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1. Introduction

The discovery of the top quark in 1995 at the
Tevatron pp̄ collider at Fermilab by the DØ and
CDF collaborations gave direct support to the three-
generation structure of the Standard Model and
opened up the new field of top-quark physics.
We recently celebrated the 10th anniversary of
this monumental milestone.
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1.1. Theoretical Perspective

In the SM, the top quark is defined as theSU(2)L
(weak isospin) partner of the bottom quark.
• S = 1

2

• Q = 2
3

• Transforms as a color triplet under the SU(3)
gauge group of strong interactions.

None of these quantum numbers has been directly
measured, but a large amount of indirect evidence
support these assignments. These include preci-
sion measurements of Γ(Z → b̄b), AFB, B0-
B̄0 mixing, and FCNC decays of B mesons.

• Measurement of σ(pp̄ → tt̄) at the Teva-
tron is consistent with theoretical calculations
for a color-triplet quark.

• Run 2 of the Tevatron (2001-2008) will firmly
establish the identity of the top quark.

• The LHC (2007-) and the ILC (2015? -) will
be needed for precise determination of top
quark properties and to look for subtle hints
of new physics.
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Status of the Standard Model

• There are many reasons to believe that there
is physics beyond the SM. Indeed, recent dra-
matic cosmological observations make it an
inescapable conclusion.

• Mechanisms behind the breaking of electroweak
and flavor symmetries are not well understood/tested.

• Yet, we have no direct experimental evidence
so far of any phenomenon beyond the SM
produced in a terrestrial laboratory.

• The last fundamental constituents of the SM
to be found, the top quark and theW/Z vec-
tor bosons, firmly establish it as a valid effec-
tive theory for the energy regime explored at
man-made particle accelerators to date.

• Only the Higgs boson remains unobserved,
but measurements of mt & MW constrain
MH .

• Finding the last pieces of the SM has not been
getting any easier . . .
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Discovery of elementary particles
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What is special about the top quark?

Its large mass sets the top quark apart.

1 GeV ≈ 1.6 × 10−24 g ≈ mproton
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Some interesting consequences of large mt

• Top quark and Higgs boson contribute to the
radiative (loop) corrections to MW . Thus,
precise measurements ofMW andmt together
constrainMH0.

• The only fermion heavier than the gauge bosons
(W±, Z0)⇒extremely short lifetime (∼ 4×
10−25 s). The top quark decays before hadroniza-
tion (τhad ≈ 28 × 10−25 s). This gives
us an opportunity to study the properties of
a bare quark, free from long-range effects of
the strong interaction, e.g. confinement.

• An excellent place to look for on-shell pro-
duction of particles beyond the SM that are
known to be heavier than other fermions (t̃,
H±).

• Most likely to shed light on the mechanism
of generation of fermion masses. Interesting
to the study of any mass-dependent coupling.
Top Yukawa coupling is curiously close to 1.
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Constraint on MH from mt and MW
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Top Physics Potential
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1.2. The Experimental Arena

Producing top quarks

• Tevatron, the proton-antiproton (pp̄) collider
at Fermilab (Batavia, Illinois), is so far the
only facility in the world where top quarks
have been produced.

– Discovery by CDF & DØ experiments in
March, 1995 (Run 1,

√
s = 1.8 TeV),

based on ∼ 150 signal events detected.

– Ongoing Run 2 (
√
s = 1.96 TeV) is ex-

pected to deliver a O(100)-fold increase
in signal yield by 2008.

• LHC, a stronger pp collider (
√
s = 14 TeV)

under construction at CERN (Geneva, Switzer-
land) will start operation in 2007 and produce
O(108) signal events each year.

• ILC, an e+e− collider capable of producing
top quarks is being designed (

√
s up to 1 TeV),

hopefully to be commissioned by 2015.
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The Accelerator (Tevatron at Fermilab)

• CM energy:
√
s = 1.96 TeV.

• Instantaneous luminosity: L ≈ 1032 cm−2s−1

= 10−4 pb−1s−1.

