (b|yyb)M = (a|yb)(x|yb)/(y|b) – (x|bb)(y|ay)/(x|a)(y|b)2 
(y|bbb)D minimized when (b|bbb)M = - (a|bb)(x|bb)/(y|b) 
(y|bδδ)D minimized when (b|bδδ)M + (b|xbδ)M(x|a)/(a|δ)(y|b)2 +2(b|xxb)M(x|a)2(a|δ)2  
= -(a|δδ)(x|bb)/(y|b) –(x|aδ)(x|bb)(a|δ)/(x|a)(y|b) -2(x|bb)(x|yb)(a|δ)2/(y|b)  
 While this seems a daunting list, we must remember that all first and second 

order coefficients are set to a constant value by the system’s existing layout. These 

values are not changed when octupoles are superimposing onto the existing layout. 

 To determine the minimum number of octupoles that will be needed to 

minimized all critical third order commutator terms, we can start with an 

assumption that one octupole is necessary at a minimum to satisfy each of the 24 

previous relations.  If the symplectic relations are applied, the number of 

independent variables could be reduced by as many as 14.  This would indicate that 

at least 10 octupoles in front of the dipole would be necessary to minimize all 35 

third order commutator terms.  Since none of our designs approaches this number of 

octupoles, it must be recognized that the goal of minimizing the critical third order 

transfer map terms will likely need to yield to the overriding goal of minimizing 

aberrations at the achromatic image. 

 To accomplish this goal, we note that if we assume a point-like beam 

emerging from the target, the aberrations based on angular and energy dependence 

will be of greatest concern.  At third order, only 10 transfer map terms in the 

commutator equation are based only on angular and energy dependence.  These are 

(x|aaa)D, (x|abb)D, (x|aδδ)D, (a|aaδ)D, (a|bbδ)D, (a|δδδ)D, (y|abb)D, (y|bbb)D, (y|bδδ)D, 

and (b|abδ)D.  The symplectic relations, however, show that two of these terms, 

(x|abb)D and (y|aab)D, are proportional to each other and will be simultaneously 
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minimized.  This leaves nine independent terms through the dispersive image that 

still need to be minimized if we assume a point-like beam at the target.  Since the 

symmetric layout utilizes 8 multipoles (where octupole could be superimposed) 

ahead of the dispersive image, it should stand the best chance for a system that 

minimizes these 9 independent terms. 

 

Selection of Third Order Design 

 

 Now we apply the criteria and theory to the remaining two second order 

layouts.  With respect to the triplet design, no solution was found that minimized the 

commutator terms at second order, and no solution was found at third order.  Even 

the best second order design was not able to yield a result that focused the 

achromatic image at third order when all the octupoles were allowed to be 

independent. 

 With respect to the symmetric model, the number of octupoles was 

insufficient to allow for a solution that minimized all the commutator terms.  It was, 

however, possible to find a solution that focused the achromatic image when all 

eight octupoles up to the dispersive image were allowed to be independent of each 

other.  The horizontal and vertical projections of this layout are shown in Figures 51 

and 52.  Mirror symmetry in this system was still maintained relative to the 

dispersive image. 
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Figure 51.  Best symmetric layout after correction of third order aberrations – horizontal projection. 

 

Figure 52.  Best symmetric layout after correction of third order aberrations – vertical projection. 

 For this system, the strengths of the octupoles were reasonable, but the 

drawback is the same as with the second order solution.  The dispersive image 
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remains unfocused.  Still, as shown in the Table 10, the aberrations at the 

achromatic image were successfully reduced. 
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Table 10 

Aberrations at Achromatic Image for Best Symmetric Design Layout After Third 

Order Correction. 

BEAM ABERRATIONS – ACHROMATIC IMAGE – SYMMETRIC DESIGN 
   .2118836E-12  .0000000      .0000000      .0000000      .4014956E-12 000000 
   .9999998E-03 -.1164028E-09  .0000000      .0000000     -.1385564E-09 100000 
   .1060541E-12  .5000001E-01  .0000000      .0000000      .1315949E-07 010000 
   .0000000      .0000000      .9999998E-03 -.3471420E-13  .0000000     001000 
   .0000000      .0000000     -.1810496E-12  .5000001E-01  .0000000     000100 
   .4158401E-07  .2189190E-07  .0000000      .0000000      .7132948     000001 
   .2487550E-13 -.3915073E-13  .0000000      .0000000      .1887316E-13 200000 
   .8930761E-09 -.2487655E-11  .0000000      .0000000     -.7754190E-09 110000 
  -.1272321E-06 -.2232690E-07  .0000000      .0000000      .6612215E-12 020000 
   .0000000      .0000000      .2581110E-12 -.5313490E-12  .0000000     101000 
   .0000000      .0000000     -.4544516E-13 -.1933583E-10  .0000000     011000 
   .1933583E-12 -.2656745E-12  .0000000      .0000000     -.5003372E-13 002000 
   .0000000      .0000000      .4589526E-10 -.1290555E-10  .0000000     100100 
   .0000000      .0000000     -.1038767E-07  .2272213E-11 -.8703913E-15 010100 
  -.4544302E-13 -.1290555E-10  .0000000      .0000000     -.3372716E-07 001100 
  -.2450323E-08 -.5963640E-11  .0000000      .0000000     -.3353648E-12 100001 
   .4102102E-11  .1225162E-06 -.2751978E-14  .7705327E-15  .2881305E-06 010001 
   .0000000      .0000000     -.1065778E-06  .1581063E-10  .0000000     001001 
  -.5193832E-08 -.1147381E-08  .0000000      .0000000      .1196227E-11 000200 
  -.2748904E-14 -.1798597E-15  .7557628E-11  .5328893E-05 -.4249146E-15 000101 
   .4552461E-06  .2646751E-10 -.6515956E-15 -.4610645E-15 -.1141333     000002 
  -.5586939E-12  .1327918E-07  .0000000      .0000000     -.1638800E-10 300000 
  -.4312462E-05  .8430611E-10  .0000000      .0000000      .8460755E-11 210000 
   .4344054E-07  .2156232E-03  .0000000      .0000000      .6012746E-04 120000 
  -.5787529E-04 -.7240026E-06  .2433126E-14  .1700863E-14  .2410203E-05 030000 
   .0000000      .0000000      .2218913E-11 -.6755976E-07  .0000000     201000 
   .0000000      .0000000      .2005817E-04  .1292174E-08  .0000000     111000 
  -.1022781E-15  .0000000      .4807678E-06 -.8104731E-03  .0000000     021000 
  -.1292175E-10 -.6755977E-07  .0000000      .0000000      .3639898E-08 102000 
   .1620946E-04  .6442007E-09  .0000000      .0000000      .1101448E-08 012000 
   .0000000      .0000000     -.3379196E-11  .5396881E-07  .0000000     003000 
   .0000000      .0000000      .6912722E-05 -.1109459E-09  .0000000     200100 
   .0000000      .0000000      .3780489E-06 -.1002909E-02  .0000000     110100 
   .7268253E-14  .0000000     -.8376909E-04 -.2403840E-04  .1154879E-14 020100 
   .2005816E-04 -.2242261E-09  .0000000      .0000000      .2640737E-10 101100 
   .9615354E-06 -.1002909E-02  .0000000      .0000000      .1038160E-05 011100 
   .0000000      .0000000     -.1141123E-04  .5068800E-09  .0000000     002100 
   .2484775E-10  .7769571E-08  .0000000      .0000000      .2527773E-07 200001 
   .3800051E-03 -.2529010E-08  .0000000      .0000000      .4891422E-08 110001 
   .2284864E-04 -.9500131E-02  .3645404E-14 -.5856539E-15  .3927377E-03 020001 
   .0000000      .0000000      .9222966E-10 -.1150214E-05  .0000000     101001 
   .0000000      .0000000      .3281418E-05 -.3487673E-06  .0000000     011001 
   .3487672E-08 -.5751069E-06  .0000000      .0000000     -.7356649E-06 002001 
   .1890245E-06 -.3456363E-03 -.1278535E-15  .0000000     -.2041548E-04 100200 
  -.8376908E-04 -.9451217E-05  .1652839E-14  .2102875E-15 -.9598736E-05 010200 
   .0000000      .0000000     -.3498636E-06  .5705617E-03  .0000000     001200 
   .0000000      .0000000     -.1290252E-03 -.4611482E-08  .0000000     100101 
   .7300335E-14 -.5095391E-15 -.6066406E-04 -.1640710E-03 -.6907878E-15 010101 
   .3281418E-05 -.4611868E-08  .0000000      .0000000      .4843773E-07 001101 
   .7811640E-08 -.3993881E-05  .0000000      .0000000     -.1078346E-04 100002 
   .1241059E-02 -.3907263E-06 -.1075591E-14 -.5410862E-15 -.2002005E-05 010002 
   .0000000      .0000000      .7653800E-07  .1162351E-03  .0000000     001002 
   .5515972E-15  .2130750E-14  .4789049E-04  .5831062E-05  .0000000     000300 
  -.3033203E-04  .3225632E-02  .4385635E-15 -.3885806E-15 -.2112681E-03 000201 
  -.1081683E-14  .0000000     -.6676096E-03 -.3826333E-05  .0000000     000102 
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  -.2108598E-05  .5679290E-03  .0000000      .2095413E-15  .2003393E-01 000003 
 ------------------------------------------------------------------------------ 

