PFA Development at NIU

D. Chakraborty, for the NIU ILC detector group

2005 International Linear Collider Physics and Detector Workshop and Second ILC Accelerator Workshop Snowmass, Colorado, August 14-27, 2005

Outline

- Introduction
- The Basic Algorithm
 - Density-weighted Clustering in Calorimeter
 - Calorimeter-only (no track-seeding)
 - Same for ECal (e, γ), and HCal (h⁺, h⁰).
 - Replace cal clusters with matching (MC) tracks, if any.
- The Directed Tree Algorithm
 - Association of isolated "fragment"s or "satellite"s.
- Work in Progress

Introduction

- Primarily interested in exploring the digital hadron calorimeter option in general, with scintillator as the active material in particular.
- For digital algorithms and results for single particles, Refer to talks given at the LDC meeting (Paris, Jan 2005).
- Results are preliminary.

The "SD" calorimeter

- ECal:
 - 30 layers, silicon-tungsten.
 - 5mm x 5mm transverse segmentation.
- HCal:
 - 34 layers, scintillator-steel
 - 1 cm x 1 cm transverse segmentation.
- Magnetic field: 5T
- Support structures, cracks, noise, x-talk, attenuation, inefficiencies,... not modelled.

Clustering (reported in past)

• Seeds: maxima in local density:

 $d_i = \Sigma (1/R_{ij})$

- Membership of each cell in the seed clusters decided with a distance function.
- Only unique membership considered.
- Calculate centroids.
- Iterate till stable within tolerance.

DHCal: Particle-flow algorithm (NIU)

- Nominal SD geometry.
- Density-weighted clustering.
- Track momentum for charged,
- Calorimeter E for neutral particles.

DHCal: Particle-flow algorithm (NIU) Photon Reconstruction inside jets

Excellent agreement with Monte Carlo truth:

ILCW05, Snowmass

DHCal: Particle-flow algorithm (NIU) **Reconstructed** jet resolution

Dhiman Chakraborty

The Directed Tree Algorithm

- Define neighborhood for a cell
- Discard cells below threshold (0.25 MIP)
- Calculate density for each cell i
- If(density==0)?

else

calculate (D_j - D_i)/d_{ij} where j is in the neighborhood find max []

The Directed Tree Algorithm (contd.)

 If max[] is -ve i starts a new cluster if max[] is +ve j is the parent of I if max[] == 0avoid circular loop attach to nearest

Single hadrons in the ECal

Generated clusters

Reconstructed clusters

Clusters from single hadrons are reconstructed well. Some "fragment"s or "satellite"s remain unassociated.

ILCW05, Snowmass

Only a few highest E clusters shown.

ILCW05, Snowmass

PFA Development at NIU Dhiman Chakraborty 12

The confusion term

- Internal to calorimeter.
- Reconstruct "gen" and "rec" clusters,
- A "gen" cluster is a collection of cells which are attached to a particular MCparticle. All detector effects are included in this cluster.
- Find centroids and match to nearest "rec" cluster, making sure that no cluster gets associated twice.
- Somewhat conservative.

Z→qq Events

- Calculate
 E_{rec}/E_{gen} for each
 generated cluster
- Enter into histogram with weight E_{gen}/E_{total} .

ILCW05, Snowmass

Cluster Matching and Merging

- Stage 1: one-to-one gen-reco matching based on distances (3D or angular)
 → unassociated clusters ("satellites")
- Stage 2: attach satellites to reco clusters based on angular distances: possible cuts on angular separation, satellite energies, number of hits,...

Preliminary ECal Analysis

- 500 events, with 2-pions 10 cm apart at ECal face, using SDNPHOct04 detector
- neighborhood definition: ($d\varphi=5$, dz=5, dlayer=9)
- discard events with decays or interactions before Ecal
- Look at:
 - eratio1: E_{rec}/E_{gen} after stage 1 (matching)
 - eratio2: E_{rec}/E_{gen} after stage 2 (merge satellites)

Preliminary HCal Analysis

- 500 events, with 2-pions 10cm apart at Ecal face, using SDNPHOct04 detector
- neighborhood definition: (dφ=2, dz=2, dlayer=2)
- discard events with decays or interactions before Ecal
- Look at:
 - eratio1: E_{rec}/E_{gen} after stage 1 (matching)
 - eratio2: E_{rec}/E_{gen} after stage 2 (merge satellites)

ILCW05, Snowmass

Current Status

- Analysis of complex events shows some problems with too many satellites – how to associate them with the right parent shower?
- Clustering algorithm ported to org.lcsim, to be certified. Committed to LCSim CVS repository.
- More manpower for the PFA development effort.
- Work in progress, a lot to do ...

Current Status (contd.)

With Perfect PFA (no confusion term), $\sigma(E) = 3.1 \text{ GeV}$

ILCW05, Snowmass

Backup slides

ILCW05, Snowmass

Separability of clusters

Best separability is achieved when width of a cluster is small compared to distances between clusters.

 $J = \mathrm{Tr}\{S_{\mu\nu}^{-1} S_{m}\}$

ILCW05, Snowmass

Separability of clusters (contd.)

where $S_w = S_i W_i S_i$ $S_i = \text{covariance matrix for cluster } c_i (\text{in } x, y, z)$ $W_i = \text{weight of } c_i (\text{choose your scheme})$ $S_m = \text{covariance matrix w.r.t. global mean}$

Two (parallel) π^+ 's in TB sim:

Two (parallel) π⁺'s in TB prototype sim: separability (J) vs. track distance for different cell sizes

PFA Jet Reconstruction summary (past)

- Cone clustering in the calorimeters,
- Flexible definition of weight (energy- or density-based),
- Generalizable to form "proto-cluster" inputs for higher-level algorithms.
- Replace cal clusters with matching MC track, if any.
- Based on projective geometry.
- New clustering algorithms taking shape.