• Total luminosity recorded by each experiment
(DØ, CDF):

∫

Ldt ≈ 500 ± 30 pb−1. (1992-present)

• Expected tt̄ production cross section: σ(pp̄→ tt̄) ≈ 7 pb.
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Beam Luminosity

Instantaneous Luminosity

L =
NpNp̄Bf0

4πσ2
(1)

Parameter Run 1 Run 2

Np (protons/bunch) 2 × 1011 2 × 1011

Np̄ (antiprotons/bunch) 6 × 1010 6 × 1010

Np (protons/bunch) 2 × 1011 2 × 1011

B (# bunches in ring) 6 36

f0 (protons/bunch) 50 KHz 50 KHz

(3.5 µs bunch spacing) (396 ns bunch spacing)

σ2 (beam “area”) 3 × 10−5 cm2 2 × 10−5 cm2

〈L〉 1.6 × 1031 cm−2s−1 2 × 1032 cm−2s−1

Npp̄→tt = σ(pp̄→ tt)

∫

Ldt (2)

Parameter Run 1 Run 2
∫

Ldt 0.11 fb−1 2 fb−1

σ(pp̄→ tt) 5 pb 7 pb

Npp̄→tt 600 14000

A note on units: 1 barn (b) = 10−24 cm2, 1 fb = 10−15 b
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Cross sections at Tevatron (
√
s = 1.8 TeV)
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• Small cross sections require high luminosity, and the ability to
quickly decide which of the ∼ 107 events/s are interesting.

• Altogether over 1014 total collisions in Run 1, roughly one in
every 1010 producing a tt event.

• When running at maximum luminosity, about 5 tt events are
produced every hour in Run 2.

• But these events must be detected and filtered from billions of
others arising from less interesting processes.
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Top production at Tev2, LHC, and ILC

Collider Tevatron LHC ILC

type pp̄ pp e+e−

ECM (TeV) 1.96 14.0 ∼1.0

〈L〉 (cm−2s−1) O(1032) O(1034) O(1034)
∫ Ldt (fb−1) ∼ 2 ∼300 ∼1000

σtotal (pb) ∼ 1011 ∼ 1011 O(10)

σ(b̄b) (pb) ∼ 3 · 107 ∼ 3 · 108 O(1)

σ(WX) (pb) ∼ 4 · 104 ∼ 2 · 105 O(1)

σ(tt̄)(a) (pb) 6.70+0.71
−0.88 825+58

−43 ∼ 0.8

σ(single t) (pb) 2.91 ± 0.02 315+8
−2 ∼ 0
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Detecting top quarks

• Extremely short lifetime ⇒detection of top
quark involves identification of its decay prod-
ucts and reconstruction of the event.

• In the SM, a top quark decays almost exclu-
sively to aW boson and a bottom quark. So,
B(t→W+b) ≈ 1.

• Therefore, the final state of a top quark event
is primarily classified by the decay mode of
the correspondingW boson:
B(W → `ν`) ≈ 1

9
, (` = e/µ/τ).

B(W → ud̄) ≈ B(W → cs̄) ≈ 1
3

.

t

b

W+
q/l

q/ν

• The charged leptons (e, µ, τ ) can be sepa-
rately identified, although τ ’s can be difficult.

• Neutrinos don’t interact in the detector⇒only
inferred from the principle of momentum con-
servation. No flavor-tagging is possible.
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• Quarks hadronize into a “jet” of particles.
– The light ones (u, d, s) cannot be sepa-

rated from each other and from gluons.
– Jets from b and c quarks are often tagged

by an isolated decay vertex or an associ-
ated e/µ from semileptonic decay.

• Large mass of top quark⇒small boost⇒good
angular separation between light FS partons.

• The spectrum of top quark decay products
spans across the full range of SM particles.

• So, we need versatile, hermetic detectors that

– can register and identify different kinds of
particles, and measure their momenta as
accurately and precisely as possible,

– covers as much of the full 4π solid angle
around the interaction point as possible.