 Two other solutions were found that are worthy of discussion.  Both are 

based upon the version of the symmetric design that focused the dispersive image at 

second order, but did not minimize the commutator terms.  The first case, referred to 

as the low magnet solution, looks deceptively good through the dispersive image 

and in the horizontal plane.  The horizontal and vertical projections of this layout 

are shown in figures 53 and 54.  The drawback to this solution is that the aberrations 

in the vertical plane explode as the system’s cells are repeated.  The strengths of the 

octupoles used in this design are quite reasonable. 

 

 

Figure 53.  Low magnet strength third order aberration correction of alternative second order best 

symmetric design – horizontal projection.  
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Figure 54.  Low magnet strength third order aberration correction of alternative second order best 

symmetric design – vertical projection. 

 Another alternative, referred to as the high magnet solution, did focus both 

the dispersive and achromatic images and minimized all aberrations.  The horizontal 

and vertical projections of this layout are shown in Figures 55 and 56.  The problem 

with this system, however, is that one of the octupoles in each cell through the 

dispersive image has a pole field tip strength beyond physical limitations.  This was 

representative of a number of solutions found by COSY during simulation.  In all 

such cases, the pole tip field strength of one or more of the octupoles with a 40 cm 

aperture was in excess of 4.6 Tesla.  This very large magnet also induces dramatic 

effects in the beam line aberrations at fifth order and beyond. 
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Figure 55.  High magnet strength third order aberration correction of alternative second order best 

symmetric design – horizontal projection. 

 

Figure 56.  High magnet strength third order aberration correction of alternative second order best 

symmetric design – vertical projection. 

 After consideration of the third order results and the drawbacks of each, the 

first solution for the symmetric layout was selected.  This solution focused at the 
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achromatic image and had very reasonable values ( < .6 Telsa) for all octupole pole 

tip fields.   
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VI. FRINGE FIELD CORRECTIONS 

 

 

 All designs initially developed and simulated through third order were done 

without simulating the effects of fringe fields on the system.  These effects 

obviously must be considered in any real system.  While COSY is very capable of 

calculating these fields [12], the computing power required and time per simulation 

is substantial. 

 After determining the system through third order, it is relatively easy to 

correct for the effects of fringe fields.  Using the values of the uncorrected system as 

initial values, simulations were run that incorporated the fringe field effects.  This 

was done initially at first order.  This resulted in very minor correction in the 

spacing and strengths of the system’s quadrupoles.  Further corrections were then 

calculated for the strengths of the sextupoles, and then the strengths of the 

octupoles.  The data in the tables presented in the preceding sections comes from the 

system calculated to include the fringe field effects. 
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VII. EFFECTS OF HIGHER ORDER ABERRATIONS 

 

 

 Aberrations beyond third order will also affect the system.  These effects 

could be corrected by using even higher order multipoles, but the practicality of 

such systems is very limited.  With regard to all the solutions of the symmetric 

design, calculations through fifth order were run to determine the effect of these 

aberrations.  This respect to both the low and high magnet solutions, the effects 

were substantial; both the horizontal and vertical beam widths diverge beyond 

several meters at fifth order.  The selected symmetric layout solution, shown in 

Figures 57 and 58, demonstrated less extreme effects from aberrations through fifth 

order.  
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Figure 57.  Best symmetric layout with aberrations through fifth order – wide angular acceptance – 

horizontal projection. 

 

Figure 58.  Best symmetric layout with aberrations through fifth order – wide angular acceptance – 

vertical projection. 
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 These effects, however, primarily affect particle entering the system at a 

sharp angle.  When the initial angular acceptance for the system is cut in half, as 

shown in Figures 59 and 60, the effects of the fifth order aberrations fall off 

dramatically. 

 

Figure 59.  Best symmetric layout with aberrations through fifth order – reduced angular acceptance 

– horizontal projection. 
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Figure 60.  Best symmetric layout with aberrations through fifth order – reduced angular acceptance 

– vertical projection.
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VIII. CONCLUSIONS 

 

 

 Having looked at many possible systems designs and how higher order 

aberrations in these systems can be corrected, the benefits of utilizing symmetry 

theories becomes apparent.  In the area of a fragment separators, where large phase 

space volumes are involved, symmetry theory can play an important design role.  

The symmetry theories utilized in the examples previously discussed can be 

employed in almost any type of optical design.  They demonstrate a powerful tool in 

finding solutions for the optical design of a fragment separator. 

 For the selected symmetric design, we have utilized a layout that contains 3 

segments.  The first spans from the target to the dispersive image where the first 

absorbing wedge will be placed.  The second continues through the achromatic 

image.  The third creates a second dispersive image where a second absorbing 

wedge can be placed before the gas catcher cell to minimize range variations. 

 Each of these segments maintains mirror symmetry for the first and second 

order elements (dipoles, quadrupoles, and sextupoles) about the dipole midplane.  

This mirror symmetry is with respect to both polarity and pole tip field strength of 

these multipoles.  The result is that each segment is identical in terms of first and 

second order elements. 
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 The system focuses point-to-parallel, parallel-to-point at the middle of the 

dipole at first order.  This results in point-to-point, parallel-to-parallel focusing of 

both the dispersive and achromatic images.  All but 5 of the critical commutator 

terms at second order are automatically minimized by mirror symmetry coupled 

with the symplectic condition. 

 It was also shown that our system design has only 4 truly independent 

second order commutator terms due to the coupled effects of the mirror and 

symplectic symmetries.  Using the four independent sextupoles in each segment, a 

solution was found with the symmetric layout that met the second order criteria of 

minimizing all terms in the commutator equation through second order.  This 

resulted in a system that minimized the aberrations at the achromatic image. 

 Theory indicates that the number of independent octupoles needed to 

minimize all the commutator terms at third order exceeded the number available in 

our system.   Minimizing the third order terms in the commutator equation while 

maintaining mirror symmetry about the dipole midplane would require at least 10 

independent octupoles ahead of the dipole in each segment.  Only nine independent 

octupoles ahead of the dispersive image, however, are necessary to minimize all 

third order terms in the commutator equation with only angular and energy 

dependence. 

 A solution for the symmetry layout was found that satisfies the goal of 

minimizing positional aberrations at the achromatic image by breaking the mirror 

symmetry about the dipole midplane in the segments with regard to the third order 
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magnetic multipoles (octupoles).  The selected design solution utilizes 8 

independent octupoles in each segment, maintaining mirror symmetry with respect 

to the charge and polarity of these octupoles about the dispersive image plane.  The 

result is that the order of the octupoles in adjoining segments of the separator is 

reversed. 

 The final design was corrected for the effects of fringe field and the effects 

of fourth and fifth order aberrations were calculated.  These effects appear to have 

minimal effect on the system except in cases of wide angular acceptance from the 

initial target. 

 The selected symmetric design does not maintain a focused dispersive 

image.  This will increase the stochastic effects resulting when the absorbing 

wedges are inserted into the system.  This problem can be overcome with two 

alternative designs.  The low magnet alternative design maintains the dispersive 

image, but does not minimize all aberrations at the achromatic image.  It also suffers 

from greater higher order aberrations.  The high magnet alternative design maintains 

focusing at both the dispersive and achromatic image, but the pole tip field strength 

of one of the octupole in each segment was so large that it would not be feasible to 

build.  Also, this large octupole substantially increased the effect of fourth and fifth 

order aberrations in the system. 

