DØ Performance and Planned Improvements

- **Operations**
 - Collection of data
 - Detector status
 - Processing: local & remote

- **Algorithms**

- **Upgrades**

Institutions: 84 Total
 - 35 US, 49 non-US

Collaborators:
 - ~ 675 Total
 - ~ 50% from non-US institutions
 - ~ 100 post-docs
 - ~ 140 graduate students
A “100E30” Store

Factors Limiting Efficiency:
- ~3-5% front-end busy
- ~2-3% are losses due to store & run transitions
- ~5% “incidentals”

Triggers:
- L1: ~1600Hz, ~110 bits
- L2: ~800Hz, ~110 bits
- L3: ~50Hz, ~450 bits
Daily Data Taking Efficiency

19 April 2002 - 7 September 2005

Daily often above 90%
Current trends 85-90%

G.C.Blazey/ NIU
Data Delivered: 1.10 fb\(^{-1}\)
Data to Tape: 0.92 fb\(^{-1}\)
Efficiency w/ all detectors: 83.6%

Thanks to the Acc. Division!
Silicon Microstrip Detector

- 4 barrel layers
- Axial + stereo strips
- H, F Disks/wedges

- 793k Channels
- S/Noise: > 10 all devices
- Cluster Efficiency: > 97%
- No fiducial loss
Radiation Hardness

- **Studied**
 - In the booster
 - In situ with HV
 - Scans of noise and efficiency

- **Depletion voltages**
 - Evolving as expected
 - For inner layer
 \[V_{\text{depletion}} \sim V_{\text{max}} = 150\text{V} \]
 at 5—7 fb\(^{-1}\)

![Graph showing depletion voltage vs. fluence and luminosity](image)
Central Fiber Tracker & Preshowers

- Eight axial & eight stereo layers
- VLPC readout at 8K
- Performing well
 - good light yield
 - layer $\varepsilon > 98\%$
- After November 2003 shutdown
 ~ 1% of VLPC channels not functional
 - was 0.1% before November
 - a one-time event
 - water contamination in cryostat?
- Last shutdown warmed up 1 (of 2) cryostats
 - pumped out 0.5l H$_2$O
 - Upon cool down same loss rate
 BUT different channels
- Does not seriously degrade performance, but requires vigilance.
Coming out of FY04 shutdown, while attempting to ramp to full current, the solenoid quenched.

Clues:
- An additional ~8W heat load was seen on the cooling system during operation
- The south end of support cylinder shows an elevated temperature when powered
- An excess in resistance is seen in the inner coil layer
- Careful detailed review of history of temperature rise of south coil support when powered indicates that the degradation is strongly correlated with coil thermal cycles above 90K

Diagnoses: Suspect degradation of inner layer conductor joint at south end of solenoid coil.

Prescription:
- Minimize future thermal disturbances
- Limit power cycles
- Upgraded cryogenics plant to provide additional operating margin

Carefully monitored coil resistance and support temperature since beginning of FY05 run & show no further signs of degradation.

Have run stably at 4550A (rather than 4750A)
Calorimeter

- Liquid argon calorimeter with uranium absorber
 - Operating Smoothly
 - 99.9% of 55,000 channels operational
- Aggressive program to reduce noise was productive, certain types of noise down 4 orders of magnitude.
- Completed an in situ cell-by-cell calibration of EM and Had calorimeters
- Z pole resolution improves from 3.35 GeV to 2.93 GeV

Correction factors at $\eta=0.5$
Muon Systems

- **Three layers tracking & triggering**
- **Central**
 - PDTs: 98.6% of 8k tubes active
 - Scintillator: 99.8% of 630 counters active
- **Forward**
 - Scintillator:
 - 99.9% of 4608 counters active
 - Expect around 10% degradation (mainly in phototube) at 15 fb⁻¹
 - MDTs:
 - 99.7% of 50k wires active
 - one plane disabled due to broken wire.
- **Stable to 1%**
- **Highly Efficient**

Strength of DZero

Efficiency: high (94%) & uniform ±2

\[Y = \frac{N}{L} \]

\[\chi^2 / \text{ndf} = 58.34 / 12 \]
Overall Tracking Performance

• **Alignment: B=0 Field, verified w/ cosmics**
 - CFT: fibers positioned to ~10um
 - SMT: single element alignment ~3um in transverse plane
 - SMT-CFT relative alignment: <10um
 - Stable: <5um motion over time

• **High p_T Electrons:**
 - Efficiency: ~87% for $|\eta| < 2$
 - Fakes: 1-2%

• **High p_T Muons**
 - Efficiency: 98% central, 95% overall
 - Fakes: <1%
Processing: Onsite & Remote

- **Basic Strategy**
 1. Initial reconstruction pass at Fermilab
 2. Reprocessing & simulation offsite.