• At the Tevatron and the LHC, collisions hap-
pen at a much higher rate than can be per-
manently recorded. Roughly one in a bil-
lion collisions contain top quarks. Need the
best possible online trigger+filter system to
ensure maximum efficiency.

25 May 2005 17



Dhiman Chakraborty The Top Quark

The particle detectors

• Accurate tracking of charged particles is ne-
cessary for locating the collision vertex (and
any secondary decay vertex) and for charged
lepton identification. A magnetized tracking
volume allows momentum spectrometry.

• Electrons and photons deposit their energy
through electromagnetic interactions in the dense
media of a calorimeter. The energy is con-
tained in a short and very narrow volume.

• Quarks and gluons form “jets” of hadrons that
also deposit all their energy in the calorime-
ter, but primarily through strong (nuclear) interac-
tions. The resultant “showers” of energy pen-
etrate deeper and spread wider.
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• Muons penetrate through the calorimeter, and
leave information about their momenta in mag-
netized tracking devices located outside of it.

• Neutrinos leave no trace in any detector com-
ponent, and their presence can only be in-
ferred from the principle of conservation of
momentum. Only the component of neutrino
momenta perpendicular to the beamline (E/T )
can be measured at hadron colliders.

• Tau leptons decay before reaching any detec-
tor element: either leptonically (to e or µ)
or hadronically to a small number of charged
and neutral particles, and one or more neu-
trinos. Hadronic decays of τ ’s lead to calori-
metric energy profiles narrower than those ini-
tiated by quarks and gluons.

• A jet initiated by a b (c) quark is often (some-
times) characterized by a secondary decay ver-
tex well separated from the primary produc-
tion vertex of the B (C) hadron. Such de-
cays also contain e’s and µ’s more often than
lighter jets (u, d, s, g).
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The DØ detector

D0 Detector
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.
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The CDF detector
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The CDF detector: elevation
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2. Production of Top Quarks

2.1. Top-antitop pair production

• At hadron colliders, top quarks are produced
most often in pairs via strong interactions.

q

q̄

g
t

t̄

g

g

g
t

t̄

g

g

t

t

t̄

• Such events have been used in measuring the
rate of production (σ(pp̄ → tt̄)) and the
mass of the top quark (mt) at the Tevatron.

• Strong interaction ⇒
– More signal, but also extremely large back-

ground. Triggering is a major challenge.
– Signal smudged by initial-state radiation,

spectator interaction, multiple collisions.
– Energy and polarization of colliding par-

tons cannot be precisely controlled or de-
termined.
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• At a lepton collider, top quarks are produced
in pairs via electroweak interactions

e−

e+

γ/Z
t

t̄

• Although the cross section for this process is
much smaller, it has many desirable features.
Electroweak interaction ⇒
– Fewer events, but background-free. No

triggering necessary, all events are recorded.
– No initial-state radiation, spectator inter-

action, multiple collisions. One clean event
can be better than a dozen dirty ones.

– Energy and polarization of colliding par-
tons can be precisely controlled: extremely
useful for precision measurements of mass,
width, coupling parameters.

– Events can be fully reconstructed.
– Unique sensitivity to some new physics

scenarios through production cross section,
kinematics, and decays.
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The final state signature of tt events

• Each tt pair decays into two W bosons and
two b quarks.

• The final state of a tt̄ system is primarily clas-
sified by the decay modes of the twoW bosons:
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q

q̄
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t
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W−
µ

ν̄µ

b

W+

u

d̄

1
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Decay channels for tt events

Three broadly defined channels:
1. Dilepton channels: Both W s decay leptoni-

cally (to e or µ).

Signal:
Two isolated high-pT leptons, large missing
transverse momentum (from 2 neutrinos) and
two high-pT (or highET ) jets (from 2 b quarks).

Background:
• Physics: ZX → τ+τ−X → l+l− +
E/T + jets,WWX → l+l−+E/T +
jets.

