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Status: Unit 4 Status: Unit 4 -- Circular Motion and GravityCircular Motion and Gravity

Uniform circular motion, angular variables, Uniform circular motion, angular variables, 
and the equations of motion for angular and the equations of motion for angular 
motion (3motion (3--9, 109, 10--1, 101, 10--2)2)

•• Applications of NewtonApplications of Newton’’s Laws to circular s Laws to circular 
motion  (5motion  (5--2, 52, 5--3, 53, 5--4)4)

•• Harmonic Motion (14Harmonic Motion (14--1, 141, 14--2)2)
•• The Universal Law of Gravitation, The Universal Law of Gravitation, 

Satellites, and Satellites, and KeplerKepler’’ss LawLaw’’s (Chapter 6)s (Chapter 6)
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Overview of Important ResultsOverview of Important Results
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Dynamics of Uniform Circular MotionDynamics of Uniform Circular Motion

•• Consider the centripetal acceleration Consider the centripetal acceleration aaRR of of 
a rotating mass:a rotating mass:
–– The magnitude is constant.The magnitude is constant.
–– The direction is perpendicular to the The direction is perpendicular to the 

velocity and inward.velocity and inward.
–– The direction is continually changing.The direction is continually changing.

•• Since Since aaRR is nonzero, according to Newtonis nonzero, according to Newton’’s s 
22ndnd Law, there must be a force involved.Law, there must be a force involved.
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•• Consider a ball on a string:Consider a ball on a string:
–– There must be a net force There must be a net force 

force in the radial direction force in the radial direction 
for it to move in a circle.for it to move in a circle.

–– Other wise it would just fly Other wise it would just fly 
out along a straight line, with out along a straight line, with 
unchanged velocity as stated unchanged velocity as stated 
by Newtonby Newton’’s 1s 1stst LawLaw

•• DonDon’’t confuse the outward t confuse the outward 
force on your hand (exerted force on your hand (exerted 
by the ball via the string) by the ball via the string) 
with the inward force on with the inward force on 
the ball (exerted by your the ball (exerted by your 
hand via the string).hand via the string).

•• That confusion leads to the That confusion leads to the 
mismis--statement that there is statement that there is 
a a ““centrifugalcentrifugal”” (or center(or center--
fleeing) force on the ball. fleeing) force on the ball. 
ThatThat’’s not the case at all!s not the case at all!
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Example 1: Force on a Revolving BallExample 1: Force on a Revolving Ball

•• As shown in the figure, a ball of mass 0.150 kg As shown in the figure, a ball of mass 0.150 kg 
fixed to a string is rotating with a period of fixed to a string is rotating with a period of 
T=0.500s and at a radius of 0.600 m.T=0.500s and at a radius of 0.600 m.

•• What is the force the person holding the ball What is the force the person holding the ball 
must exert on the string?must exert on the string?
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•• As usual we start with the As usual we start with the 
freefree--body diagram.body diagram.

•• Note there are two forcesNote there are two forces
–– gravity or the weight, gravity or the weight, 

mmgg
–– tensional force exerted tensional force exerted 

by the string, by the string, FFTT
•• WeWe’’ll make the ll make the 

approximation that the approximation that the 
ballball’’s mass is small s mass is small 
enough that the rotation enough that the rotation 
remains horizontal, remains horizontal, φφ=0. =0. 
(This is that judgment (This is that judgment 
aspect thataspect that’’s often s often 
required in physics.)required in physics.)

•• Looking at just the x Looking at just the x 
component then we have component then we have 
a pretty simple result:a pretty simple result:
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Example 2: A Vertically Revolving BallExample 2: A Vertically Revolving Ball

•• Now lets switch the Now lets switch the 
orientation of the ball to orientation of the ball to 
the vertical and lengthen the vertical and lengthen 
the string to 1.10 m.the string to 1.10 m.

•• For circular motion For circular motion 
(constant speed and (constant speed and 
radius), whatradius), what’’s the speed s the speed 
of the ball at the top?of the ball at the top?