 The methods employed in this paper demonstrate a repeatable and reliable 

method for the designing the next generation of high resolution fragment separators.  
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The use of symmetry theories is a powerful method which can be employed to 

design of such systems and correct aberrations that would affect their resolution. 
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APPENDIX A 
 

RELATIONS IN COMMUTATOR AND NON-COMMUTATOR TERMS 
ARISING FROM SYMPLECTIC SYMMETRY 
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First, Second and Third Order Elements that appear in the commutator [R,M]. 

(x|a), (x|xa), (x|xδ), (x|yb), (x|xxa), (x|xaδ), (x|xyb), (x|aaa), (x|ayy), (x|abb), (x|aδδ), 

(x|ybδ) 

 

(a|x), (a|δ), (a|xx), (a|xδ), (a|aa), (a|yy), (a|bb), (a|δδ), (a|xxx), (a|xxδ), (a|xaa), 

(a|xyy), (a|xbb), (a|xδδ), (a|aaδ), (a|ayb), (a|yyδ), (a|bbδ), (a|δδδ) 

 

(y|b), (y|xb), (y|ay), (y|bδ), (y|xxb), (y|xay), (y|xbδ), (y|aab), (y|ayδ), (y|yyb), 

(y|bbb), (y|bδδ) 

 

(b|y), (b|xy), (b|ab), (b|yδ), (b|xxy), (b|xab), (b|xyδ), (b|aay), (b|abδ), (b|yyy), 

(b|ybb), (b|yδδ) 

 

(t|a), (t|xa), (t|aδ), (t|yb), (t|xxa), (t|xaδ), (t|xyb), (t|aaa), (t|ayy), (t|abb), (t|aδδ), 

(t|ybδ) 
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Relations of Interest Second Order Elements. 

These elements appear in the commutator: 

(a|aa) ∝  (x|xa) 

(x|yb) ∝  (b|ab) ∝  (y|ay) 

(a|bb) ∝  (y|xb) 

(a|yy) ∝  (b|xy) 

This allows for 9 commutator elements to be minimized by only minimizing 4. 

 

These elements do not appear in the commutator: 

(a|xa) ∝  (x|xx) 

(a|aδ) ∝  (x|xδ) 

(x|bb) ∝  (y|ab) 

(x|yy) ∝  (b|ay) 

(b|bδ) ∝  (y|yδ) 

(a|yb) ∝  (b|xb) ∝  (y|xy) 

Although these coefficients do not appear in the commutator, these relations are 

helpful for minimizing coefficients that do not appear in the commutator. 
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Relations of Interest Involving Third Order Elements. 

(x|xxa) ∝  (a|xaa) 

(a|aaδ) ∝  (x|xaδ) 

(x|xyb) ∝  (a|ayb) ∝  (b|xab) ∝  (y|xay) 

(x|ayy) ∝  (b|aay) 

(x|ybδ) ∝  (b|abδ) ∝  (y|ayδ) 

(a|xyy) ∝  (b|xxy) 

(a|yyδ) ∝  (b|xyδ) 

(a|xbb) ∝  (y|xxb) 

(a|bbδ) ∝  (y|xbδ) 

(x|abb) ∝  (y|aab) 

(y|yyb) ∝  (b|ybb) 
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First, Second and Third Order Relations as derived by the method described in 

Wollnick & Berz [8]. 

-2(a|xx)(x|xa)+2(a|xa)(x|xx)+(a|xxa)(x|x)-(a|x)(x|xxa)-(a|xxx)(x|a)+(a|a)(x|xxx)=0 

-2(a|xx)(x|aa)+2(a|aa)(x|xx)+(a|xaa)(x|x)-(a|x)(x|xaa)-(a|xxa)(x|a)+(a|a)(x|xxa)=0 

2(a|δa)(x|xx)-2(a|xx)(x|δa)+(a|xδa)(x|x)-(a|x)(x|xδa)-(a|xxδ)(x|a)+(a|a)(x|xxδ)=0 

-((a|x)(x|axa))+(a|axa)(x|x)-(a|xax)(x|a)+(a|a)(x|xax)=0 

-2(a|xa)(x|aa)+2(a|aa)(x|xa)-((a|x)(x|aaa))+(a|aaa)(x|x)-(a|xaa)(x|a)+(a|a)(x|xaa)=0 

2(a|δa)(x|xa)-2(a|xa)(x|δa)-((a|x)(x|aδa))+(a|aδa)(x|x)-(a|xaδ)(x|a)+(a|a)(x|xaδ)=0 

-2(a|xδ)(x|xa)+2(a|xa)(x|xδ)+(a|δxa)(x|x)-(a|x)(x|δxa)-(a|xδx)(x|a)+(a|a)(x|xδx)=0 

-2(a|xδ)(x|aa)+2(a|aa)(x|xδ)+(a|δaa)(x|x)-(a|x)(x|δaa)-(a|xδa)(x|a)+(a|a)(x|xδa)=0 

2(a|δa)(x|xδ)-2(a|xδ)(x|δa)+(a|δδa)(x|x)-(a|x)(x|δδa)-(a|xδδ)(x|a)+(a|a)(x|xδδ)=0 

2(b|ya)(y|xy)-2(b|xy)(y|ya)+(a|yya)(x|x)-(a|x)(x|yya)-(a|xyy)(x|a)+(a|a)(x|xyy)=0 

-2(b|xy)(y|ba)+2(b|ba)(y|xy)+(a|yba)(x|x)-(a|x)(x|yba)-(a|xyb)(x|a)+(a|a)(x|xyb)=0 

2(b|ya)(y|xb)-2(b|xb)(y|ya)-((a|x)(x|bya))+(a|bya)(x|x)-(a|xby)(x|a)+(a|a)(x|xby)=0 

-2(b|xb)(y|ba)+2(b|ba)(y|xb)-((a|x)(x|bba))+(a|bba)(x|x)-(a|xbb)(x|a)+(a|a)(x|xbb)=0 

-2(b|yx)(y|ya)+2(b|ya)(y|yx)-((b|y)(y|xya))+(b|xya)(y|y)-(a|yxy)(x|a)+(a|a)(x|yxy)=0 

-2(b|yx)(y|ba)+2(b|ba)(y|yx)-((b|y)(y|xba))+(b|xba)(y|y)-(a|yxb)(x|a)+(a|a)(x|yxb)=0 

-((b|y)(y|aya))+(b|aya)(y|y)-(a|yay)(x|a)+(a|a)(x|yay)=0 

-2(b|ya)(y|ba)+2(b|ba)(y|ya)-((b|y)(y|aba))+(b|aba)(y|y)-(a|yab)(x|a)+(a|a)(x|yab)=0 

-2(b|yδ)(y|ya)+2(b|ya)(y|yδ)+(b|δya)(y|y)-(b|y)(y|δya)-(a|yδy)(x|a)+(a|a)(x|yδy)=0 

-2(b|yδ)(y|ba)+2(b|ba)(y|yδ)+(b|δba)(y|y)-(b|y)(y|δba)-(a|yδb)(x|a)+(a|a)(x|yδb)=0 

-2(a|yy)(x|xa)+2(a|xa)(x|yy)+(b|yxa)(y|y)-(b|y)(y|yxa)-(a|yyx)(x|a)+(a|a)(x|yyx)=0 
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-2(a|yy)(x|aa)+2(a|aa)(x|yy)+(b|yaa)(y|y)-(b|y)(y|yaa)-(a|yya)(x|a)+(a|a)(x|yya)=0 

2(a|δa)(x|yy)-2(a|yy)(x|δa)+(b|yδa)(y|y)-(b|y)(y|yδa)-(a|yyδ)(x|a)+(a|a)(x|yyδ)=0 

-2(a|yb)(x|xa)+2(a|xa)(x|yb)-((b|y)(y|bxa))+(b|bxa)(y|y)-(a|ybx)(x|a)+(a|a)(x|ybx)=0 

-2(a|yb)(x|aa)+2(a|aa)(x|yb)-((b|y)(y|baa))+(b|baa)(y|y)-(a|yba)(x|a)+(a|a)(x|yba)=0 

2(a|δa)(x|yb)-2(a|yb)(x|δa)-((b|y)(y|bδa))+(b|bδa)(y|y)-(a|ybδ)(x|a)+(a|a)(x|ybδ)=0 

2(a|yy)(x|xx)-2(a|xx)(x|yy)+(a|xyy)(x|x)-(a|x)(x|xyy)+(b|y)(y|xxy)-(b|xxy)(y|y)=0 