• Instrumental: Jets initiated by quarks or
gluons in QCD multijet events misidenti-
fied as electrons, muons from decays of
heavy quarks being misidentified as being
isolated, measurement fluctuations result-
ing in largeE/T .
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2. Single lepton channels: One W decays lep-
tonically (to e or µ) while the other decays
hadronically (to 2 jets).

Signal:
One isolated high-pT lepton, large missing
transverse momentum (from 1 neutrino) and
four high-ET jets (2 fromW and 2 from bs).

Background:
• Physics: WX → l+E/T + jets.

• Instrumental: Jets initiated by quarks or
gluons in QCD multijet events misidenti-
fied as electrons, muons from decays of
heavy quarks being misidentified as being
isolated, measurement fluctuations result-
ing in largeE/T .
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3. All-hadronic channels: Both W s decay had-
ronically (each to 2 jets).

Signal:
Six high-ET jets (4 fromW s and 2 from bs).

Background:
• Physics: QCD multijet events containing
b or c quarks.

• Instrumental: Negligible.

Events with jets tagged as b candidates are given
special consideration. This is particularly impor-
tant at hadron colliders, since such jets are rare in
background. In the more contaminated channels,
b-tagging may be a part of basic selection.
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Measurement of σ(pp̄→ tt)

General procedure

• Devise selection criteria to maximize signal
significance. Typically, one looks for events
containing high-pT partons well separated from
each other. Jets, e, µ, τ , ν, with pT above
15-20 GeV are required. The exact thresh-
old depends on detector resolution, # of ob-
jects, background etc. Sophisticated pattern-
recognition algorithms (e.g. artificial neural
networks) are used often.

• Estimate background using data (extrapola-
ting from background-dominated regions of
phase space) and/or Monte Carlo simulations.

• Any significant excess in data over estimated
background is interpreted as Signal. Signal
cross section is calculated by dividing the ex-
cess by total luminosity:

σ =
Nobs − 〈NB〉

∫ Ldt (3)
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σ(pp̄→ tt) from Tevatron Run 1

DØ CDF

Channel Nobs 〈NB〉 Nobs 〈NB〉
Dilepton 5 1.4 ± 0.4 9 2.4 ± 0.5

Single lepton - - 34 9.2 ± 1.5

(SVX b-tag)

Single lepton 11 2.4 ± 0.5 40 22.6 ± 2.8

(Lepton b-tag)

Single lepton 19 8.7 ± 1.7 - -

(Topological)

All-hadronic 41 24.8 ± 2.4 187 142 ± 12

eτ , µτ - - 4 ∼ 2

eν 4 1.2 ± 0.4 - -
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σ(pp̄→ tt) from Tevatron Run 1
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σ(pp̄→ tt) from DØ Run 2
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σ(pp̄→ tt) from CDF Run 2
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2.2. Single Top Production

• At hadron colliders, top quarks can be pro-
duced singly via weak interactions.

q
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Such events occur less than half as frequently
as tt and the signal is more difficult to extri-
cate from background.
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• Rate and kinematics are direct probe ofWtb
vertex in general and |Vtb| in particular

– All cross sections are proportional to |Vtb|2).

– V −A structure of SU(2)L weak interac-
tion ⇒polarized production of top.

• Important background toWH production fol-
lowed by H → b̄b.

• Theoretical predictions:

Process Tevatron Run 2 LHC (t) LHC (t̄)

σNLOs−chan (pb) 0.447 ± 0.002 6.55 ± 0.03 4.07 ± 0.02

σNLOt−chan (pb) 0.959 ± 0.002 152.6 ± 0.6 90.0 ± 0.5

σLLassoc. (pb) 0.093 ± 0.024 31+8
−2 31+8

−2

• Latest limits from DØ:

– σ(tb)s−channel < 6.4 pb at 95% CL

– σ(tqb)t−channel < 5.0 pb at 95% CL
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2.3. Sensitivity to New Physics

• Heavy scalar or vector bosons, both charged
and neutral, fundamental and composite, ap-
pear in all extensions of the SM. ⇒new ways
for both pair- and single-top production.
– Neutral bosons (Z ′, φ0, ηT ) alterσ(ttX).
– Charged bosons (W ′, φ±, π±

t ) alterσ(tX).
• Since these models seek to explain why the

top quark is so heavy, implications are usu-
ally stronger for top than for other fermions.

