The Tail-Catcher/Muon Tracker for the CALICE test beam

Dhiman Chakraborty

RSITY

2005 INTERNATIONAL LINEAR COLLIDER WORKSHOP

Stanford, California, USA 18-22 March, 2005

Introduction

 NICADD is building the Tail Catcher/ Muon Tracker to study hadronic punchthrough and muon tracking in the (relatively thin) CALICE test beam module.

Single particle E Resolution

Goals

- Provide a reasonable snapshot of the tailend of the shower for simulation validation
- Prototype detector for a generic LCD muon system
- correcting for leakage
- understanding the impact of coil
- muon reconstruction and ID
- fake rate

TCMT design

- "Fine" section (8 layers): 2 cm thick steel
- "Coarse" section (8 layers): 10 cm thick steel
- 5mm thick, 5cm wide strips
- 1.2 mm-diameter Kuraray Y11 fibers
- Tyvek/VM2000 wrapping
- Alternating x-y orientation
- Si-PM photo detection
- Common readout w/ Hcal
- Along beam: 142 cm
- Height: 109 cm
- Weight: ~10 ton

The strips

- Each 10 cm wide strip divided in 2 halves, one fiber in each half.
- All strips have been produced and passed QC tests (see A. Dychkant's talk for details).

Initial uniformity calibration

• Ref cells + strip response to Sr-90 measured w/ PMT.

LCWS05

Quality of extruded scintillators

- Extruded scintillator has many potential advantages (see Dr. Kim's talk in session 2).
- Our R&D at the NICADD/Fermilab extrusion facility over the past 2.5 yrs confirms this
 - Savings in cost does not compromise reliability,
 - The response and clarity are good enough that they do not limit segmentation,
 - Uniformity is excellent in both geometry and resoponse.

Cassette assembly

LCWS05

SiPM's with holders

WLSF-SiPM misalignment is within 0.1 mm

1

LCWS05

WLS fibers with UV-protected mirroring are ready for QC tests

Front-end electronics

M. Reincke (DESY)

Calibration and monitoring WLS Fiber Individual LED driver for each strip. Preliminary driver design has been proposed. Block diagram of current switch at LED Read–out schema under V+O discussion. LVDS Level Repeater Shift **One TCMT cassette** Set includes 18 inputs Preamplif. 20 of current Pulser Gnd Card switchers Card Com. **Next Slide** card CERC LCWS05 CALICE TCMT 13 Dhiman Chakraborty

The LED driver

• Testing prototype channel this week

Pulser Card Block Diagram

14

The TCMT stack at TB

- 16 layers of NICADD extruded scint. Strips
 - 0.5 cm thick
 - 10 cm wide
- Steel absorber
 - 8 x 2 cm
 - 8 x 10 cm
- Lateral size:
 1m x 1m

The TCMT stack at TB (contd.)

The TCMT stack at TB (contd.)

TCMT schedule for 2005 beam test

- Mar-May: QC for WLS fibers, first full cassette assembly, cut absorber plates.
- Jun-Aug: Continue cassette assembly, testing with baseboard, start full-chain commissioning.
- Sep-Nov: Start extended calibration, data taking with CR triggers, CR tests with all cassettes in place.