•• WhatWhat’’s the tension at the s the tension at the 
bottom if the ball is bottom if the ball is 
moving twice that speed?moving twice that speed?
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•• So to the freeSo to the free--body diagram, at the top, at point body diagram, at the top, at point 
A, there are two forces:A, there are two forces:
–– tensional force exerted by the string, tensional force exerted by the string, FFTATA

–– gravity or the weight, mgravity or the weight, mgg
•• In the x direction:In the x direction:

•• LetLet’’s talk about the                                  s talk about the                                  
dependencies of this                                  dependencies of this                                  
equation. Since mg is                           equation. Since mg is                           
constant, the tension                                    constant, the tension                                    
will be larger should will be larger should vvAA
increase. This seems                                 increase. This seems                                 
intuitive.intuitive.

•• Now the ball will fall                                         Now the ball will fall                                         
if the tension vanishes                                         if the tension vanishes                                         
or if For if FTATA is zerois zero
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•• At point B there are also two forces but At point B there are also two forces but 
both acting in opposite directions. Using both acting in opposite directions. Using 
the same coordinate system.the same coordinate system.

•• Note that the tension still provides the Note that the tension still provides the 
radial acceleration but now must also be radial acceleration but now must also be 
larger than larger than mamaRR to compensate for to compensate for 
gravity.gravity.
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Example 3: The Example 3: The 
Conical PendulumConical Pendulum

•• Here we have a small  Here we have a small  
mass m hanging from a mass m hanging from a 
cord of length Lat an cord of length Lat an 
angle angle θθ with the vertical.with the vertical.

•• The ball is revolving in a The ball is revolving in a 
circle as shown a radius circle as shown a radius 
r=r=LsinLsinθθ

•• What is the origin and What is the origin and 
direction of the mass direction of the mass 
accelerationacceleration

•• Calculate the speed v and Calculate the speed v and 
period of revolution T for period of revolution T for 
the object in terms of      the object in terms of      
L, L, θθ, g, and m., g, and m.

•• We assume that We assume that 
–– this pendulum is in uniform this pendulum is in uniform 

circular motioncircular motion
–– the vertical position does the vertical position does 

not change.not change.
–– there is no frictionthere is no friction
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•• Of course we turn to the free Of course we turn to the free 
body diagram and apply body diagram and apply 
NewtonNewton’’s 2s 2ndnd law. law. 

•• There are two forces, and only There are two forces, and only 
two, since there is no friction two, since there is no friction 
–– The weight mThe weight mgg
–– The tension, The tension, FFTT

That’s it!
•• In the vertical direction the 2In the vertical direction the 2ndnd

Law gives:Law gives:
FFTTcoscosθθ –– mg =0mg =0

•• In the horizontal direction there In the horizontal direction there 
is one force is one force FFTTsinsinθθ but since we but since we 
have uniform circular motion the have uniform circular motion the 
22ndnd law tells us:law tells us:

FFTTsinsinθθ=mv=mv22/r/r
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Designing Your Highways!Designing Your Highways!

•• Turns out this stuff is actually Turns out this stuff is actually 
useful foruseful for
–– civil engineering such as road civil engineering such as road 

designdesign
–– A NASCAR trackA NASCAR track

•• LetLet’’s consider a car taking a s consider a car taking a 
curve, by now itcurve, by now it’’s pretty clear s pretty clear 
there must be a centripetal there must be a centripetal 
forces present to keep the car forces present to keep the car 
on the curve or, more precisely, on the curve or, more precisely, 
in uniform circular motion.in uniform circular motion.

•• This force actually comes from This force actually comes from 
the friction between the wheels the friction between the wheels 
of the car and the road.of the car and the road.

•• DonDon’’t be misled by the outward t be misled by the outward 
force against the door you feel force against the door you feel 
as a passenger, thatas a passenger, that’’s the door s the door 
pushing you inward to keep pushing you inward to keep 
YOU on track! YOU on track! 
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Example 4: Analysis of a SkidExample 4: Analysis of a Skid

•• The setup: a 1000kg The setup: a 1000kg 
car negotiates a car negotiates a 
curve of radius 50m curve of radius 50m 
at 14 at 14 m/sm/s. . 

•• The problem: The problem: 
–– If the pavement is dry If the pavement is dry 

and and µµss=0.60, will the =0.60, will the 
car make the turn?car make the turn?

–– How about, if the How about, if the 
pavement is icy and pavement is icy and 
µµss=0.25?=0.25?
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•• Looking at the car headLooking at the car head--on the on the 
freefree--body diagram shows body diagram shows 
three forces, gravity, the three forces, gravity, the 
normal force, and friction.normal force, and friction.

