QCD and Electroweak Physics at Hadron Colliders

Jerry Blazey Northern Illinois University

The Hadron Collider I dea

- Similar to a collision between two bags of rocks.

- Occasionally two stones or "partons" will collide.
- But you'll never know which two collide and how much energy they carry.
- For the proton the "partons" are quarks and gluons.

A Bit More Formal

- The initial states are composed of quark and gluon distributions (absent for electron-electron machines)
- As with Rutherford scattering the hard scatter can be described quite well
- Particles can radiate form incoming and outgoing partons
- The un-scattered partons form an "underlying" event (also absent for electron-electron machines)

Very Formal

QCD: Quantum ChromoDynamics

- A gauge theory (like electromagnetism)
- describes fermions (quarks) which carry an SU(3) charge (color)
- interact through the exchange of vector bosons (gluons)
- Interesting features:
- gluons themselves have color
- interactions are strong
- coupling constant between quarks and gluons runs rapidly
- weak at momentum transfers above a few GeV

$$
\alpha_{s}\left(Q^{2}\right)=\frac{12 \pi}{\left(33-2 n_{f}\right) \ln Q^{2} / \Lambda^{2}}
$$

- \mathbf{Q}^{2} is the momentum transfer between the partons related to Mandlestam variable $t^{2}=\left(p_{1}-p_{3}\right)^{2}$

A Bit of Quark History

- These features lead to a picture where quarks and gluons are bound inside hadrons if left to themselves
- Behave like "free" particles if probed at high momentum transfer: asymptotic freedom (This year's noble!)
- This is exactly what was seen in deep inelastic scattering experiments in the late 1960's which led to the genesis of QCD
- electron beam scattered off nucleons in a target
- electron scattered from point-like constituents inside the nucleon
- $\boldsymbol{\sim}$ 1/ $\sin ^{4}(\theta / 2)$ behaviour like Rutherford scattering
- other (spectator) quarks do not participate

Jerry Blazey J anuary 2005 Vietnam

One More I ngredient: Fragmentation

So what happens to a quark that is knocked out of the proton?
α_{s} is large (large distances = low momentum scales)

- Strong field = lots of gluon radiation between scattered quark and color-ed remnant of the nucleon
- Energy required for separation is large compared to pair production energy.
- Quarks and gluons produced in the "wake" of the outgoing quark recombine to form a "spray" of roughly collinear, colorless hadrons: a jet
- This process is known as: "fragmentation" or "hadronization

A Descriptive Example: J et Production

- Parton distribution functions determine incoming energy

Collider energy (center of mass) $=1.96 \mathrm{TeV}$
Parton energy (center of mass) $=x_{1} x_{2} s$

- Probability of gluon exchange dictated by full theory of QCD.
- Strength of parton scatter given by coupling constant, momentum transfer
- Final state requires fragmentation.

Hadron Collider Variables

- The incoming parton momenta x_{1} and x_{2} are unknown, and usually the beam particle remnants escape down the beam pipe
- longitudinal motion of the centre of mass cannot be reconstructed

- Focus on transverse variables
- Transverse Energy $\mathbf{E}_{\mathbf{T}}=E \sin \theta \quad\left(=p_{\mathbf{T}}\right.$ if mass $=\mathbf{0}$)
- And Longitudinally boost-invariant quantities
- Pseudorapidity $\eta=-\log (\tan \theta / 2)$ particle production typically scales per unit rapidity

An Example:

Jerry Blazey J anuary 2005 Vietnam

A Real Event! (see Slide 8)

6. Homework Problem:

- Energy Jet $1=500 \mathbf{G e V}$
- Energy Jet 2 = 450 GeV
- They are both at $\eta=0$ and 180 degrees apart in azimuth
- What is the dijet mass?