-2(a|xx)(x|by)+2(a|by)(x|xx)+(a|xby)(x|x)-(a|x)(x|xby)+(b|y)(y|xxb)-(b|xxb)(y|y)=0 

2(a|yy)(x|xa)-2(a|xa)(x|yy)-((a|x)(x|ayy))+(a|ayy)(x|x)+(b|y)(y|xay)-(b|xay)(y|y)=0 

-2(a|xa)(x|by)+2(a|by)(x|xa)-((a|x)(x|aby))+(a|aby)(x|x)+(b|y)(y|xab)-(b|xab)(y|y)=0 

2(a|yy)(x|xδ)-2(a|xδ)(x|yy)+(a|δyy)(x|x)-(a|x)(x|δyy)+(b|y)(y|xδy)-(b|xδy)(y|y)=0 

-2(a|xδ)(x|by)+2(a|by)(x|xδ)+(a|δby)(x|x)-(a|x)(x|δby)+(b|y)(y|xδb)-(b|xδb)(y|y)=0 

2(a|yb)(x|xx)-2(a|xx)(x|yb)+(a|xyb)(x|x)-(a|x)(x|xyb)-(b|xxy)(y|b)+(b|b)(y|xxy)=0 

-2(a|xx)(x|bb)+2(a|bb)(x|xx)+(a|xbb)(x|x)-(a|x)(x|xbb)-(b|xxb)(y|b)+(b|b)(y|xxb)=0 

2(a|yb)(x|xa)-2(a|xa)(x|yb)-((a|x)(x|ayb))+(a|ayb)(x|x)-(b|xay)(y|b)+(b|b)(y|xay)=0 

-2(a|xa)(x|bb)+2(a|bb)(x|xa)-((a|x)(x|abb))+(a|abb)(x|x)-(b|xab)(y|b)+(b|b)(y|xab)=0 

2(a|yb)(x|xδ)-2(a|xδ)(x|yb)+(a|δyb)(x|x)-(a|x)(x|δyb)-(b|xδy)(y|b)+(b|b)(y|xδy)=0 

-2(a|xδ)(x|bb)+2(a|bb)(x|xδ)+(a|δbb)(x|x)-(a|x)(x|δbb)-(b|xδb)(y|b)+(b|b)(y|xδb)=0 

2(a|yb)(x|ax)-2(a|ax)(x|yb)+(a|xyb)(x|a)-(a|a)(x|xyb)+(b|b)(y|axy)-(b|axy)(y|b)=0 

2(a|bb)(x|ax)-2(a|ax)(x|bb)+(a|xbb)(x|a)-(a|a)(x|xbb)+(b|b)(y|axb)-(b|axb)(y|b)=0 

2(a|yb)(x|aa)-2(a|aa)(x|yb)+(a|ayb)(x|a)-(a|a)(x|ayb)+(b|b)(y|aay)-(b|aay)(y|b)=0 

2(a|bb)(x|aa)-2(a|aa)(x|bb)+(a|abb)(x|a)-(a|a)(x|abb)+(b|b)(y|aab)-(b|aab)(y|b)=0 

2(a|yb)(x|aδ)-2(a|aδ)(x|yb)+(a|δyb)(x|a)-(a|a)(x|δyb)+(b|b)(y|aδy)-(b|aδy)(y|b)=0 
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2(a|bb)(x|aδ)-2(a|aδ)(x|bb)+(a|δbb)(x|a)-(a|a)(x|δbb)+(b|b)(y|aδb)-(b|aδb)(y|b)=0 

(a|yxy)(x|x)-(a|x)(x|yxy)+(b|y)(y|xyx)-(b|xyx)(y|y)=0 

-2(b|xy)(y|ay)+2(b|ay)(y|xy)+(a|yay)(x|x)-(a|x)(x|yay)+(b|y)(y|xya)-(b|xya)(y|y)=0 

2(b|δy)(y|xy)-2(b|xy)(y|δy)+(a|yδy)(x|x)-(a|x)(x|yδy)+(b|y)(y|xyδ)-(b|xyδ)(y|y)=0 

2(b|xy)(y|xb)-2(b|xb)(y|xy)+-((a|x)(x|bxy))+(a|bxy)(x|x)+(b|y)(y|xbx)-(b|xbx)(y|y)=0 

-2(b|xb)(y|ay)+2(b|ay)(y|xb)-((a|x)(x|bay))+(a|bay)(x|x)+(b|y)(y|xba)-(b|xba)(y|y)=0 

2(b|δy)(y|xb)-2(b|xb)(y|δy)-((a|x)(x|bδy))+(a|bδy)(x|x)+(b|y)(y|xbδ)-(b|xbδ)(y|y)=0 

-2(b|xy)(y|xb)+2(b|xb)(y|xy)+(a|yxb)(x|x)-(a|x)(x|yxb)-(b|xyx)(y|b)+(b|b)(y|xyx)=0 

-2(b|xy)(y|ab)+2(b|ab)(y|xy)+(a|yab)(x|x)-(a|x)(x|yab)-(b|xya)(y|b)+(b|b)(y|xya)=0 

2(b|δb)(y|xy)-2(b|xy)(y|δb)+(a|yδb)(x|x)-(a|x)(x|yδb)-(b|xyδ)(y|b)+(b|b)(y|xyδ)=0 

-((a|x)(x|bxb))+(a|bxb)(x|x)-(b|xbx)(y|b)+(b|b)(y|xbx)=0 

-2(b|xb)(y|ab)+2(b|ab)(y|xb)-((a|x)(x|bab))+(a|bab)(x|x)-(b|xba)(y|b)+(b|b)(y|xba)=0 

2(b|δb)(y|xb)-2(b|xb)(y|δb)-((a|x)(x|bδb))+(a|bδb)(x|x)-(b|xbδ)(y|b)+(b|b)(y|xbδ)=0 

2(b|xb)(y|ay)-2(b|ay)(y|xb)+(a|yxb)(x|a)-(a|a)(x|yxb)+(b|b)(y|ayx)-(b|ayx)(y|b)=0 

-2(b|ay)(y|ab)+2(b|ab)(y|ay)+(a|yab)(x|a)-(a|a)(x|yab)+(b|b)(y|aya)-(b|aya)(y|b)=0 

2(b|δb)(y|ay)-2(b|ay)(y|δb)+(a|yδb)(x|a)-(a|a)(x|yδb)+(b|b)(y|ayδ)-(b|ayδ)(y|b)=0 

2(b|xb)(y|ab)-2(b|ab)(y|xb)+(a|bxb)(x|a)-(a|a)(x|bxb)+(b|b)(y|abx)-(b|abx)(y|b)=0 

 (a|bab)(x|a)-(a|a)(x|bab)+(b|b)(y|aba)-(b|aba)(y|b)=0 

2(b|δb)(y|ab)-2(b|ab)(y|δb)+(a|bδb)(x|a)-(a|a)(x|bδb)+(b|b)(y|abδ)-(b|abδ)(y|b)=0 

-2(b|yx)(y|xb)+2(b|xb)(y|yx)-((b|y)(y|xxb))+(b|xxb)(y|y)-(b|yxx)(y|b)+(b|b)(y|yxx)=0 

-2(b|yx)(y|ab)+2(b|ab)(y|yx)-((b|y)(y|xab))+(b|xab)(y|y)-(b|yxa)(y|b)+(b|b)(y|yxa)=0 

2(b|δb)(y|yx)-2(b|yx)(y|δb)-((b|y)(y|xδb))+(b|xδb)(y|y)-(b|yxδ)(y|b)+(b|b)(y|yxδ)=0 
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-2(b|ya)(y|xb)+2(b|xb)(y|ya)-((b|y)(y|axb))+(b|axb)(y|y)-(b|yax)(y|b)+(b|b)(y|yax)=0 

-2(b|ya)(y|ab)+2(b|ab)(y|ya)-((b|y)(y|aab))+(b|aab)(y|y)-(b|yaa)(y|b)+(b|b)(y|yaa)=0 

2(b|δb)(y|ya)-2(b|ya)(y|δb)-((b|y)(y|aδb))+(b|aδb)(y|y)-(b|yaδ)(y|b)+(b|b)(y|yaδ)=0 

-2(b|yδ)(y|xb)+2(b|xb)(y|yδ)+(b|δxb)(y|y)-(b|y)(y|δxb)-(b|yδx)(y|b)+(b|b)(y|yδx)=0 

