B-Quark Results and Prospects From D0

Michael R. Fortner, Northern Illinois University

Presented at FCP '01

- 1. B Physics for QCD
- 2. B Detection at D0
- 3. B-Jet Cross Section
- 4. B-Quark Cross Section
- 5. Forward Cross Section
- 6. Open Questions and Directions

B Physics for QCD

We see b-jets through their decay products

Quarks, gluons -> decay into jets of hadrons, semileptonic decay includes a muon

Compare distribution of muons and jets to theoretical models

B Measurement

Jet Measurement

Extract σ^{bjet} from muon-tagged jet spectrum

Jets are directly observed

Muon used only as a tag

b-jet integrates fragmentation detail compared to b-quark

Jet counting compared to theory

 $\frac{\Delta \sigma^{bjet}}{\Delta E_T} = \frac{A(E_T)F_B(E_T)}{2(BR)L\epsilon} \frac{\Delta N}{\Delta E_T}^{\mu jet}$

Quark Measurement

Extract σ^{b}_{ptmin} from inclusive muon spectrum

b-fraction simpler than jet measurement

b-signal increases with p_T^{μ}

Errors dominated by kinematic relation between b-quark and muon spectra

Data Sample

```
Run IB (5.2 pb<sup>-1</sup>)
```

```
trigger P_T^{\mu} > 4 \text{ GeV/c}
```

trigger $E_T^j > 3 \text{ GeV}$

Jet	Muon
$E_T > 25 \text{ GeV}$	$P_{\rm T} > 6 {\rm ~GeV}$
η < 0.6	$ \eta < 0.8$
$\Delta R = 0.7$	$\Delta R < 0.7$

Sample includes 30,000 events for B-jet, 40,000 for b-quark

Tagging Acceptance

Corrections required to match data Muon, jet η -range (central only) Muon p_T threshold Jet cone size (R = 0.7) Missing jet E_T from μ , ν Branching fractions

Acceptance as a function of E_T

$$A(E_T) = \frac{MC_{obs}(b \to \mu)}{MC_{parton}(b \to \mu)}$$

 MC_{obs} is the MC set to the observed data from analysis

18 of 21

B Production Questions

- Data consistently is above the theory (factor of 2 to 4)
- Some data suggests convergence at highest pt
- b-jets favor $\mu_0/2$, b-quarks favor $\mu_0/4$

Both quantities derive from same underlying physics

Possible Explanations

Higher orders needed in the expansion

R/F scale dependence is large Radiative corrections Coexistence of different scales (S, P_T, M_b)

Non-perturbative effects needed *Fragmentation effects Incoming partons*

Possible Directions

Remove model dependence

Use *b*-jets to reduce fragmentation uncertainty

Restrict kinematic ranges to reduce higher order contributions

Optimize triggering and tagging

Dijets

Identify events with two tagged b's, look for correlations

Ratio tests

b-jet/c-jet to check scale dependence b-jet/all jets to check E_T *dependence*

Run II is beginning with central field and SVX