Counting (q and g) J ets:
 I nclusive J et Cross Section as a Test of the Standard Model (QCD)

Single Inclusive Jets: $\boldsymbol{p} \overline{\boldsymbol{p}} \rightarrow \boldsymbol{j e t}+X$

Jerry Blazey J anuary 2005 Vietnam

More Homework

7. Calculate the central jet cross section for 900 jets observed with 90\% efficiency in the range $295<E T<305 \mathrm{GeV}$ and $-0.5<\eta<0.5$ and produced with a luminosity of $0.3 \mathrm{fb}^{-1}$
8. What would be the statistical error?

I nclusive J et Cross Section

? Probes the hard interaction vertex over many decades in momentum exchange ? Probes for deviations from pQCD at small distance scales
? Sensitive to pdfs and running of α_{s}
? Cross section falls by seven orders of magnitude from 50 to 450 GeV
? Good agreement with QCD over the whole
 range

Data Consistent with a Number of Possible PDFs

Jet Cross Sections Probe New Physics

- If quarks contain smaller constituents
- constituent interactions have a scale Λ
- at momentum transfers << Λ, quarks appear pointlike and QCD is valid
- as we approach scale Λ, interactions can be approximated by a fourfermion contact term:
- at and above Λ, constituents interact directly

DØ Dijet Angular Distribution

QCD

Electroweak Vector

Boson Production

- Recall our introductory lecture?
- Especially interesting physics as the bosons couple to both quarks and leptons.
- W and Z boson masses test electroweak theory
- Lepton signals experimentally distinct.

W/ Z Production at Hadron Colliders

- General Characteristics
- Production dominated by $\overline{\mathbf{q} q}$ annihilation (~60\% valence-sea, $\sim 20 \%$ sea-sea)

- Due to very large pp $\rightarrow \mathrm{jj}$ production, need to use leptonic decays to extract signal
- Higher order QCD corrections:

- Boson produced with mean $\mathrm{p}_{\mathrm{T}} \sim 10$ GeV
- Boson + jet events (W+jet ~ 7\% , $\mathrm{E}_{\mathbf{\top}}{ }^{\text {jet }}>\mathbf{2 5} \mathbf{~ G e V}$)

Jerry Blazey J anuary 2005 Vietnam

Experimental Signature: Z? $\mu^{+} \mu_{\text {_ }}$

- A pair of charged leptons:
- high $p_{\text {T }}$
- isolated
- opposite-charge
- Redundancy in trigger and offline selection
- Low backgrounds
- Control of systematics

J erry Blazey J anuary 2005 Vietnam

Select Events, Calculate Dilepton Mass, Calculate Cross Sections

- Event selection:
- Two central tracks:
- μ-id with $p_{T}>15 \mathrm{GeV}$
- opposite charge
- |?| < 1.8
- More than 1 isolated μ
- Calculate Cross Section:
$-e_{\text {total }}=19 \%$
- For $\mathrm{M}_{\mu \mu}>30 \mathrm{GeV}$
$\mathbf{N}_{\text {cand }}=6126$
$-2=117 \mathrm{pb}^{-1}$

- Homework 9:
- Calculate the $\mathbf{Z} \rightarrow \mu \mu$ cross section for yourself!
- From the figure can you tell why it's a few percent higher than the cross section on the next page?

Measuring efficiencies using the \mathbf{Z} ? $\mu^{+} \boldsymbol{\mu}^{-}$data

- There are two μ 's
- The backgrounds are low
- Can select pure Z sample with even looser cuts on one μ

$$
\mathrm{S}_{\mathrm{Z}} \cdot \operatorname{Br}\left(\mathrm{Z} ? \mu^{+} \mu^{-}\right)=261.8 \pm 5.0 \pm 8.9 \pm 26.2 \mathrm{pb}
$$

Experimental Signature: W? Iv

- Single charged lepton:
- high $p_{\text {T }}$
- isolated
- E_{T} miss (from neutrino)
- Less redundancy in trigger and offline selection
- More difficult to control backgrounds and systematics
- need to understand hadronic recoil
- s•Br 10 times larger than Z

