QCD and Electroweak Physics at Hadron Colliders

Jerry Blazey Northern Illinois University

Jerry Blazey January 2005 Vietnam

1

The Hadron Collider Idea

Similar to a collision between two bags of rocks.

- Occasionally two stones or "partons" will collide.
- But you'll never know which two collide and how much energy they carry.
- For the proton the "partons" are quarks and gluons.

A Bit More Formal

 The initial states are composed of quark and gluon distributions (absent for electron-electron machines)

٠

- As with Rutherford scattering the hard scatter can be described quite well
- Particles can radiate form incoming and outgoing partons
- The un-scattered partons form an "underlying" event (also Jerry Blazey January 2005

3

Vietnam

QCD: Quantum ChromoDynamics

- A gauge theory (like electromagnetism)
 - describes fermions (quarks) which carry an SU(3) charge (color)
 - interact through the exchange of vector bosons (gluons)
- Interesting features:
 - gluons themselves have color
 - interactions are strong
 - coupling constant between quarks and gluons runs rapidly
 - weak at momentum transfers above a few GeV

$$\alpha_{s}(Q^{2}) = \frac{12 \pi}{(33 - 2n_{f}) \ln Q^{2} / \Lambda^{2}}$$

• Q² is the momentum transfer between the partons related to Mandlestam variable $t^2 = (p_1 - p_3)^2$

A Bit of Quark History

- These features lead to a picture where quarks and gluons are bound inside hadrons if left to themselves
- Behave like "free" particles if probed at high momentum transfer: <u>asymptotic freedom</u> (This year's noble!)
- This is exactly what was seen in deep inelastic scattering experiments in the late 1960's which led to the genesis of QCD
 - electron beam scattered off nucleons in a target
 - electron scattered from point-like constituents inside the nucleon
 - ~ $1/\sin^4(\theta/2)$ behaviour like Rutherford scattering
 - other (spectator) quarks do not participate

Jerry Blazey January 2005 Vietnam

р

e

 \mathbf{a}_{s} is large (large distances = low momentum scales)

- Strong field = lots of gluon radiation between scattered quark and color-ed remnant of the nucleon
- Energy required for separation is large compared to pair production energy.
- Quarks and gluons produced in the "wake" of the outgoing quark recombine to form a "spray" of roughly collinear, colorless hadrons: a jet
- This process is known as: "fragmentation" or "hadronization

Jerry Blazey January 2005 Vietnam

7

A Descriptive Example: Jet Production

 Parton distribution functions determine incoming energy

Collider energy (center of mass) = 1.96 TeVParton energy (center of mass) = x_1x_2s

- Probability of gluon exchange dictated by full theory of QCD.
- Strength of parton scatter given by coupling constant, momentum transfer
- Final state requires fragmentation.

Hadron Collider Variables

- The incoming parton momenta x₁ and x₂ are unknown, and usually the beam particle remnants escape down the beam pipe
 - longitudinal motion of the centre of mass cannot be reconstructed

- Focus on transverse variables
 - Transverse Energy $E_T = E \sin q$ (= p_T if mass = 0)
- And Longitudinally boost-invariant quantities
 - Pseudorapidity $\mathbf{h} = -\log(\tan q/2)$ particle production typically scales per unit rapidity

A Real Event ! (see Slide 8)

More Homework

- Calculate the central jet cross section for 900 jets observed with 90% efficiency in the range 295<ET<305 GeV and -0.5<h<0.5 and produced with a luminosity of 0.3 fb⁻¹
- 8. What would be the statistical error?