• Precision measurement of the cross sections
and comparison with SM predictions allows
us to constrain or discover such processes.

• We have found no significant deviation from
the SM so far, but large uncertainties in both
theoretical calculations and experimental mea-
surements lead to rather weak constraints on
parameters of new physics models.

• Some of these processes can hide behind the
large background at hadron colliders (Teva-
tron, LHC), but will be easily detected at a
lepton collider (ILC).
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3. Decays of Top Quarks: 3.1. SM decays

• The SM predictsB(t→Wb) > 0.998.

• The rest goes to off-diagonal CKM modes,
t → Wq, where q = s, d. We’ll talk about
these later.

• Flavor-changing neutral current (FCNC) de-
cays, t → X0q, where X0 = g, γ, Z,H,
are highly suppressed by the GIM mechanism.
Branching fractions are O(10−13) - not ac-
cessible in the foreseeable future.

• Current direct limits on FCNC decays of top
from Tevatron (CDF, Run 1):

– B(t→ cγ) +B(t→ uγ) < 0.032,

– B(t→ cZ) +B(t→ uZ) < 0.33,

• Limits expected from LHC: ∼2× 10−4 for
both.

• Few extensions of the SM predict FCNC t
decays at such high levels. Still, we need to
stay alert. . .
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W helicity in top decays

• SM, t → Wb decays are described purely
by the universal V − A charged current in-
teraction.

• The W is “real” in a top decay ⇒distinctive
helicities. Decay to a positive-helicityW boson
is suppressed by a chiral factorm2

b/M
2
W . So,

the W helicity is essentially a superposition
of only the zero- ane negative-helicity states.

• At tree level in the SM, ignoringmb, the frac-
tion of longitudinal (zero-helicity)W bosons
in the top rest frame is:

F0 =
m2
t /M

2
W

1 +m2
t /M

2
W

= 0.701 ± 0.016

(4)

• Finitemb and NLO effects ⇒∼2% change.

• The large top mass exposes the longitudinal
mode of the W ⇒precise measurement of
F0 serves as a stringent test of the SM.

• Indirect limit from b → sγ data (CLEO)
constraints F+ to a few %.
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• Angular distributions of decay products are
sensitive functions of the F ’s.

• Both DØ and CDF have measured the F ’s
in dilepton and single-lepton channels using
several strategies (

∫

Run2 Ldt = 162 pb−1,
F+ = 0 assumed for measurements of F′):

Expt(Run) Method Result

CDF(1) pT(`) F0 = 0.91 ± 0.37 ± 0.13,

F+ < 0.28 (98% CL)

CDF(1) M2(`b) F+ < 0.24 (95% CL)

DØ(1) ME F 0 = 0.56 ± 0.31

CDF(2) pT(`) F0 = 0.27+0.31
−0.21 ,

F0 < 0.88 (95% CL)

CDF(2) M2(`b) F0 = 0.89 ± 0.32 ± 0.17,

F0 > 0.25 (95% CL)

DØ(2) cos θ ∗ F+ < 0.24 (90% CL)

• The statistical uncertainty will be reduced by
an order of magnitude by the end of Run 2,
and to negligible levels at the LHC and the
ILC.
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3.2. Top Quark Decays Beyond the SM

• In virtually every extension to the SM, alter-
native possibilities arise to compete with the
SM modes:

– Extended Higgs sector ⇒t→ H+b

– SUSY ⇒t→ t̃χ̃0
1,

– TC2 ⇒t→ π+
t b

• In all cases, the coupling depends on fermion
mass, or flavor, or both ⇒look in data for de-
viations in the production rates and branching
fractions from those predicted by the SM.