\mathbf{W} ? $\mathbf{e} v$ and $\mathbf{W} \boldsymbol{?} \boldsymbol{\mu} v$

> - $p_{T}(e)>25 \mathrm{GeV}$
> - $\mathrm{E}_{\mathrm{T}}{ }^{\text {miss }}>25 \mathrm{GeV}$
> - $\mathbf{N}_{\text {cand }}=27370$
> - $2=42$ pb $^{-1}$

- $p_{\mathrm{T}}(\mu)>20 \mathrm{GeV}$
- $\mathrm{E}_{\mathrm{T}}{ }^{\text {miss }}>20 \mathrm{GeV}$
- $\mathbf{N}_{\text {cand }}=8302$
- $2=17 \mathrm{pb}^{-1}$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{W}} \cdot \operatorname{Br}(\mathrm{~W} ? \mathrm{ev})=2.884 \pm 0.021 \pm 0.128 \pm 0.284 \mathrm{nb} \\
& \mathrm{~S}_{\mathrm{W}} \cdot \operatorname{Br}(\mathrm{~W} ? \mu \mathrm{~V})=3.226 \pm 0.128 \pm 0.100 \pm 0.322 \mathrm{nb}
\end{aligned}
$$

stat. syst. lumi.

J erry Blazey J anuary 2005 Vietnam

CDF and DO Runll Preliminary

, c.ry Blazey
J anuary 2005
Vietnam

The Last Quark: an I ntroduction

- Top quark was expected in the Standard Model (SM) of electroweak interactions as a partner of b-quark for the third family of quarks
- Evidence for top in 1994 (CDF)
- Observation in 1995 (CDF\&D0)
- In Run I statistical uncertainties dominated:
- Overall consistency with the SM picture
- but...still a few loose ends

- In anticipation of much increased statistics in Run II:
- Rich physics menu
- I ncreased luminosity \rightarrow increased precision
- Surprises?

Top Quarks at the Tevatron

Jerry Blazey J anuary 2005 Vietnam

Cross Section

- Why?
- test of QCD predictions
- Any discrepancy indicates possible new physics:
- production via a high mass intermediate state
- Non-Wb decay models
- How?
- Measurement performed using various final states
- Dilepton channels
- ee, $\mathbf{e} \mu, \mu \mu$ final states
- Lepton + jets channels
- e+jets, $\mu+j e t s$
- topological analysis
- b-tagging
- All-jets channel
- Use topological variables
- exploit b-tagging using soft leptons
- Combine them using a Neural network technique

- W and b-quark decays specify final states

- I solated high $\mathbf{P}_{\mathbf{T}}$ leptons
- Soft leptons in jets
- detached vertices in jets

Dileptons

$\mathrm{e} \mu, \mathrm{ee}$, and $\mu \mu$
$\mathrm{Br}=2.5$ and 1.2%

$e \mu+2 j e t$

Cص E~R Run 169920 Event 8545882 Wed dan 22 16:09:11 2003

Lifetime b-tagging

Three different tagging algorithms One based on secondary vertices Two based on tracks with large I Ps Multiple methods to measure efficiencies and fake rates

A tagged ep top candidate

Jerry Blazey J anuary 2005 Vietnam

The Golden Doubly Tagged ev Channel

- I ncredibly Clean
 - Two leptons
 - Two b-tags
 - Signal/ Noise > 70!

Jerry Blazey J anuary 2005 Vietnam

Top cross sections

$146 \mathrm{pb}^{-1}$	$14.3_{-4.3-1.9}^{+5.1+2.9}$	pb
$143 \mathrm{pb}^{-1}$	$7.2_{-2.4-1.7}^{+2.6+1.6}$	pb
$93 \mathrm{pb}^{-1}$	$11.4_{-3.5-1.8}^{+4.1+2.0}$	pb
$158 \mathrm{pb}^{-1}$	$11.1_{-4.3-1.4}^{+5.8+1.4}$	pb
$164 \mathrm{pb}^{-1}$	$7.2_{-1.2-1.4}^{+1.3+1.9}$	pb
$164 \mathrm{pb}^{-1}$	$8.2_{-1.3-1.6}^{+1.3+1.9}$	pb
$162 \mathrm{pb}^{-1}$	$7.7_{-3.3-3.8}^{+3.4+4.7}$	pb