-2(b|yδ)(y|ab)+2(b|ab)(y|yδ)+(b|δab)(y|y)-(b|y)(y|δab)-(b|yδa)(y|b)+(b|b)(y|yδa)=0 

2(b|δb)(y|yδ)-2(b|yδ)(y|δb)+(b|δδb)(y|y)-(b|y)(y|δδb)-(b|yδδ)(y|b)+(b|b)(y|yδδ)=0 

-2(a|yy)(x|yb)+2(a|yb)(x|yy)+(b|yyb)(y|y)-(b|y)(y|yyb)-(b|yyy)(y|b)+(b|b)(y|yyy)=0 

-2(a|yy)(x|bb)+2(a|bb)(x|yy)+(b|ybb)(y|y)-(b|y)(y|ybb)-(b|yyb)(y|b)+(b|b)(y|yyb)=0 

-((b|y)(y|byb))+(b|byb)(y|y)-(b|yby)(y|b)+(b|b)(y|yby)=0 

-2(a|yb)(x|bb)+2(a|bb)(x|yb)-((b|y)(y|bbb))+(b|bbb)(y|y)-(b|ybb)(y|b)+(b|b)(y|ybb)=0 

2(a|xδ)(x|xx)-2(a|xx)(x|xδ)+(a|xxδ)(x|x)-(a|x)(x|xxδ)+(a|δ)(x|xxx)-(a|xxx)(x|δ)=-

(t|xxx) 

-2(a|xx)(x|aδ)+2(a|aδ)(x|xx)+(a|xaδ)(x|x)-(a|x)(x|xaδ)+(a|δ)(x|xxa)-(a|xxa)(x|δ)=-

(t|xxa) 

2(a|δδ)(x|xx)-2(a|xx)(x|δδ)+(a|xδδ)(x|x)-(a|x)(x|xδδ)+(a|δ)(x|xxδ)-(a|xxδ)(x|δ)=-

(t|xxδ) 

2(a|xδ)(x|xa)-2(a|xa)(x|xδ)-((a|x)(x|axδ))+(a|axδ)(x|x)+(a|δ)(x|xax)-(a|xax)(x|δ)=-

(t|xxa) 

-2(a|xa)(x|aδ)+2(a|aδ)(x|xa)-((a|x)(x|aaδ))+(a|aaδ)(x|x)+(a|δ)(x|xaa)-(a|xaa)(x|δ)=-

(t|xaa) 

2(a|δδ)(x|xa)-2(a|xa)(x|δδ)-((a|x)(x|aδδ))+(a|aδδ)(x|x)+(a|δ)(x|xaδ)-(a|xaδ)(x|δ)=-

(t|xaδ) 
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 (a|δxδ)(x|x)-(a|x)(x|δxδ)+(a|δ)(x|xδx)-(a|xδx)(x|δ)=-(t|xxδ) 

-2(a|xδ)(x|aδ)+2(a|aδ)(x|xδ)+(a|δaδ)(x|x)-(a|x)(x|δaδ)+(a|δ)(x|xδa)-(a|xδa)(x|δ)-

(t|xaδ) 

2(a|δδ)(x|xδ)-2(a|xδ)(x|δδ)+(a|δδδ)(x|x)-(a|x)(x|δδδ)+(a|δ)(x|xδδ)-(a|xδδ)(x|δ)=-

(t|xδδ) 

2(a|xδ)(x|ax)-2(a|ax)(x|xδ)+(a|xxδ)(x|a)-(a|a)(x|xxδ)+(a|δ)(x|axx)-(a|axx)(x|δ)=-

(t|xxa) 

2(a|aδ)(x|ax)-2(a|ax)(x|aδ)+(a|xaδ)(x|a)-(a|a)(x|xaδ)+(a|δ)(x|axa)-(a|axa)(x|δ)=-

(t|xaa) 

2(a|δδ)(x|ax)-2(a|ax)(x|δδ)+(a|xδδ)(x|a)-(a|a)(x|xδδ)+(a|δ)(x|axδ)-(a|axδ)(x|δ)=-

(t|xaδ) 

2(a|xδ)(x|aa)-2(a|aa)(x|xδ)+(a|axδ)(x|a)-(a|a)(x|axδ)+(a|δ)(x|aax)-(a|aax)(x|δ)=-

(t|xaa) 

2(a|aδ)(x|aa)-2(a|aa)(x|aδ)+(a|aaδ)(x|a)-(a|a)(x|aaδ)+(a|δ)(x|aaa)-(a|aaa)(x|δ)=-

(t|aaa) 

2(a|δδ)(x|aa)-2(a|aa)(x|δδ)+(a|aδδ)(x|a)-(a|a)(x|aδδ)+(a|δ)(x|aaδ)-(a|aaδ)(x|δ)=-

(t|aaδ) 

2(a|xδ)(x|aδ)-2(a|aδ)(x|xδ)+(a|δxδ)(x|a)-(a|a)(x|δxδ)+(a|δ)(x|aδx)-(a|aδx)(x|δ)=-

(t|xaδ) 

(a|δaδ)(x|a)-(a|a)(x|δaδ)+(a|δ)(x|aδa)-(a|aδa)(x|δ)=-(t|aaδ) 

2(a|δδ)(x|aδ)-2(a|aδ)(x|δδ)+(a|δδδ)(x|a)-(a|a)(x|δδδ)+(a|δ)(x|aδδ)-(a|aδδ)(x|δ)=-

(t|aδδ) 
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2(b|yδ)(y|xy)-2(b|xy)(y|yδ)+(a|yyδ)(x|x)-(a|x)(x|yyδ)+(a|δ)(x|xyy)-(a|xyy)(x|δ)=-

(t|xyy) 

-2(b|xy)(y|bδ)+2(b|bδ)(y|xy)+(a|ybδ)(x|x)-(a|x)(x|ybδ)+(a|δ)(x|xyb)-(a|xyb)(x|δ)=-

(t|xyb) 

2(b|yδ)(y|xb)-2(b|xb)(y|yδ)-((a|x)(x|byδ))+(a|byδ)(x|x)+(a|δ)(x|xby)-(a|xby)(x|δ)=-

(t|xyb) 

-2(b|xb)(y|bδ)+2(b|bδ)(y|xb)-((a|x)(x|bbδ))+(a|bbδ)(x|x)+(a|δ)(x|xbb)-

(a|xbb)(x|δ)=-(t|xbb) 

2(b|yδ)(y|ay)-2(b|ay)(y|yδ)+(a|yyδ)(x|a)-(a|a)(x|yyδ)+(a|δ)(x|ayy)-(a|ayy)(x|δ)=-

(t|ayy) 

2(b|bδ)(y|ay)-2(b|ay)(y|bδ)+(a|ybδ)(x|a)-(a|a)(x|ybδ)+(a|δ)(x|ayb)-(a|ayb)(x|δ)=-

(t|ayb) 

2(b|yδ)(y|ab)-2(b|ab)(y|yδ)+(a|byδ)(x|a)-(a|a)(x|byδ)+(a|δ)(x|aby)-(a|aby)(x|δ)=-

(t|ayb) 

2(b|bδ)(y|ab)-2(b|ab)(y|bδ)+(a|bbδ)(x|a)-(a|a)(x|bbδ)+(a|δ)(x|abb)-(a|abb)(x|δ)=-

(t|abb) 

2(b|yδ)(y|yx)-2(b|yx)(y|yδ)+-((b|y)(y|xyδ))+(b|xyδ)(y|y)+(a|δ)(x|yxy)-

(a|yxy)(x|δ)=-(t|yxy) 

-2(b|yx)(y|bδ)+2(b|bδ)(y|yx)-((b|y)(y|xbδ))+(b|xbδ)(y|y)+(a|δ)(x|yxb)-

(a|yxb)(x|δ)=-(t|yxb) 

2(b|yδ)(y|ya)-2(b|ya)(y|yδ)-((b|y)(y|ayδ))+(b|ayδ)(y|y)+(a|δ)(x|yay)-(a|yay)(x|δ)=-

(t|yay) 
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-2(b|ya)(y|bδ)+2(b|bδ)(y|ya)-((b|y)(y|abδ))+(b|abδ)(y|y)+(a|δ)(x|yab)-(a|yab)(x|δ)=-

(t|yab) 

(b|δyδ)(y|y)-(b|y)(y|δyδ)+(a|δ)(x|yδy)-(a|yδy)(x|δ)=-(t|yδy) 