- **Reconstruction Farm**
 - 15-20M event/week capacity
 - Events processed within a day or two of collection.

- **Simulation**
 - Upgraded to include realistic material & Luminosity profiles.
 - 76 M events produced since August, 2004
 - Capable of ~3M events per week
(Re)Processing

- **New reconstruction version much improved**
 - Faster
 - Grid Friendly
 - Calorimeter calibrated in situ at the cell level

- **Reprocessing first 470pb⁻¹**
 - 2004 “Pilot”: reprocessed 140pb⁻¹ remotely w/ GRID
 - Uses SamGrid (SAM+JIM), >10 offsite farms
 - Started Friday March 25, 2005
 - 795M of 986M complete
 - 671M remote
 - Should be complete by October, 2005

G.C.Blazey/ NIU
Improving Electron Acceptance

- For searches, extending electron acceptance beyond central region.
- Backgrounds ~1% in CC expected to be similar in EC.
- Working to achieve lower trigger thresholds with calorimeter trigger upgrade and understand track matching in the forward regions.
τ ID and Improvements

- NN Tau ID has reached maturity within DZero
- Used to measure published σ*B(Z → ττ)
- Increasing sensitivity of searches
- Continuing to improve sensitivity

Search for \(\chi^{\pm}_1 \chi^0_2 \to 3l+X \)

DØ, 320 pb\(^{-1}\)

LEP, Chargino Searches

Trained on Z → ττ MC
Jet Energy Calibration and Improvements

- Negligible statistical uncertainties
- Factor of two improvement in systematic uncertainties in jet response related to photon purity and background estimation
- With completion of MC study out-of-cone energy loss uncertainty reduced from 2% to 0.5%
- Further improvements not shown here:
 - Jet response bias measurement at low E
 - Jet response extrapolation using Monte Carlo at high E
- Some Beneficiaries
 - Top mass in lepton+jets, cross sections
 - Single top
 - Any Search w/ jets
 - Inclusive jets...

Central jets (\(\eta=0\))

\[E^{\text{corr}} \text{ (GeV)} \]

\[10 \quad 10^2 \]

G.C.Blazey/ NIU
Jet Resolution & Improvements

- TrackCal Jet, an “add-on”
- Improve calorimeter jet resolution using tracks for hadron response.
- Track momentum measurements set an accurate scale for hadron response.
- Takes into account the non-linear response of individual particles in jets.

* 10% improvement in jet resolution.
* 20% improvement in MC Z resolution
• Based on NN
• Seven inputs from
 ▪ Secondary vertex tagger
 ▪ Jet impact parameter tagger
• Significant improvement
 ▪ 25% at fixed fake
 ▪ X3 less fakes at fixed efficiency

Data Measurement

Tagger
- NN
- JLIP

G.C.Blazey/ NIU
Simulation and Improvements

- Improving description of material
 - Calorimeter, Cryostat, Solenoid
 - SMT volume, verified with photon conversions

Data vs. MC comparison

No of Entries 956212
No of Entries 759752
Simulation and Improvements

• Simulation of dead channels in SMT & CFT
• Overlay of zerobias events on top of MC hard scatter
 – simulate detector occupancy, noise...
 – one zerobias event per MC event
 – Taken randomly from Run II luminosity profile:

 \[826.3 \text{ pb}^{-1} \]

Instantaneous luminosity for each luminosity block, weighted by contribution to integrated luminosity

G.C.Blazey/ NIU
2004
1) Search for Doubly-charged Higgs Boson Pair Production in the Decay to mu+mu+mu-mu- in pbarp Collisions at sqrt(s)=1.96 TeV
2) Observation and Properties of the X(3872) Decaying to J/psi pi+pi- in pbarp Collisions at sqrt(s)=1.96 TeV