Inclusive Jet Cross Section

10

1

- ? Probes the hard interaction vertex over many decades in 10 momentum exchange
- ? Probes for deviations from pQCD at small (GeV) distance scales
- ? Sensitive to pdfs and running of \mathbf{a}_{c}
- $\sigma/(dE_T d\eta)$ (fb/ ? Cross section falls by seven orders of magnitude from 50 to 450 GeV
- ? Good agreement with QCD over the whole range

Jet Cross Sections Probe New Physics

- If quarks contain smaller constituents
 - constituent interactions have a scale L
 - at momentum transfers << L, quarks appear pointlike and QCD is valid
 - as we approach scale L, interactions can be approximated by a fourfermion contact term:
 - at and above L, constituents interact directly

DØ Dijet Angular Distribution

Electroweak Vector Boson Production

- Recall our introductory lecture?
- Especially interesting physics as the bosons couple to both quarks and leptons.
- W and Z boson masses test electroweak theory
- Lepton signals experimentally distinct.

W/Z Production at Hadron Colliders

- General Characteristics
 - Production dominated by`qq annihilation (~60% valence-sea, ~20% sea-sea)
- Higher order QCD corrections:
 - Boson produced with mean p_T ~ 10 GeV
 - Boson + jet events (W+jet ~ 7%, $E_T^{jet} > 25 \text{ GeV}$)

Experimental Signature: Z? mtm

- A pair of charged leptons:
 - high p_T
 - isolated
 - opposite-charge
- Redundancy in trigger and offline selection
- Low backgrounds
- Control of systematics

Select Events, Calculate Dilepton Mass, Calculate Cross Sections

- Event selection:
 - Two central tracks:
 - μ -id with $p_T > 15 \text{ GeV}$
 - opposite charge
 - |?| < 1.8
 - More than 1 isolated µ
- Calculate Cross Section:
 - e_{total} = 19%
 - For $M_{\mu\mu} > 30 \text{ GeV}$ $N_{cand} = 6126$
 - 2 = 117 pb⁻¹
- Homework 9:
 - Calculate the Z→mmcross section for yourself!
 - From the figure can you tell why it's a few percent higher than the cross section on the next page?

Measuring efficiencies using the Z? $\mu^+\mu^-$ data

"CONTROL - " There are two µ's ۲ offline and trigger µ central track The backgrounds are low ۲ p_T > 30 GeV isolated **Can select pure Z sample** central track with even looser cuts on p_T > 20 GeV M.I.P one µ isolated trigger µ ?? offline µ ?? "TEST - µ" DØ Run II Preliminary Events / 3 GeV Efficiency 140 0.8 120 test u fired trigger test u did not fire trigger 100 0.6 80 60 0.4 40 0.2 20 40 80 100 120 140 160 180 200 -2 -1 Ô Mu+u- (GeV) η $s_{z} \bullet Br(Z? \ \mu^{+}\mu^{-}) = 261.8 \pm 5.0 \pm 8.9 \pm 26.2 \text{ pb}$ syst. lumi. Jerry Blazey stat. January 2005 Vietnam

Experimental Signature: W? In

- Single charged lepton:
 - high p_T
 - isolated
- E_T^{miss} (from neutrino)
- Less redundancy in trigger and offline selection
- More difficult to control backgrounds and systematics
- need to understand hadronic recoil
- s Br 10 times larger than Z

W? en and W? µn

- p_T(e) > 25 GeV
- E_T^{miss} > 25 GeV
- N_{cand} = 27370
- **2** = 42 pb⁻¹

- p_T(µ) > 20 GeV
- E_T^{miss} > 20 GeV
- N_{cand} = 8302
- **2** = **17** pb⁻¹

 $S_W \cdot Br(W? ev) = 2.884 \pm 0.021 \pm 0.128 \pm 0.284 \text{ nb}$ $S_W \cdot Br(W? \mu v) = 3.226 \pm 0.128 \pm 0.100 \pm 0.322 \text{ nb}$ stat. syst. lumi. *Jerry*

The Last Quark: an Introduction

- Top quark was expected in the Standard Model (SM) of electroweak interactions as a partner of b-quark for the third family of quarks
 - Evidence for top in 1994 (CDF)
 - Observation in 1995 (CDF&D0)
- In Run I statistical uncertainties dominated:
 - Overall consistency with the SM picture
 - but...still a few loose ends
- In anticipation of much increased statistics in Run II:
 - Rich physics menu
 - Increased luminosity \rightarrow increased precision
 - Surprises?

