

Status and Plans

- Operations
 - Collection of data
 - Detector status
 - Processing: local & remote
- Algorithms
- Upgrades

Institutions:

- 84 Total
- 35 US, 49 non-US
- Collaborators
 - ~ 675 Total
 - \sim 50% from non-US institutions
 - \sim 100 post-docs
 - ~ 140 graduate students

A "100E30" Store

Daily Data Taking Efficiency

19 April 2002 - 16 October 2005

Run II Integrated Luminosity

19 April 2002 - 16 October 2005

Silicon Microstrip Detector

- 793k Channels
- S/Noise: > 10 all devices
- Cluster Efficiency: > 97%
- No fiducial loss

G.C.Blazey/NIU

Radiation Hardness

• Studied

- In the booster
- In situ with HV
 Scans of noise and efficiency
- Depletion voltages
 - Evolving as expected
 - For inner layer
 V_{depletion} ~ V_{max} = 150V
 at 5—7 fb⁻¹

0.00E+00 5.00E+12 1.00E+13 1.50E+13 2.00E+13 2.50E+13 3.00E+13 3.50E+13 4.00E+13 4.50E+13 Fluence (1 MeV n)

Central Fiber Tracker & Preshowers

- **Eight axial & eight stereo layers VLPC readout at 8K**
- **Performing well**
 - good light yield
 layer ε > 98%
- After November 2003 shutdown \sim 1% of VLPC channels not functional
 - was 0.1% before November
 - a one-time event
 - water contamination in cryostat?
- Last shutdown warmed up 1 (of 2) cryostats

 - pumped out 0.5l H₂0
 Upon cool down same loss rate **BUT different channels**
- Does not seriously degrade performance, but requires vigilance.

Solenoid

- Coming out of FY04 shutdown, while attempting to ramp to full current, the solenoid quenched.
- Clues :
 - An additional ~8W heat load was seen on the cooling system during operation
 - The south end of support cylinder shows an elevated temperature when powered
 - An excess in resistance is seen in the inner coil layer
 - Careful detailed review of history of temperature rise of south coil support when powered indicates that the degradation is strongly correlated with coil thermal cycles above 90K
- Diagnoses: Suspect degradation of inner layer conductor joint at south end of solenoid coil.
- Prescription:
 - Minimize future thermal disturbances
 - Limit power cycles
 - Upgraded cryogenics plant to provide additional operating margin
- Carefully monitored coil resistance and support temperature since beginning of FY05 run & show no further signs of degradation.
- Have run stably at 4550A (rather than 4750A)

Calorimeter

• Liquid argon calorimeter with uranium absorber

- Operating Smoothly
- 99.9% of 55,000 channels operational
- Aggressive program to reduce noise was productive, certain types of noise down 4 orders of magnitude.
- Completed an in situ cellby-cell calibration of EM and Had calorimeters
- Z pole resolution improves from 3.35 GeV to 2.93 GeV

layer 3 Calibration Constants

Muon Systems

- Three layers tracking & triggering
- Central
 - PDTs: 98.6% of 8k tubes active
 - Scintillator: 99.8% of 630 counters active
- Forward
 - Scintillator:
 - 99.9% of 4608 counters active
 - Expect around 10% degredation (mainly in phototube) at 15 fb⁻¹
 - MDTs:
 - 99.7% of 50k wires active
 - one plane disabled due to broken wire.
- Stable to 1%
- Highly Efficient

Publications

(http://www-d0.fnal.gov/www_buffer/pub/Run2_publications.html)

2004

- 1) Search for Doubly-charged Higgs Boson Pair Production in the Decay to mu+mu+mu-mu- in pbarp Collisions at sqrt(s)=1.96 TeV
- 2) Observation and Properties of the X(3872) Decaying to J/psi pi+pi- in pbarp Collisions at sqrt(s)=1.96 TeV

2005

- 1) Search for Supersymmetry with Gauge-Mediated Breaking in Diphoton Events at DZero
- *3) Measurement of Dijet Azimuthal Decorrelations at Central Rapidities in pbarp Collisions at sqrt(s)=1.96 TeV*
- 4) Measurement of the B_s^0 Lifetime in the Exclusive Decay Channel B_s^0->J/psi phi
- 5) A Search for the Flavor-Changing Neutral Current Decay B_s^0->mu+ mu- in pbarp Collisions at sqrt(s)=1.96 TeV
- 6) Measurement of the Ratio of B+ and B0 Meson Lifetimes
- 7) Measurement of the Lambda-B Lifetime in the Decay Lambda-B -> J/psi Lambda With the D0 Detector
- 8) A Search for Wbb and WH Production in pbarp Collisions at sqrt(s)=1.96 TeV
- 9) Measurement of the WW Production Cross Section in pbarp Collisions at sqrt(s)=1.96 TeV
- 10) A Measurement of the Ratio of Inclusive Cross Sections pbarp->Zb/pbarp->Zj at sqrt(s)=1.96 TeV
- 11) A search for anomalous heavy-flavor quark production in association with W bosons
- 12) First measurement of sigma(ppbar->Z)xBr(Z->tau tau) at sqrt(s)=1.96 TeV
- 13) Search for first-generation scalar leptoquarks in ppbar collisions at sqrt(s)=1.96 TeV
- 14) Study of Zgamma events and limits on anomalous ZZgamma and Zgammagamma couplings in pbarp collisions at sqrt(s)=1.96 TeV
- 15) Measurement of inclusive differential cross sections for Upsilon(1S) production in ppbar collisions at sqrt(s)=1.96 TeV
- 16) Measurement of the p-barp -> Wgamma +X Cross section and Limits on Anomalous WWgamma Couplings at sqrt(s)=1.96 TeV
- 17) Search for Randall-Sundrum Gravitons in Dilepton and Diphoton Final States
- 18) Search for right-handed W bosons in top quark decay

