Status of Run II* Jet Production Measurements at DØ & Selected Run I# Curiosities

Jerry Blazey

*1.96 TeV, *1.80 TeV

Fermilab Proton-Antiproton Collider

Run II Tevatron Performance

Collider Run IIA Integrated Luminosity

Collider Run IIA Peak Luminosity

- Average Peak Instantaneous Luminosity: 44E30 cm-2s-1
- Typical Integrated Luminosity: ~8 pb-1/wk
- Total Delivered: 240 pb-1 (6/1/2001)

Run II DØ Detector

Run II Performance

Calorimetry

Uniform, hermetic with full coverage

|η| < 4.2 (θ ≈ 2°), λ_{int} ~ 7.2 (total)

Single particle energy resolution

e: σ/E = 15% / √E ⊕ 0.3%

π: σ/E = 45% / √E ⊕ 4%

Jet Production

• Probe of QCD over wide x-Q² region Sufficiency of NLO **QCD** Search for new phenomena Tune perturbative calculations in preparation for LHC era

Run I/Run II Jet Cone Algorithms

Run I Legacy Algorithm:

- Draw a cone of fixed size in $\eta \phi$ space around a seed
- Compute jet axis from E_T -weighted mean and jet ET from ΣE_T
- Draw a new cone around the new jet axis and recalculate axis and new ${\rm E}_{\rm T}$
- Iterate until stable
- Split/Merge
- Algorithm is sensitive to soft radiation

Improved Run II Cone :

- "Joint CDF/DØ/Theory Jet Working Group"
- Use 4-vectors instead of E_T
- Add additional midpoint seeds between pairs of close jets
- Split/merge after stable protojets found
- Improved infrared safety at NLO

DØ Run I Inclusive Jet Cross Sections

Phys. Rev. Lett. {86} 1707 (2001)

DØ Run II Inclusive Jet Cross Section

Comparison with Theory

Consistent with Run I & expectations Uncertainties are large and statistically limited (dominated by jet energy calibration)

QCD: Dijet Mass Cross Section

- Probe of
- proton structure at large x
- hunting for resonances
- quark compositeness
- Data sample:
- 34 pb⁻¹
- DR = 0.7 cone jets
- **|**η_{jet}| < 0.5

$M_{JJ} = 1120 \ GeV$

May 20, 2003

Pavel Demine — CEA Saclay

Dijet Mass Distribution

Consistent with Run I & expectations Uncertainties are large and statistically limited

Curiosity I: Ratio of Cross Sections at Different Beam Energies

The ratio of the scale invariant cross sections :

$$\sigma_{s} = (E_{T}^{3}/2\pi) (d^{2}\sigma/dE_{T}d\eta)$$

VS $X_{T} = E_{T} / (\sqrt{s} / 2)$

at different beam energies allows substantial reduction in theoretical and experimental uncertainty. And provides a look at

- Scaling behavior
- Terms beyond LO (α_s^2)

<u>د</u> 10

10

σ

10

_{یں} 10⁸

 σ_{s}

E₁³ / 2π) d²σ, 901 50

100

150

0.2

200

0.25

CTEQ4M Predictions

630 GeV 1800 GeV

E

630 GeV

350

0.4

250

0.3

630/1800 inclusive jet ratio

Curiosity II: K_T-Cone Discrepancy

- k_T recombinant algorithm, definition highly-desirable, popular at HERA, elsewhere
 - IR safe
 - Small hadronization effects
- For NLO predictions, Cone R=0.7 » k_T D=1.0
- Should have been a well described as cone....

Phys. Lett. B525, 211 (2002)

Comparison of k_T and cone

- Each distribution compared to its own prediction
- Uncertainties highly- correlated from one bin to the next \rightarrow normalization not well-determined, but shape is
- Unexpected 1-2 σ deviation from cone and from predictions, mostly at low-p_T

What causes this low p_T difference?

- Match k_T and cone jets in space:
- k_T jets include more energy than cone
- Insert this difference into the cross section and they match!

- Explanation may be associated with hadronization:
 - k_T seeks and finds hadronization products
 - Cone gives up quite a bit of energy during hadronization
- MC energy difference is half the size, accounts for half the shift. Needs tuning?
- Or a signal of <u>higher order</u> <u>corrections</u> < 0.2 that can bring Kt and cone in simultaneous agreement?

Curiosity III: Low-p_T multijet cross sections

- Simple cross section study of exclusive jet final states
- Data shown with symbols
- Neither Pythia (histogram) nor Herwig (not shown) reproduce data without tuning

Low-p_T multijet cross section

- After tuning, both MCs agree with data, but have not checked consistency with world's data
- Pythia: PARP(83)=0.4 "hard core" of proton, multiple-parton scatter
- Herwig: PTMIN=3.7 should not make a difference but appears to modulate underlying event
- Another manifestation of higher orders at X<.05?

Curiosity IV: R₃₂ (The ratio of multijet cross sections)

Measure the ratio

$$R_{32} = \frac{\sigma_{3}(p\overline{p} \rightarrow 3 + \text{ jets})}{\sigma_{2}(p\overline{p} \rightarrow 2 + \text{ jets})} \text{ vs. } H_{T}$$

with

$$H_T = \sum_{\text{jets}} E_T$$

- Improve understanding of the limitations of pQCD.
 - Identify renormalization sensitivity
 - Does the introduction of additional scales improve agreement with data ?
- QCD multijet production background to interesting processes
- Predict rates at future colliders (Zeppenfeld/Summers)

Measurement/Predictions for R₃₂

- Compare to pQCD JETRAD
- Prediction independent of pdf
- Sensitive to μ_R
- Jet emission best modeled using the same scale ∞ the hard scale for all jets rather than softer scale for additional jets
- Introduction of additional scales to predict the rate of additional jet production unnecessary and leads to poorer agreement with data.
- Need higher order terms to fully explain shape.

- Tevatron and D0 running well and physics programs well established
 - High transverse momentum inclusive jet cross section
 - Dijet cross section
- Some interesting departures/results from NLO QCD at "lowish" x require progress
 - Scaled cross sections at different energies
 - Recombinant algorithms
 - R₃₂
 - Multi-jet production low transverse energy.
- Expect exciting results in QCD as luminosities reach 1-2 fb⁻¹ in the next few years. New summer results will be ~100 pb⁻¹.

Limitations

NLO QCD?