Top Quarks at the Tevatron

Cross Section

- Why?
 - test of QCD predictions
 - Any discrepancy indicates possible new physics:
 - production via a high mass intermediate state
 - Non-Wb decay models
- How?
 - Measurement performed using various final states
 - Dilepton channels
 - ee, em mmfinal states
 - Lepton + jets channels
 - e+jets, **m**+jets
 - topological analysis
 - b-tagging
 - All-jets channel
 - Use topological variables
 - exploit b-tagging using soft leptons
 - Combine them using a Neural network technique

January 2005 Vietnam

Lifetime b-tagging

Three different tagging algorithms One based on secondary vertices Two based on tracks with large IPs Multiple methods to measure efficiencies and fake rates

A tagged eµ top candidate

The Golden Doubly Tagged eu Channel

- Incredibly Clean
- Two leptons
- Two b-tags
- Signal/Noise > 70!

Top cross sections

Cross section Ös dependence

Equally Interesting: Top Quark Mass

- Fundamental parameter of Standard Model (SM)
- Affects predictions of SM via radiative corrections:

measurements of M_w, m_t constrain M_H

- Large mass of top quark
 - Yukawa coupling » 1
 - may provide clues about electroweak symmetry breaking

Top Mass Constrains the Higgs

Mass: Lepton + Jets Channel (there are other channels/methods)

- 1 unknown (p_z^n)
- 3 constraints
 - $-m(ln)=m(qq)=m_{W}$
 - -m(lmb) = m(qqb)
- 2-constraint kinematic fit
- up to 24-fold combinatoric ambiguity
- compare to MC to measure m_t

$t\bar{t} \otimes lmb q\bar{q}\bar{b}$

Mass: Complications

- Combinatorics:
 - 4 possible jln pairings
 - there are 12 possible assignments of the 4 jets to the 4 quarks (bbqq)
 - only 6 if one of the jets is btagged
 - only 2 for events with double b-tagged jets
 - Homework 10:
 - Work out the possibilities.
 - Although the emchannel would have fewer combinatoric choices, why would it have less precision than lepton+jet channel?
- Gluon radiation can add extra jets

Mass: Combinatorics

- Monte Carlo tests:
 - shaded plots show correct combinations (Herwig MC, m_t = 175 GeV)
- The width and shape of the fitted mass distribution is due primarily to
 - jet combinatorics
 - QCD radiation

Mass: Basic Procedure

- In a sample of tt candidate events
 - For each candidate make a measurement of X = f(m_t), where X is a suitable estimator for the top mass
 - e.g. result of the kinematic fit
 - This distribution contains signal and background.
- From MC determine shape of X as a function of m_t
 - Determine shape of X for background (MC & data).
 - Add these together and compare with data

9th Vietnam School of Physics

Lepton + Jets Channel (DØ)

Run I and Run II Top mass

 m_{top} = 179.0 \pm 5.1 GeV (DØ combined)

 $m_{top} = 178.0 \pm 4.3 \text{ GeV}$ (official average)

First DZero Run II lepton + jets mass 160 pb-1

> *Jerry Blazey January 2005 Vietnam*

190

180

m, (GeV)

A Disclaimer

- We've looked at QCD, Vector Boson, and Top Production.
- Just a sample of interesting Standard Model topics
- Many others:
 - Heavy Flavor
 - Di-boson Production
 - Diffractive Physics
 - And more....

Our Lecture Series

- ✓ Overview
- ✓ History, Accelerators, Detectors, & Cross Sections
- ✓ QCD and Electroweak Physics
- Searches for New Physics