Accepted or Submitted

- *20) Production of WZ Events in p-barp Collisions at sqrt(s)=1.96 TeV and Limits on Anomalous WWZ Couplings*
- 21) Search for neutral supersymmetric Higgs bosons in multijet events at sqrt(s)=1.96 TeV
- 22) Search for supersymmetry via associated production of charginos and neutralinos in final states with three leptons
- 23) Search for single top quark production in pbarp collisions at sqrt(s)=1.96 TeV
- 24) Measurement of the lifetime difference in the Bs system
- 25) Measurement of semileptonic branching fractions of B mesons to narrow D** states
- 26) Search for large extra spatial dimensions in dimuon production at DZero
- 27) Measurement of the ttbar cross section in pbarp collisions at sqrt(s)=1.96 TeV using kinematic characteristics of lepton plus jets events
- 28) Measurement of the ttbar cross section in pbarp collisions at sqrt(s)=1.96 TeV using lepton plus jets events with lifetime b-tagging
- 29) Measurement of the ttbar production cross section in pbarp collisions at sqrt(s)=1.96 TeV in dilepton final states
- *Search for the Higgs Boson in H->WW(*) Decays in ppbar Collisions at sqrt(S)=1.96 TeV*
- 31) The Upgraded D0 Detector

Thirty(+1) Run II Papers

Luminosity: ~0.3-0.4fb⁻¹ as much as 0.6fb⁻¹ Group: B-8/EW&QCD-6/NewP-6/Higgs-5/Top-5 Twenty-six in Draft or Review Conference Results: 61 Approved

EW & QCD

Тор

B Physics

- Have submitted a proposal to improve Bs mixing reach.
- Measurement is statistically limited.
- L3 bandwidth
- 50 Hz store average limited by computing budget
- Have submitted a proposal to DOE for additional offsite reconstruction CPU
 - Located at IndianaU and UofOklahoma
 - 50% match by the institutions

Higgs Searches

Tevatron Run II Preliminary

G.C.Blazey/NIU

New Phenomena

Experimental and Analysis Plan

- Each December upper management proposes a set of major goals for the experiment. The CY05 goals focused on
 - Completion of the upgrades
 - Preparation of the full Run IIa data set for CY06 presentation and publication
 - Increased automation/efficiency for long term data preparation and analysis
- Highlights of late CY05 goals:
 - July:
 - Reprocessing well underway.
 - Implementation of <u>Common Analysis Format</u>
 - August/September:
 - Complete upgrade elements.
 - October:
 - Preliminary version new jet calibration.
 - November:
 - Processing and Reprocessing of entire 1fb⁻¹ data set complete with improved calibration/tracking
 - Automated certification of all object definitions.

Key to future efficiencies

Improving Electron Acceptance

- For searches, extending electron acceptance beyond central region.
- Backgrounds ~1% in CC expected to be similar in EC.
- Working to achieve 0.6 E -2 -1 lower trigger thresholds Detector pseudo-rapidity with calorimeter trigger upgrade and understand track matching in the forward regions.

20

Jet Energy Calibration and Improvements

- Negligible statistical uncertainties
- Factor of two improvement in systematic uncertainties in jet response related to photon purity and background estimation
- With completion of MC study out-of-cone energy loss uncertainty reduced from 2% to 0.5%
- Further improvements not shown here:
 - Jet response bias measurement at low E
 - Jet response extrapolation using Monte Carlo at high E
- Some Beneficiaries
 - Top mass in lepton+jets, cross sections
 - Single top
 - Any Search w/ jets
 - Inclusive jets...

Jet Resolution & Improvements

- TrackCal Jet, an "add-on"
- Improve calorimeter jet resolution using tracks for hadron response.
- Track momentum measurements set an accurate scale for hadron response.
- Takes into account the non-linear response of individual particles in jets.

* 10% improvement in jet resolution.
* 20% improvement in MC Z resolution

G.C.Blazev/ NIU

B-ID & Improvements

 Based on NN Seven inputs from Secondary vertex tagger Jet impact parameter tagger Significant improvement • 25% at fixed fake X3 less fakes at fixed efficiency

Simulation and Improvements

- Improving description of material
 - Calorimeter, Cryostat, Solenoid
 - SMT volume, verified with photon conversions

Simulation and Improvements

- Simulation of dead channels in SMT & CFT
- Overlay of zerobias events on top of MC hard scatter
 - simulate detector occupancy, noise...
 - one zerobias event per MC event
 - Taken randomly from Run II luminosity profile:

- The DØ detector is working well at ~90% efficiency
- Publishing at a healthy rate (up to 600 pb⁻¹)
- Algorithms and simulation reaching maturity and improved sensitivity.
- The collaboration is enthusiastic about the nearly 1.0 fb⁻¹ data to tape and the prospects for more.