LCDG4 Status

Dhiman Chakraborty, Guilherme Lima, Jeremy McCormick, Vishnu Zutshi

LC Simulations Workshop Argonne, June 02-05, 2004

Outline

- Overview
- LCDG4 features
 - XML geometry representation
 - SIO contents
- Certification
- Processing times
- Available datasets
- Remaining issues
- Summary

What is LCDG4

- A Geant4-based detector simulator to support detector R&D for the Linear Collider
- Alternatives: Mokka, LCS or Gismo (old, unsupported)
- LCDG4 features
 - Input format: binary STDHEP
 - Output format: only *.sio* for now (Gismo compatible) *.lcio* is planed for the near future

 Some detector geometries are implemented via XML geometry files (e.g. SD, LD, PD)

Simplistic geometry: cylinders, disks and cones only, no cracks, limited representation of support structure

Some LCDG4-specific features

- Development bias towards HCal (also ECal) other detectors should work fine, but no active studies by the developers
- Correct MC particle hierarchy, even when V0s and hyperon decays are forced in event generation
- Energies deposited in absorbers are easily available for analysis (ASCII format only)
- Non-projective geometries also available for barrel HCal (forked versions), output into SIO files
- Analysis code and documentation available from CVS (new! Preliminary versions...) and http://nicadd.niu.edu/~lima/lcdg4/

Geometry info in XML

An example: Silicon detector (SDJan03.xml)

```
<?xml version="1.0" ?>
<!-- Comments
       -->
<lcdparm>
  <global file="SDJan03.xml" />
  cphysical detector topology="silicon" id = "SDJan03" >
    <volume id = "PIPE INNER" rad len cm="0.00047" inter len cm="0.00040">
    . . .
    <complex volume id = "VERTEX BARREL">
    . . .
  </physical detector>
  <proc parm>
    <cal smear em energy = "0.12 0.01" had energy = "0.50 0.02"
               em_position = "1.0 0.0" had_position = "5.0 0.0" />
  </proc parm>
</lcdparm>
```


Geometry info in XML

An example: Hadronic calorimeter barrel in XML (a simple volume). Dimensions are in centimeters.

. . .

Geometry info in XML

Another example: Vertex detector barrel in XML (a complex volume). Dimensions are in centimeters.

```
...
<complex_volume id = "VERTEX_BARREL">

    <volume id = "VERTEX_BARREL_1" rad_len_cm="0.0011" inter_len_cm="0.00022">

            <tube>
                <layering>
                    <layering>
                         <slice material = "Si" width = "0.01" sensitive = "yes" />
                        </layering>
                    <layering>
```


. . .

XML-based geometry description

- Flexible, very easy for minor changes (dimensions, materials, layering, segmentation), recompilation is not needed
- Deeper changes are error prone, not many checks for inconsistencies
- Detector construction implementation could be better!! (It currently depends too much on the format of the XML file)
- XML files may become large for complex geometries (could split into a top level + one file per subcomponent)
- Slow-access, as compared to a relational database access, but it only happens at initialization stage (not a big deal)

SIO output: general features

- SIO output contents: one particle collection and several hit collections (one collection per subdetector)
- Each hit points to the contributing particles (except tracker hits from calorimeter back-scatterings, as in Gismo)
- All secondaries above an energy threshold (now set at 1 MeV), except for shower secondaries, are saved in output with:
 - Particle id and status codes (generation and simulation)
 - Production momentum and ending position
 - Calorimeter entrance point: position and momentum
 - Pointers to parent particles (decay or interaction)

Zoom on the primary interaction

Simulation Status Codes

- 0 active
- 1 decayed
- 2 interacted
- 3 left detector
- 4 stopped 5 - looping
- 6 lost
- 7 stuck

- 8 primary
- 9 showered
- 10 maxsteps

(fully implemented, or not to be implemented)

are not saved

Cal entrance: position, momentum

Calorimeter entrance profile

Entries: 25171

OutOfRance: 4

XMean: 1.5797

XRms: 772.56

YMean : -6.0894

YRms: 1241.9

600

800

1,000

1,200

Calorimeter entrance profile

LCDG4 processing times

(in a 2.4 GHz CPU)

• Single particles:

- Physics events
 - Z to X @ 91 GeV: 0.55 min/evt
 - tt to X @ 350 GeV: 1.66 min/evt
 - ZH to Xb<u>b</u> @ 500 GeV: 2.33 min/evt
 - WW to qqbb @ 500 GeV: 2.22 min/evt

About ~15% faster after some memory debugging (valgrind)