• Both appearance of new modes or enhance-
ment over SM-predicted values, and disap-
pearance of SM modes (to make way for new
ones that may be hidden in excessive back-
ground) have been searched for by DØ and
CDF for some of the more popular scenarios.

• Often, there are too many free parameters,
and one is forced to make “reasonable” as-
sumptions about some of them in order to pin
down the rest . . .
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Search for t→ H+b

• The Standard Model postulates one complex
scalar (Higgs) doublet. After 3 of its 4 de-
grees of freedom are expended in giving mass
to the W± and Z0 bosons, one manifests it-
self as a physical particle:H0.

• The simplest extension to the SM ⇒a two-
Higgs-doublet models (2HDM), resulting in
five physical Higgs bosons:H0, h0, A0, H±.

• The electroweak sector in a 2HDM has 2 ad-
ditional parameters: tanβ, mH+ (or mA),
where tanβ ≡ ratio of V.E.V.’s of the two
doublets.

• If mH+ < mt −mb, and tanβ is not too
close to

√

mt

mb
, then t → H+b can compete

with t→W+b .

• Such aH± is not expected to noticeably alter
the top production cross sections at any col-
lider, but decays will be affected since Higgs
coupling is proportional to mass.
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Disappearance search results from DØ Run1:

The Run 1 (Run 2 expected) limit corresponds
roughly to B(t → H+b) < 0.45(0.11) at
95% CL, except where Wb̄b dominates.
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Run 1 and preliminary Run 2 results from CDF:
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This study’s results

• No sign of a light charged Higgs as yet, but
. . .

• Some assumptions that went into in these anal-
yses need coser scrutiny.
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Supersymmetric Decays of the Top Quark

• The lightest stop, t̃1 is thought likely to be
the lightest squark, possibly lighter than top.

• This opens the possibility of t→ t̃χ̃0
1, which

can end in either bq1q̄2χ̃0
1χ̃

0
1, or cχ̃0

1χ̃
0
1, de-

pending on the superparticle masses and cou-
plings.

• Since the branching fraction cannot be too
large, it is best to look for events where pre-
cisely one of the top decays in the new way.

• The final state objects are the same, but an-
gular and moomentum spectra are different.

• Unfortunately, often the new signatures face
worse background than SM.

• Early results show nothing unusual, but they’re
pretty weak. Our main goal at this time is
to understand the issues and set up the pro-
cedure. Stringent results will have to await
high-volume (LHC) and/or ultra-clean (ILC)
data.
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4. Top quark properties: 4.1. Mass

General procedure

• Event selection and background estimation is
similar to those for σ(tt) measurement, but
any associated bias on mt must be carefully
accounted for.

• Examine stronglymt-dependent variables (re-
constructedmt, if available, is a natural choice).

• Using simulated signal templates for different
values of mt, determine which one best fits
the excess of data over background.

• Combinatorial ambiguities, often compounded
by extra jets from initial- and final state radi-
ation, or occassional loss of a jet pose serious
difficulties.

• Weighing each candidate and each interpreta-
tion of it differently, depending on how well
it fits signal and background hypotheses, af-
fords the most precise measurement, but it is
a more involved procedure.
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mt from single-lepton events at CDF
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CDF Run II Preliminary (318 pb

Template method with in-situ JES determination
gives (preliminary result based on 138 candidate
events from

∫ Ldt = 3∞∀ pb−1)
mt = 173.5+2.7

−2.6 (stat) ±2.5 (JES) ±1.7 (syst)
A total uncertainty of 4.1 GeV: better than Run 1
world average.
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Latest results from CDF

)2Top mass (GeV/c
150 160 170 180 190 200
0

10
CDF Run 2 Preliminary

Run 1 D0 Lepton+Jets  3.9±  3.6
 3.6±180.1 

(Run I only)

Run 1 CDF Lepton+Jets  5.3±  5.1
 5.1±176.1 

(Run I only)