Jerry Blazey J anuary 2005 Vietnam

Cross section $\sqrt{ }$ s dependence

J erry Blazey J anuary 2005 Vietnam

Equally Interesting: Top Quark Mass

- Fundamental parameter of Standard Model (SM)
- Affects predictions of SM via radiative corrections:
- BB mixing

$\left.\delta M_{w} \propto m_{t}^{2}, \ldots M_{H}\right)$
- W and Z mass

$$
-w-\overbrace{b}^{+}-w . w_{-}^{+-W_{-}}
$$

- measurements of $\mathbf{M}_{\mathbf{w}}$, \mathbf{m}_{t} constrain \mathbf{M}_{H}
- Large mass of top quark
- Yukawa coupling ≈ 1
- may provide clues about electroweak symmetry breaking

Top Mass Constrains the Higgs

Jerry Blazey J anuary 2005 Vietnam

Mass: Lepton + J ets Channel

 (there are other channels/ methods)- 1 unknown ($p_{z}{ }^{v}$)

$$
t \bar{t} \rightarrow l v b q \bar{q} \bar{b}
$$

- 3 constraints

$$
\begin{aligned}
& -m(\mid v)=m(q q)=m_{w} \\
& -m(\mid v b)=m(q q b)
\end{aligned}
$$

- 2-constraint kinematic fit

- up to 24-fold combinatoric ambiguity
- compare to MC to measure $\mathbf{m}_{\mathbf{t}}$

Mass: Complications

- Combinatorics:
- 4 possible jlv pairings
- there are 12 possible assignments of the 4 jets to the 4 quarks (bbqq)
- only 6 if one of the jets is btagged
- only 2 for events with double b-tagged jets
- Homework 10:
- Work out the possibilities.
- Although the eu channel would have fewer combinatoric choices, why combinatoric choices, why
would it have less precision than lepton+jet channel?
- Gluon radiation can add extra jets

> J erry Blazey J anuary 2005 Vietnam

Mass: Combinatorics

- Monte Carlo tests:
- shaded plots show correct combinations (Herwig MC, $\mathrm{m}_{\mathrm{t}}=175 \mathrm{GeV}$)
- The width and shape of the fitted mass distribution is due primarily to
- jet combinatorics
- QCD radiation

Jerry Blazey J anuary 2005
Vietnam

Mass: Basic Procedure

- In a sample of tt candidate events
- For each candidate make a measurement of $X=f\left(m_{t}\right)$, where X is a suitable estimator for the top mass
- e.g. result of the kinematic fit
- This distribution contains signal and background.
- From MC determine shape of X as a function of m_{t}
- Determine shape of X for background (MC \& data).
- Add these together and compare with data

Leaicon f alts chernact (D8)

Background-rich sample

largest systematics jet energy \quad 4.0 GeV MC generator 3.1 GeV noise/pile-up 1.3 GeV
dominated by
jet energy scale and gluon radiation
Signal-rich
sample

Run I and Run II Top mass

$$
\begin{aligned}
& m_{\text {top }}=179.0 \pm 5.1 \mathrm{GeV}(\mathrm{D} \varnothing \text { combined }) \\
& m_{\text {top }}=178.0 \pm 4.3 \mathrm{GeV} \text { (official average) }
\end{aligned}
$$

First DZero Run II lepton + jets mass 160 pb- 1

- We've looked at QCD, Vector Boson, and Top Production.
- J ust a sample of interesting Standard Model topics
- Many others:
- Heavy Flavor
- Di-boson Production
- Diffractive Physics
- And more....

Our Lecture Series

\checkmark Overview
\checkmark History, Accelerators, Detectors, \& Cross Sections
\checkmark QCD and Electroweak Physics

- Searches for New Physics