-2(b|yδ)(y|bδ)+2(b|bδ)(y|yδ)+(b|δbδ)(y|y)-(b|y)(y|δbδ)+(a|δ)(x|yδb)-

(a|yδb)(x|δ)=-(t|ybδ) 

2(b|yδ)(y|bx)-2(b|bx)(y|yδ)+(b|xyδ)(y|b)-(b|b)(y|xyδ)+(a|δ)(x|bxy)-(a|bxy)(x|δ)=-

(t|yxb) 

2(b|bδ)(y|bx)-2(b|bx)(y|bδ)+(b|xbδ)(y|b)-(b|b)(y|xbδ)+(a|δ)(x|bxb)-(a|bxb)(x|δ)=-

(t|bxb) 

2(b|yδ)(y|ba)-2(b|ba)(y|yδ)-((b|b)(y|ayδ))+(b|ayδ)(y|b)+(a|δ)(x|bay)-(a|bay)(x|δ)=-

(t|yab) 

2(b|bδ)(y|ba)-2(b|ba)(y|bδ)-((b|b)(y|abδ))+(b|abδ)(y|b)+(a|δ)(x|bab)-(a|bab)(x|δ)=-

(t|bab) 

2(b|yδ)(y|bδ)-2(b|bδ)(y|yδ)+(b|δyδ)(y|b)-(b|b)(y|δyδ)+(a|δ)(x|bδy)-(a|bδy)(x|δ)=-

(t|bδy) 

 (b|δbδ)(y|b)-(b|b)(y|δbδ)+(a|δ)(x|bδb)-(a|bδb)(x|δ)=-(t|bbδ) 

-2(a|yy)(x|xδ)+2(a|xδ)(x|yy)+(b|yxδ)(y|y)-(b|y)(y|yxδ)+(a|δ)(x|yyx)-(a|yyx)(x|δ)=-

(t|yyx) 

-2(a|yy)(x|aδ)+2(a|aδ)(x|yy)+(b|yaδ)(y|y)-(b|y)(y|yaδ)+(a|δ)(x|yya)-(a|yya)(x|δ)=-

(t|yya) 

2(a|δδ)(x|yy)-2(a|yy)(x|δδ)+(b|yδδ)(y|y)-(b|y)(y|yδδ)+(a|δ)(x|yyδ)-(a|yyδ)(x|δ)=-

(t|yyδ) 
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-2(a|yb)(x|xδ)+2(a|xδ)(x|yb)-((b|y)(y|bxδ))+(b|bxδ)(y|y)+(a|δ)(x|ybx)-

(a|ybx)(x|δ)=-(t|ybx) 

-2(a|yb)(x|aδ)+2(a|aδ)(x|yb)-((b|y)(y|baδ))+(b|baδ)(y|y)+(a|δ)(x|yba)-(a|yba)(x|δ)=-

(t|yab) 

2(a|δδ)(x|yb)-2(a|yb)(x|δδ)-((b|y)(y|bδδ))+(b|bδδ)(y|y)+(a|δ)(x|ybδ)-

(a|ybδ)(x|δ)=-(t|ybδ) 

2(a|xδ)(x|by)-2(a|by)(x|xδ)+(b|yxδ)(y|b)-(b|b)(y|yxδ)+(a|δ)(x|byx)-(a|byx)(x|δ)=-

(t|byx) 

-2(a|by)(x|aδ)+2(a|aδ)(x|by)+(b|yaδ)(y|b)-(b|b)(y|yaδ)+(a|δ)(x|bya)-(a|bya)(x|δ)=-

(t|bya) 

2(a|δδ)(x|by)-2(a|by)(x|δδ)+(b|yδδ)(y|b)-(b|b)(y|yδδ)+(a|δ)(x|byδ)-(a|byδ)(x|δ)=-

(t|byδ) 

2(a|xδ)(x|bb)-2(a|bb)(x|xδ)+(b|bxδ)(y|b)-(b|b)(y|bxδ)+(a|δ)(x|bbx)-(a|bbx)(x|δ)=-

(t|bbx) 

-2(a|bb)(x|aδ)+2(a|aδ)(x|bb)+(b|baδ)(y|b)-(b|b)(y|baδ)+(a|δ)(x|bba)-(a|bba)(x|δ)=-

(t|bba) 

2(a|δδ)(x|bb)-2(a|bb)(x|δδ)+(b|bδδ)(y|b)-(b|b)(y|bδδ)+(a|δ)(x|bbδ)-(a|bbδ)(x|δ)= -

(t|bbδ) 
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APPENDIX B 
 

RELATIONS FROM THE EFFECTS OF COUPLING MIRROR SYMMETRY 
AND SYMPLECTIC SYMMETRY IN BEAM OPTIC IMAGING 
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Mirror symmetry about the dipole midplane can be used to find criteria for 
minimizing commutator terms from the transfer map through the dispersive image.  
These relations coupled with sympletic symmetry relations can provide a method to 
reduce aberrations in an optical beam system at the achromatic image.  Initially we 
want a system that focuses an image point-to-point, parallel-to-parallel at both the 
dispersive and achromatic image.  We can achieve this by focusing point-to-parallel, 
parallel-to-point through the middle of the dipole and maintaining mirror symmetry 
about the dipole midplane. 
 
First Order Criteria at Dipole Mid-Plane (point-to-parallel, parallel-to-point): 
 
(x|x)M = (a|a)M = (y|y)M = (b|b)M = 0 
(x|a)M(a|x)M = (y|b)M(b|y)M = -1 
 
Non-zero second order dispersive image commutator terms as function of dipole 
midplane coefficients then reduced by first order criteria at the dipole midplane. 
 
(x|ad)D  = +2(a|ad)M(x|a)M + 2(a|xa)M(a|d)M(x|a)M

2 
(a|xd)D  = -2(x|xd)M/(x|a)M

 – 4(x|xx)M(a|d)M  
(a|dd)D  = +2(x|xd)M(a|d)M + 4(x|xx)M(x|a)M(a|d)M

2  
(y|bd)D  = +2(b|bd)M(y|b)M + 2(b|xb)M(a|d)M(x|a)M(y|b)M  
(b|yd)D  = -2(y|xy)M(x|a)M(a|d)M/(y|b)M – 2(y|dd)M/(y|b)M

  
 
Assuming (x|x)M = (a|a)M = (y|y)M = (b|b)M = 0;  then (x|a)M = -1/(a|x)M; and  (y|b)M 
= -1/(b|y)M, the second order symplectic relations given in Wollnik/Berz p. 133-34 
reduce to: 
 
- (a|x)M(x|xa)M - (a|xx)M(x|a)M = 0  (x|xa)M = (a|xx)M/(a|x)M

2 = (a|xx)M(x|a)M
2 

- (a|x)M(x|aa)M - (a|xa)M(x|a)M = 0  (x|aa)M = (a|xa)M/(a|x)M
2 = (a|xa)M(x|a)M

2 

- (a|x)M(x|δa)M - (a|xδ)M(x|a)M = 0  (x|δa)M = (a|xδ)M/(a|x)M
2 = (a|xδ)M(x|a)M

2 
+ (x|a)M(a|yy)M + (y|ay)M(b|y)M = 0  (a|yy)M = (y|ay)M(b|y)M(a|x)M = (y|ay)M/(y|b)M(x|a)M 
+ (x|a)M(a|by)M + (y|ab)M(b|y)M = 0  (a|by)M = (y|ab)M(b|y)M(a|x)M = (y|ab)M/(y|b)M(x|a)M 
- (a|x)M(x|yy)M + (y|xy)M(b|y)M = 0  (x|yy)M = (y|xy)M(b|y)M/(a|x)M = (y|xy)M(x|a)M/(y|b)M 
- (a|x)M(x|by)M + (y|xb)M(b|y)M = 0  (x|by)M = (y|xb)M(b|y)M/(a|x)M = (y|xb)M(x|a)M/(y|b)M 
- (a|x)M(x|yb)M - (b|xy)M(y|b)M = 0  (x|yb)M = (b|xy)M/(b|y)M(a|x)M = (b|xy)M(y|b)M(x|a)M 
- (a|x)M(x|bb)M - (b|xb)M(y|b)M = 0  (x|bb)M = (b|xb)M/(b|y)M(a|x)M = (b|xb)M(y|b)M(x|a)M 
+ (x|a)M(a|yb)M - (b|ay)M(y|b)M = 0  (a|yb)M = (b|ay)M(a|x)M/(b|y)M = (b|ay)M(y|b)M/(x|a)M 
+ (x|a)M(a|bb)M - (b|ab)M(y|b)M = 0  (a|bb)M = (b|ab)M(a|x)M/(b|y)M = (b|ab)M(y|b)M/(x|a)M 
- (b|y)M(y|xb)M - (b|yx)M(y|b)M = 0  (y|xb)M = (b|yx)M/(b|y)M

2 = (b|yx)M(y|b)M
2 

- (b|y)M(y|ab)M - (b|ya)M(y|b)M = 0  (y|ab)M = (b|ya)M/(b|y)M
2 = (b|ya)M(y|b)M

2 
- (b|y)M(y|δb)M - (b|yδ)M(y|b)M = 0  (y|δb)M = (b|yδ)M/(b|y)M

2 = (b|yδ)M(y|b)M
2 

 
Third order dispersive image commutator terms as function of dipole midplane 
coefficients then reduced by substituting symplectic relations and then by 
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substituting second order relations at dipole midplane which minimize second Order 
dispersive image commutator terms.  Calculation of the third order terms of form 
(x|__) are shown for illustration. 
 