2005
1) Search for Supersymmetry with Gauge-Mediated Breaking in Diphoton Events at DZero
3) Measurement of Dijet Azimuthal Decorrelations at Central Rapidities in pbarp Collisions at sqrt(s)=1.96 TeV
4) Measurement of the B_s^0 Lifetime in the Exclusive Decay Channel B_s^0->J/psi phi
5) A Search for the Flavor-Changing Neutral Current Decay B_s^0->mu+ mu- in pbarp Collisions at sqrt(s)=1.96 TeV
6) Measurement of the Ratio of B+ and B0 Meson Lifetimes
7) Measurement of the Lambda-B Lifetime in the Decay Lambda-B -> J/psi Lambda With the D0 Detector
8) A Search for Wbb and WH Production in pbarp Collisions at sqrt(s)=1.96 TeV
9) Measurement of the WW Production Section in pbarp Collisions at sqrt(s)=1.96 TeV
10) A Measurement of the Ratio of Inclusive Cross Sections pbarp->Zb/pbarp->Zj at sqrt(s)=1.96 TeV
11) A search for anomalous heavy-flavor quark production in association with W bosons
12) First measurement of sigma(ppbar->Z)xBr(Z->tau tau) at sqrt(s)=1.96 TeV
13) Search for first-generation scalar leptoquarks in ppbar collisions at sqrt(s)=1.96 TeV
14) Study of Zgamma events and limits on anomalous ZZgamma and Zgammagamma couplings in pbarp collisions at sqrt(s)=1.96 TeV
15) Measurement of inclusive differential cross sections for Upsilon(1S) production in ppbar collisions at sqrt(s)=1.96 TeV
16) Measurement of the p-barp -> Wgamma +X Cross section and Limits on Anomalous WWgamma Couplings at sqrt(s)=1.96 TeV
17) Search for Randall-Sundrum Gravitons in Dilepton and Diphoton Final States
18) Search for right-handed W bosons in top quark decay
20) Production of WZ Events in p-bar collisions at $\sqrt{s}=1.96$ TeV and Limits on Anomalous WWZ Couplings
21) Search for neutral supersymmetric Higgs bosons in multijet events at $\sqrt{s}=1.96$ TeV
22) Search for supersymmetry via associated production of charginos and neutralinos in final states with three leptons
23) Search for single top quark production in p-bar collisions at $\sqrt{s}=1.96$ TeV
24) Measurement of the lifetime difference in the Bs system
25) Measurement of semileptonic branching fractions of B mesons to narrow D** states
26) Search for large extra spatial dimensions in dimuon production at DZero
27) Measurement of the $t\bar{t}$ cross section in p-bar collisions at $\sqrt{s}=1.96$ TeV using kinematic characteristics of lepton plus jets events
28) Measurement of the $t\bar{t}$ cross section in p-bar collisions at $\sqrt{s}=1.96$ TeV using lepton plus jets events with lifetime b-tagging
29) Measurement of the $t\bar{t}$ production cross section in p-bar collisions at $\sqrt{s}=1.96$ TeV in dilepton final states
30) Search for the Higgs Boson in $H\rightarrow WW(\ast)$ Decays in p-bar collisions at $\sqrt{s}=1.96$ TeV
31) The Upgraded D0 Detector

Thirty(+1) Run II Papers

Luminosity: $\sim 0.3-0.4\text{fb}^{-1}$ as much as 0.6fb^{-1}
Twenty-six in Draft or Review
Conference Results: 61 Approved

G.C. Blazey/ NIU
Preparation for “200E30+” Stores

- **Layer Zero detector** - an inner layer of silicon
 - Mitigate tracking losses due to radiation damage and detector aging
 - Provide more robust tracking and pattern recognition for higher luminosities
 - Improve impact parameter resolution

- **Trigger/DAQ Upgrades**
 - Complete upgrade program to keep trigger rates down as luminosity increases
 - L1 upgrades (Calorimeter, Central Track Trigger, Cal Trk-Match)
 - L2 upgrades (Silicon Track Trigger, L2 β processors)
 - DAQ/Online (Upgrade L3 processing power, database & host servers, control systems)