Run 1 World Average  3.3±  2.7
 2.7±178.0 

(Run I only)

+JESrecoLepton+Jets: M  3.0±  2.6
 2.7±173.5 

)
-1

(L= 318pb

Lepton+Jets: DLM  6.2±  5.0
 4.5±177.8 

)
-1

(L= 162pb

Lepton+Jets: Multivariate  6.8±  6.3
 6.4±179.6 

)
-1

(L= 162pb

 weightingνDilepton:  8.6±  9.8
11.0±168.1 

)
-1

(L= 200pb

t tzDilepton: P  6.9± 16.0
17.2±176.5 

)
-1

(L= 193pb

ν of φDilepton:  7.4± 16.6
16.6±170.0 

)
-1

(L= 193pb
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Latest results from DØ
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Present and future of top mass measurement

• Measuring mt, together with MW , is vitally
important in order to constrainMH .

• Top mass has now been determined to 2.3%.

• It is still limited by statistics. Some of the
systematics will improve with statistics.

• Matrix-element method will further reduce the
statistical uncertainty.

• Combining different channels and results from
DØ and CDF will help too.

• By the end of Run 2, we hope to bring the
total uncertainty to below 3 GeV.

• More precise but rarer final states (b→ ψ →
`+`−) will be accessible to the LHC experi-
ments. These combined with end-point fits
- another luxury afforded by huge statistics
- could allow for ∼1 GeV precision in mt

from experiment.

• Theoretical uncertainties, owing to incomplete-
ness of radiative corrections, are ∼1.5 GeV.
These are very difficult to reduce.
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• At the ILC, threshold scans, full event recon-
struction, and cleaner events, precise theoret-
ical calculation of many sensitive variables
etc. should allow for measurement ofmt within
O(100) MeV.

Expected precision of mt, MW measurements:

Collider Tevatron LHC ILC

type pp̄ pp e+e−

δmt (GeV) 3 1 0.1

δMW (MeV) 26 9 1
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4.2. Spin

• Decay before hadronization⇒spin at produc-
tion reflected on angular distribution of decay
products.

– No other quark decays quickly enough.

• At Tevatron and LHC, the colliding particles
are unpolarized, so the spin of each top con-
sidered separately is random, but the spins of
the top and the antitop in a given event are
correlated.

• At the ILC, with polarized beams, the spin of
each top quark, as well as the correlation, can
be studied.

• The charged lepton and down-type quarks are
most sensitive, but it is difficult to uniquely
identify the latter⇒only the dilepton and single-
lepton channels are useful.

• A good test for Wtb coupling. A significant
departure from the SM prediction could point
to new physics.
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Differential decay rate of top quark:

1

Γ

dΓ

d(cos θi)
=

1 + αi cos θi

2
(5)

particle (i) αi for mt = 175 GeV

e+ or d 1

ν or u -0.31

W+ 0.41

b -0.41

• For tt→ l+l−X events at the Tevatron, one
studies the double-differential cross section:

1

σ

d2σ

d(cos θ+)d(cos θ−)
=

1 + κ cos θ+ cos θ−

4
.

(6)

• All spin-correlation information is in κ.
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• Within large statistical uncertainties, current
measurements (from Run 1) are consistent with
the SM predictions. The method has been
established, vastly improved results are ex-
pected soon.
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4.3. Charge

• Some theorists contend that the observed “top”
could be an exotic quark withQ = −4

3
.

• The only way to check this at hadron colli-
ders is to compare the observed rate and kine-
matics of tt̄γ events with SM predictions.

• Either way, the rate is too low for a definitive
test at the Tevatron.

• At the LHC, the issue can be resolved with
4-6 months of data (∼10 fb−1).

• At the ILC, σ(tt) is extremely sensitive to
Qt. The debate can be settled with less than
1 hour of data.
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4.4. Gauge couplings

• It is important to measure the top quark’s coup-
ling to the SM gauge bosons: g,W±, Z, and
γ, lest anomalous couplings, which may or
may not involve new particles, go undetected.
Search for CP violation in the top sector is
normally addressed in this language.