(x|xxa)D = +2(a|xxa)M(x|a)M + 2(a|xa)M(a|xx)M(x|a)M

2 - 2(a|xa)M(x|xa)M  
=  +2(a|xxa)M(x|a)M 

 
(x|xaδ)D = -4(a|xxa)M(x|a)M

2(a|δ)M - 4(a|aδ)M(a|xx)M(x|a)M
2 – 

8(a|xa)M(a|xx)M(x|a)M
3(a|δ)M + 2(a|aδ)M(x|xa)M + 6(a|xa)M(x|xa)M(x|a)M(a|δ)M 

+ 4(a|aa)M(x|xd)M + 8(a|aa)M(x|xx)M(x|a)M(a|δ)M 
= -4(a|xxa)M(x|a)M

2(a|δ)M - 2(a|aδ)M(a|xx)M(x|a)M
2 – 

2(a|xa)M(a|xx)M(x|a)M
3(a|δ)M + 4(a|aa)M(x|xd)M + 8(a|aa)M(x|xx)M(x|a)M(a|δ)M 

= -4(a|xxa)M(x|a)M
2(a|δ)M 

 
(x|xyb)D = +2(a|xyb)M(x|a)M - 2(a|xa)M(x|yb)M + 2(a|yb)M(b|xy)M(x|a)M(y|b)M - 

2(a|yb)M(y|xb)M(x|a)M/(y|b)M 
 = +2(a|xyb)(x|a) -2 (a|xa)(x|yb) 
 
(x|aaa)D = +2(a|aaa)M(x|a)M + 2(a|aa)M(a|xa)M(x|a)M

2 
 
(x|ayy)D = +2(a|ayy)M(x|a)M + 2(a|xa)M(a|yy)M(x|a)M

2 - 2(a|yb)M(y|ay)M(x|a)M/(y|b)M 
 = +2(a|ayy)M(x|a)M + 2(a|xa)M(a|yy)M(x|a)M

2  - 2(a|yb)M(a|yy)M(x|a)M
2 

 
(x|abb)D = +2(a|abb)M(x|a)M + 2(a|bb)M(a|xa)M(x|a)M

2 + 2(a|yb)M(b|ab)M(x|a)M(y|b)M 
 = +2(a|abb)M(x|a)M + 2(a|xa)M(a|bb)M(x|a)M

2 + 2(a|yb)M(a|bb)M(x|a)M
2 

 

(x|aδδ)D = +2(a|aδδ)M(x|a)M + 2(a|xad)M(x|a)M
2(a|δ)M + 4(a|xxa)M(x|a)M

3(a|δ)M
2  + 

2(a|δδ)M(a|xa)M(x|a)M
2 + 2(a|aδ)M(a|xδ)M(x|a)M

2 + 
4(a|xa)M(a|xδ)M(x|a)M

3(a|δ)M + 8(a|aδ)M(a|xx)M(x|a)M
3(a|δ)M + 

12(a|xa)M(a|xx)M(x|a)M
4(a|δ)M

2 - 2(a|aδ)M(x|xa)M(x|a)M(a|δ)M
2 - 

4(a|xa)M(x|xa)M(x|a)M
2(a|δ)M

2 - 4(a|aa)M(x|xδ)M(x|a)M(a|δ)M - 
8(a|aa)M(x|xx)M(x|a)M

2(a|δ)M
2 

= +2(a|aδδ)M(x|a)M + 2(a|xad)M(x|a)M
2(a|δ)M + 4(a|xxa)M(x|a)M

3(a|δ)M
2 + 

2(a|δδ)M(a|xa)M(x|a)M
2 + 2(a|aδ)M(a|xδ)M(x|a)M

2 - 4(a|aa)M(x|xδ)M(x|a)M(a|δ)M 
+ 4(a|xa)M(a|xδ)M(x|a)M

3(a|δ)M + 6(a|aδ)M(a|xx)M(x|a)M
3(a|δ)M + 

8(a|xa)M(a|xx)M(x|a)M
4(a|δ)M

2 - 8(a|aa)M(x|xx)M(x|a)M
2(a|δ)M

2 
= 2(a|aδδ)M(x|a)M + 2(a|xad)M(x|a)M

2(a|δ)M + 4(a|xxa)M(x|a)M
3(a|δ)M

2 + 
2(a|δδ)M(a|xa)M(x|a)M

2 + (a|xa)M(a|xδ)M(x|a)M
3(a|δ)M + 

(a|xa)M(a|xx)M(x|a)M
4(a|δ)M 

 
(x|ybδ)D = -2(a|xyb)M(x|a)M

2(a|δ)M + 2(a|aδ)M(x|yb)M + 4(a|xa)M(x|yb)M(x|a)M(a|δ)M -
4(a|yy)M(b|bδ)M(x|a)M(y|b)M – 4(a|yy)M(b|xb)M(x|a)M

2(y|b)M(a|δ)M - 
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2(a|yb)M(b|xy)M(x|a)M
2(y|b)M(a|δ)M + 2(a|yb)M(y|xb)M(x|a)M

2(a|δ)M/(y|b)M + 
4(a|bb)M(y|xy)M(x|a)M

2(a|δ)M/(y|b)M + 4(a|bb)M(y|yδ)M(x|a)M/(y|b)M 
 = -2(a|xyb)M(x|a)M

2(a|δ)M + 2(a|xa)M(y|xb)M(x|a)M
2(a|δ)M/(y|b)M 

 
Of these eight equations, only 6 are truly independent.  Equations 1 and 2 merely 
state the same relationship.  Equations 3 and 8 also state the same relationship. 
 
These six equations contain 7 independent third order dipole midplane transfer map 
coefficients.   
 
When this process is repeated for all of the commutator terms, we are left with only 
24 independent relationships from the transfer map to dipole midplane that 
minimize the third order commutator terms.  These are as follows, group in terms of 
the third order term(s) since the second order terms will be fixed values at third 
order: 
 
(a|xxx)D and (a|xxδ)D minimized when (x|xxx)M = - 2(x|xa)M(x|xx)M/(x|a)M 
 
(a|xaa)D and (a|aaδ)D minimized when (x|xaa)M = 2(x|aa)M(x|xa)M/(x|a)M – 

2(a|aa)M(x|xx)M(x|a)M 
 
(a|xyy)D and (a|yyδ)D minimized when (x|xyy)M = -2(x|yb)M(x|yy)M/(x|a)M -

2(x|xx)M(y|ay)M/(y|b)M 
 
(a|xbb)D and (a|bbδ)D minimized when (x|xbb)M = -2(a|bb)M(x|xx)M(x|a)M + 

4(x|bb)M(x|yb)M/(x|a)M 
 
(a|xδδ)D and (a|δδδ)D minimized when (x|xδδ)M + 2(x|xxδ)M(a|δ)M(x|a)M + 

6(x|xxx)M(x|a)M
2(a|δ)M

2 = -2(a|δδ)M(x|xx)M(x|a)M - 
8(x|xa)M(x|xx)M(x|a)M(a|δ)M

2 
 
(a|ayb)D minimized when (x|ayb)M = 2(x|aa)M(x|yb)M/(x|a)M - 4(a|bb)M(x|yy)M(x|a)M 