Same diameter as a golf ball
“200E30” Strawman Trigger List

- Current Trigger good to ~120E30
- Upgrade Trigger Task Force
- Estimate
 - Includes only L1cal upgrades
 - Further improvements anticipated from L1CTT and L1caltrack
- Rates projected to 200e30 using data:
 - Pre-upgrade: 2800 Hz
 - Upgraded: 1400 Hz
 - Efficiency equal or better
 - Implemented @ shutdown

limit for 5% front-end busy
Run IIb Upgrade Current Status

- **Layer Zero**
 - Completed. All channels read out
 - Technical Readiness Review (TRR) scheduled for Sept. 16
 - Cooling and clearance tests remain
 - Installation mockups successful, fine tuning procedures
 - Software ready.

- **Trigger/DAQ Upgrades**
 - L1 all hardware in hand and bench tested
 - L1CTT system tests have been completed and TRR held.
 - L1Cal system tests well advanced and TRR held.
 - L1 Cal-Trk Match has made a full integration vertical slice.
 - L2 upgrades hardware in hand
 - β processors tested at DZero and UVa
 - STT TRR towards end of September.
 - DAQ/online essentially complete

G.C.Blazey/ NIU
Comments on Upgrade

- The upgrades are ready to install
 - In two cases, the collaboration has had the chance to hold full reviews
 - The rest of the subprojects will also be reviewed – but no showstoppers
- The RunIIb project phenomenally successful! A technically challenging project finishing within a couple of months of the original forecast two years ago.
- Especially in the last few months many people have been working extremely hard to bring the projects to installation readiness.
- DZero ready to install upgrades Oct 31st:
 - Improves quality/efficiency of DZero data and collection
 - Allows experts to move on to physics commissioning and analysis
Looking forward - other initiatives

- **New electronics for central fiber tracker (AFE II)**
 - Helps tracking efficiency in high luminosity/occupancy environment.
 - Approved early ‘05.
 - Different timescale - completion late 2006
- **Have submitted a proposal to improve Bs mixing reach.**
 - Measurement is statistically limited.
 - L3 bandwidth
 - 50 Hz store average limited by computing budget
 - Have submitted a proposal to DOE for additional offsite reconstruction CPU
- **Located at IndianaU and UofOklahoma**
 - 50% match by the institutions
Experimental and Analysis Plan

• Each December upper management proposes a set of major goals for the experiment. The CY05 goals focused on
 – Completion of the upgrades
 – Preparation of the full Run IIa data set for CY06 presentation and publication
 – Increased automation/efficiency for long term data preparation and analysis

• Highlights of late CY05 goals:
 – July:
 • Reprocessing well underway.
 • Implementation of Common Analysis Format
 – August/September:
 • Complete upgrade elements.
 – October:
 • Preliminary version new jet calibration.
 – November:
 • Processing and Reprocessing of entire 1fb⁻¹ data set complete with improved calibration/tracking
 • Automated certification of all object definitions.
Conclusions

- The DØ detector is working well at ~90% efficiency
- World-wide processing keeping pace
- Algorithms and simulation reaching maturity and improved sensitivity.
- Publishing at a healthy rate (up to 600 pb⁻¹)
- Preparing for the future.
 - Operational Efficiency
 - Upgrades
- The collaboration is enthusiastic about the nearly 1.0 fb⁻¹ data to tape and the prospects more.

On the operational side both experiments are ready and preparing for the full run – we have the means – next you’ll hear we have the will.
Details on Prospects for B_s Mixing

- **New Layer-Zero silicon improves decay length resolution 30%**
- **Bandwidth increase will increase statistics threefold**
- **Improved triggering with STT and invariant mass at L3**
- **Add hadronic B_s decays**
 - Trigger on flavor-tagging
 - Excellent proper time resolution since full reconstructed
- **Analysis Techniques**
 - Add more decay channels $D_s \rightarrow K_s^0 K, K^* K^*, 3\pi$
 - Improve boost estimate (semileptonic modes)
 - Improve opposite-side flavor tag (now $\varepsilon D^2 \sim 2\% \rightarrow 2.5\%$)
 - Add same-side flavor tag ($\varepsilon D^2 \sim 1.5-2\%$) by summer
 - Un-binned likelihood fit: event-by-event resolution and purity

G.C.Blazey/ NIU