Mokka and LCDMokka

- Mokka is another Geant4-based simulation framework for Linear Collider R&D
- Detector geometry is described using a MySQL database
- Based on Tesla model, many other models and prototypes have been added into the geometry database
- Input: ASCII StdHEP / Ouptut: ASCII or LCIO
- For more info, please visit Mokka web site: http://polywww.in2p3.fr/geant4/tesla/www/mokka/mokka.html
- LCDMokka: XML capabilities into Mokka v01-05 (latest version is v02-03), while LCDG4 is not able to use MySQL geometry files (e.g. Tesla)
- Used LCDMokka for comparisons with LCDG4

Fair comparison

- Geant4 version 5.2
- SDJan03 geometry (cylindrical layers with virtual cells)
- Physics list from Mokka v01.05
- Range cut of 0.1mm
- Identical I/O formats (binary stdhep input, text output) implemented into both simulators
- Same events processed in both detector simulators single particles: 50 GeV e[±], μ^{\pm} , π^{\pm} , $\theta = 90^{\circ}$, flat in φ
- Same materials in sub-detectors (look at X_0, λ_1)

Ecal: energies per layer

Live energy per layer in ECal - Single particles, 50 GeV

Hcal: energies per cell

LCDG4: Remaining issues

- (1) Discrepancy in EM live energy (LCDG4 & Gismo)
- (2) Discrepancy in number of calorimeter hits
- (3) Large number of HCal hits in the ECal/HCal interface
- (4) Calorimeter entrance point coords in mm (not cm) this has been fixed in v02-25

Issue 1: ECal E_{live} and E_{abs}

EM Sampling fraction per layer

ECal sampling fractions per layer - 10 GeV electrons

Issue 1: Ecal E_{live}

ECal: live energy - 10 GeV electrons

Issue 1: ECal E_{live} per layer

ECal: live energy per layer - 10 GeV electrons

Issue 1: radiation lengths?

Material	Radiation lengths (cm)			
	PDG	Geant	G4-PDG	Gismo
W	0.35	0.350	0.00%	?
Si	9.36	9.094	2.84%	?
G10	19.40	16.716	13.84%	?
Cu	1.43	1.440	-0.70%	?
Air	30420	30551	-0.43%	?

There are some discrepancies with LCDG4 and PDG, but below the 3% level.

Maybe Gismo' **s**adlens are different from PDG numbers by more than 10% level?

Issues 2 and 3: Nhits per layer

ECal: Number of hits per layer - 10 GeV electrons

e⁺e⁻ into ttbar event (SDJan03)

MC Samples for general use

- Samples currently available at NIU through sftp: scpuser@k2.nicadd.niu.edu (lcd_2004): /pub/lima/lcdg4/v02-24
 - 2K each of e^{\pm} , μ^{\pm} , π^{\pm} , γ , n at $\theta = 90^{\circ}$ and flat in φ energies = 2, 3, 5, 10, 15, 20, 30, 50 GeV
 - 5K 10 GeV K_s^0 into $\pi^0\pi^0$
 - 10K 10 GeV K_s^{0} into $\pi^+\pi^-$
 - 5K 10 GeV Σ + inclusive
 - 5K 1..10GeV lambdas inclusive
 - 10K Z into (hadrons) at 91 GeV
 - 5K ttbar inclusive at 350 GeV
 - 5K WW into (hadrons)(any) at 500 GeV
 - 2K ZH into (any)(bbbar) at 500 GeV and M_{H} =120 GeV
 - 2K ZH into (any)(bbbar) at 500 GeV and M_{H} =160 GeV
- Other samples can be requested to lima at fnal.gov. Please read http://nicadd.niu.edu/~jeremy/lcd/simreq/ for guidelines.

How to access the MC samples

Several single-particle and physics data samples available from NIU data server using secure ftp:

```
% sftp scpuser@k2.nicadd.niu.edu
password: lcd_2004
sftp> cd pub/lima/lcdg4/v02-23
sftp> ls (to see a list of .sio files available)
sftp> mget muons-10gev*.sio (for example)
sftp> quit
%
```

See http://nicadd.niu.edu/~jeremy/admin/scp/index.html for more detailed access instructions, including instructions for windows winscp utility.

LCDG4 status summary

- Detailed comparisons between LCDG4 v02-11 and LCDMokka 01-05 are in good agreement (discrepancies of ~20% to Gismo have been observed)
- LCDG4 faster than Mokka, but it cannot be used for Tesla geometry
- Only cylinders, disks and cones supported by current LCDG4 version (like Gismo). More realistic geometries to be implemented in the medium term
- Several MC physics samples have been generated for algorithm development and studies (SDJan03, SIO format)
- Source code available from SLAC or NIU CVS repositories
- For more information please check the LCDG4 documentation web page: http://nicadd.niu.edu/~lima/lcdg4/, or under subdirectory doc of CVS module

Next steps suggested

- Brief investigation on the ECal/HCal interface
- Improve documentation
- LCIO output
- Merge projective and non-projective versions
- Visualization improvement (virtual cells)
- Different range cuts per subcomponent (ECal)
- More realistic geometries (medium term)