+ 4(x|bb)M(y|ay)M/(y|b)M 
 
(x|xxa)D and (x|xaδ)D minimized when (a|xxa)M = 0 
 
(x|xyb)D and (x|ybδ)D minimized when (a|xyb)M = -(x|aa)M(x|yb)M/(x|a)M 
 
(x|aaa)D minimized when (a|aaa)M = -(a|aa)M(x|aa)M/(x|a)M 
 
(x|ayy)D minimized when (a|ayy)M = (y|ab)M(y|ay)M/(x|a)M(y|b)M

2 – 
(x|aa)M(y|ay)M/(x|a)M

2(y|b)M 
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(x|abb)D minimized when (a|abb)M = -(a|bb)M(x|aa)M/(x|a)M – 
(a|bb)M(y|ab)M(x|a)M

2/(y|b)M 
 
(x|aδδ)D minimized when (a|aδδ)M + (a|xaδ)M(x|a)M(a|δ)M  + 2(a|xxa)M(x|a)M

2(a|δ)M
2 

= -(x|aa)M(x|aδ)M(a|δ)M/(x|a)M
2 – (x|aa)M(a|δ)M

2 
 
(b|xxy)D and (b|xyδ)D minimized when (y|xxy)M = -(x|xa)M(x|yy)M(y|b)M/(x|a)M

2 - 
(x|yb)M(x|yy)M(y|b)M/(x|a)M

2 
 
(b|xab)D and (b|abδ)D minimized when (y|xab)M = -(a|bb)M(x|yy)M(y|b)M + 

(x|xa)M(y|ab)M/(x|a)M + (x|yb)M(y|ab)M/(x|a)M 
 
(b|aay)D minimized when (y|aay)M = -2(a|aa)M(x|yy)M(y|b)M + (y|ab)M(y|ay)M/(y|b)M 
 
(b|yyy)D minimized when (y|yyy)M = -2(xyy)M(y|ay)M/(x|a)M 
 
(b|ybb)D minimized when (y|ybb)M = -2(a|bb)M(x|yy)M(y|b)M + 

2(x|yb)M(y|ab)M/(x|a)M 
 
(b|yδδ)D minimized when 2(y|xxy)M + (y|xyδ)M/(x|a)M(a|δ)M + 

(y|yδδ)M/(x|a)M
2(a|δ)M

2 = -(a|δδ)M(x|yy)M(y|b)M/(x|a)M
2(a|δ)M

2 - 
2(x|aδ)M(x|yy)M(y|b)M/(x|a)M

3(a|δ)M – 2(x|xa)M(x|yy)M(y|b)M/(x|a)M
2 – 

(x|yb)M(x|yy)M(y|b)M/(x|a)M
2  

 
(y|xxb)D and (y|xbδ)D minimized when (b|xxb)M = -(x|bb)M(x|xa)M/(x|a)M

2(y|b)M + 
(x|bb)M(x|yb)M/(x|a)M

2(y|b)M 
 
(y|xay)D and (y|ayδ)D minimized when (b|xay)M = (a|yb)M(x|xa)M/(y|b)M – 

(a|yb)M(x|yb)M/(y|b)M + (x|bb)M(y|ay)M/(x|a)M(y|b)M
2 

 
(y|aab)D minimized when (b|aab)M = -(a|bb)M(a|yb)M(x|a)M

2/(y|b)M – 
(a|aa)M(x|bb)M/(y|b)M 

 
(y|yyb)D minimized when (b|yyb)M = (a|yb)M(x|yb)M/(y|b)M – 

(x|bb)M(y|ay)M/(x|a)M(y|b)M
2 

 
(y|bbb)D minimized when (b|bbb)M = -(a|bb)M(x|bb)M/(y|b)M 
 
(y|bδδ)D minimized when (b|bδδ)M + (b|xbδ)M(x|a)M/(a|δ)M(y|b)M

2 + 
2(b|xxb)M(x|a)M

2(a|δ)M
2 = -(a|δδ)M(x|bb)M/(y|b)M –

(x|aδ)M(x|bb)M(a|δ)M/(x|a)M(y|b)M - 2(x|bb)M(x|yb)M(a|δ)M
2/(y|b)M 
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APPENDIX C 
 
 

COSY SIMULATION FOR BEST SYMMETRIC DESIGN AFTER 
CORRECTION FOR THIRD ORDER ABERRATIONS – SYMMETRY 

MAINTAINED ABOUT DIPOLE MIDPLANE 
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INCLUDE 'COSY'; 
PROCEDURE RUN; 
VARIABLE Q1 1; VARIABLE Q2 1; VARIABLE Q3 1; VARIABLE Q4 1; 
VARIABLE L1 1; VARIABLE L2 1; VARIABLE L3 1; VARIABLE L4 1; 
VARIABLE L5 1; VARIABLE AP 1; VARIABLE OBJ 1; VARIABLE QL 1; 
VARIABLE S1 1; VARIABLE S2 1; VARIABLE S3 1; VARIABLE S4 1; 
VARIABLE D1 1; VARIABLE D2 1; VARIABLE D3 1; VARIABLE D4 1; 
VARIABLE D5 1; VARIABLE D6 1; VARIABLE D7 1; VARIABLE D8 1; 
PROCEDURE WRITEMAP FILENAME; OPENF 8 FILENAME 'UNKNOWN'; 
WRITE 8 'QL Q1 Q2 Q3 Q4' QL Q1 Q2 Q3 Q4; 
WRITE 8 'S1 S2 S3 S4' S1 S2 S3 S4; 
WRITE 8 'D1 D2 D3 D4 D5 D6 D7 D8' D1 D2 D3 D4 D5 D6 D7 D8; 
WRITE 8 'L1 L2 L3 L4 L5 OBJ' L1 L2 L3 L4 L5 OBJ;  
WRITE 8 'BEAM MATRIX'; PM 8; WRITE 8 'BEAM ABERRATIONS'; PA 8; 
CLOSEF 8; ENDPROCEDURE; 
PROCEDURE BEAMLINE; 
DL L1; M5 QL Q1 S1 D1 0 0 AP; DL L2; M5 QL Q2 S2 D2 0 0 AP; 
DL L3; M5 QL Q3 S3 D3 0 0 AP; DL L4; M5 QL Q4 S4 D4 0 0 AP; 
DL L5; DI 5 35 .1 0 0 0 0; DL L5; 
M5 QL Q4 S4 D5 0 0 AP; DL L4; M5 QL Q3 S3 D6 0 0 AP; DL L3; 
M5 QL Q2 S2 D7 0 0 AP; DL L2; M5 QL Q1 S1 D8 0 0 AP; DL L1; 
DL L1; M5 QL Q1 S1 D8 0 0 AP; DL L2; M5 QL Q2 S2 D7 0 0 AP; 
DL L3; M5 QL Q3 S3 D6 0 0 AP; DL L4; M5 QL Q4 S4 D5 0 0 AP; 
DL L5; DI 5 35 .1 0 0 0 0; DL L5; 
M5 QL Q4 S4 D4 0 0 AP; DL L4; M5 QL Q3 S3 D3 0 0 AP; DL L3; 
M5 QL Q2 S2 D2 0 0 AP; DL L2; M5 QL Q1 S1 D1 0 0 AP; DL L1; 
ENDPROCEDURE; 
OV 5 3 0; DR2 := .4; 
LAX := 0; 
LCE := 0; 
FR 2; 
RPM 2398*50 132 50; 
SB .001 .05 0 .001 .05 0 0 .10 0 0 0; 
AP := .2; 
QL :=  .7; 
Q1 :=  .7359080669258169;  
Q2 := -.2752689607259485; 
Q3 := -1.517467263959876;  
Q4 :=  1.098340326114576; 
S1 := .02361502431797905; 
S2 := .02995126241888397; 
S3 := -.2895539864520602; 
S4 := .2343973615723920; 
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D1 := -.6031246413700748; 
D2 := -.5936465751515769; 
D3 := -.03469126560807764; 
D4 := .08061321164000852; 
D5 := -.05741064577545293; 
D6 := .097094320718321163; 
D7 := -.009875128290919846; 
D8 := -.001201562227302961; 
L1 := .57;  
L2 := .51;  
L3 := .69; 
L4 := .29;  
L5 := .28;  
UM; CR; ER 1 3 1 3 1 3 1 1; BP; LDREL :=1; 
BEAMLINE; 
EP; 
PP -10 0 0; PP -10 0 90; UM; 
BEAMLINE TBPG -101 'X PROJECTION'  
     -102 'Y PROJECTION'  
     -103 'XY PROJECTION' .05 1; 
WRITEMAP 'MATRIX.TXT';  
ENDPROCEDURE; RUN; END; 