• Couplings to g andW± are fairly well tested
already at the Tevatron, and will continue to
be refined through studies of pair- and single-
top production, kinematics, spin correlations,
W helicity, etc.

• Couplings to Z and γ are harder to study
at hadron colliders, but will be possible with
sufficient statistics at the LHC.

• The ILC will offer high-precision tests of all
of top quark’s gauge couplings, especially the
electroweak.
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4.5. Lifetime and Vtb

• The CKM matrix element Vtb is intimately
related to the top quark lifetime. At LO,

Γ(t→Wb) =
GF

8π
√

2
m3
t |Vtb|2

(

1−3
M4

W

m4
t

+2
M6

W

m6
t

)

= 1.56GeV

(7)

where Γ = h̄
τ

is the width of the top quark,
and τ its lifetime. The NLO result for the
width is 1.42 GeV.

• Indirect measurements assuming 3 generations
of quarks lead to 0.9990 < |Vtb| < 0.9993.

• Direct tests without the 3-generation assump-
tion has been carried out at the Tevatron, by
measuring

R ≡ B(t→ bW )

B(t→ qW )
=

|Vtb|2
|Vtb|2 + |Vts|2 + |Vtd|2

(8)

– R = 0.94+0.31
−0.24 (CDF, Run 1),

– R = 0.70+0.29
−0.26 (DØ, Run 2).
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• We expectR to be measured within 5% at the
Tevatron, and within 3% at the LHC, which
translates, assuming SM gauge couplings, to
12% and 5%, respectively, on |Vtb|.

• At the ILC, direct measurement of Γ(t) from
threshold scans should have a precision of
O(1%).
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4.6. Yukawa couplings

• Yukawa couplings relate the matter content
of the SM to the source of mass generation,
the Higgs sector.

• When the Higgs field acquires a vacuum ex-
pectation value v, the top quark is endowed
with a massmt = Yt v√

2
. Since v = 246 GeV

and mt ≈ 174 GeV, Yt = 1, a theoreti-
cally interesting value, leading to speculation
that new physics studies of the top quark may
open a door to new physics.

• The ttH coupling can be accessed through
– gg → H (through a top-quark loop),
– gg → tH ,
– gg → ttH .

• Unfortunately, the first suffers from overwhelm-
ing background, and the cross sections are
too low for the other two at the Tevatron.

• Even at LHC, strong cancellations will limit
the reach to light Higgs only (which, how-
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ever, is strongly favored by the current mea-
surements of mt andMW ).

• Measurements of Higgs branching fractions
based on large samples may prove more fruit-
ful.

• Strong constraints can be put on models where
Yt � 1.

• Unless MH is too large, precision measure-
ments at the ILC of Higgs production and de-
cay properties will yield the best results on
Yt.
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Summary and Outlook

• Using ∼ 500 pb−1 of data collected at the
Fermilab Tevatron, both DØ and CDF have
studied several aspects of top physics inclu-
ding measurements of its pair-production cross
section and mass, several tests of the SMWtb
coupling, and some searches for physics be-
yond the SM.

• The mass of top quark has been determined
within 2.3%, the most precise of all quarks.

• Within large statistical uncertainties, single
top production, top-antitop spin correlation,
andW helicity measurements agree well with
the SM predictions.

• A search for charged Higgs bosons reveals no
signal, and rules out a large part of previously
unexplored parameter space.

• Results from searches for flavor-changing neu-
tral currents in decays of the top quark are
consistent with the SM.

• MZ ′→tt̄ < 610 GeV excluded at 95 % CL.
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We look forward with great expectations

to the completion of Run 2 of the Teva-

tron, the LHC (2007-), and eventually

the ILC (2015?-). Together, these en-

terprises will help us gain a better un-

derstanding of the workings of Nature.

“In physics, one discovery often leads

to others. Top opens a new world – the

domain of a very heavy fermion – in

which the strange and wonderful may

greet us.”
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