•• We see only one force offers We see only one force offers 
the inward acceleration the inward acceleration 
needed to maintain circular needed to maintain circular 
motion motion -- friction. friction. 

•• First off, in order to maintain First off, in order to maintain 
uniform circular motion the uniform circular motion the 
centripetal force must be:centripetal force must be:

•• To find the frictional force we To find the frictional force we 
start with the normal force, start with the normal force, 
from Newtonfrom Newton’’s second law:s second law:
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•• At the point a wheel contacts At the point a wheel contacts 
the road the relative velocity the road the relative velocity 
between the wheel and road is between the wheel and road is 
zero.zero.

•• Proof: Proof: 
–– From the top figure we see From the top figure we see 

that when a rolling wheel that when a rolling wheel 
travels through arc travels through arc ““ss”” the the 
wheel and car move forward wheel and car move forward 
distance distance ““dd””, so s=d., so s=d.

–– If we divide both by t, the If we divide both by t, the 
time of the roll and the time of the roll and the 
translation forward, we gettranslation forward, we get

–– Thus a point on the wheel is Thus a point on the wheel is 
moving forward with the same moving forward with the same 
velocity as the car, velocity as the car, vvCARCAR, while , while 
rotating about its axisrotating about its axis

–– For point B the total velocity is For point B the total velocity is 
just the additionjust the addition

–– And for point AAnd for point ACART vv
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•• Back to the analysis Back to the analysis 
of a skid.  of a skid.  

•• Since v=0 at contact, Since v=0 at contact, 
if a car is holding the if a car is holding the 
road, we can use the road, we can use the 
static coefficient of static coefficient of 
friction.friction.

•• If itIf it’’s sliding, we use s sliding, we use 
the kinetic coefficient the kinetic coefficient 
of friction.of friction.

•• Remember, we need Remember, we need 
3900N to stay in 3900N to stay in 
uniform circular uniform circular 
motion.motion.

•• Static friction force Static friction force 
first:first:

•• Now kinetic,Now kinetic,
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The Theory of Banked CurvesThe Theory of Banked Curves
•• The Indy picture shows that The Indy picture shows that 

the race cars (and street cars the race cars (and street cars 
for that matter) require some for that matter) require some 
help negotiating curves. help negotiating curves. 

•• By banking a curve,  the carBy banking a curve,  the car’’s s 
own weight, through a own weight, through a 
component of the normal component of the normal 
force, can be used to provide force, can be used to provide 
the centripetal force needed to the centripetal force needed to 
stay on the road.stay on the road.

•• In fact for a given angle there In fact for a given angle there 
is a is a maxinummaxinum speed for which speed for which 
no friction is required at all.no friction is required at all.

•• From the figure this is given byFrom the figure this is given by
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Example 5: Banking AngleExample 5: Banking Angle

•• Problem: For a car traveling at speed v Problem: For a car traveling at speed v 
around a curve of radius r, what is the around a curve of radius r, what is the 
banking angle banking angle θθ for which no friction is for which no friction is 
required? What is the angle for a required? What is the angle for a 
50km/hr (14m/s) off ramp with radius 50km/hr (14m/s) off ramp with radius 
50m?50m?

•• To the freeTo the free--body diagram! Note that body diagram! Note that 
wewe’’ve picked an unusual coordinate ve picked an unusual coordinate 
system.  Not down the inclined plane, system.  Not down the inclined plane, 
but aligned with the radial direction. but aligned with the radial direction. 
ThatThat’’s because we want to determine s because we want to determine 
the component of any force or forces the component of any force or forces 
that may act as a centripetal force.that may act as a centripetal force.

•• We are ignoring friction so the only two We are ignoring friction so the only two 
forces to consider are the weight mforces to consider are the weight mgg
and the normal force and the normal force FFNN .  As can be 
seen only the normal force has an 
inward component.
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•• As we discussed earlier in the As we discussed earlier in the 
horizontal or + x direction, horizontal or + x direction, 
NewtonNewton’’s 2s 2ndnd law leads to: law leads to: 

•• In the vertical direction we In the vertical direction we 
have:have:

Since the acceleration in this Since the acceleration in this 
direction is zero, solving for Fdirection is zero, solving for FNN

• Note that the normal force is 
greater than the weight.

•• This last result can be This last result can be 
substituted into the first:substituted into the first:

•• For v=For v=14m/s and r= 50m14m/s and r= 50m
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NonNon--uniform circular motionuniform circular motion

•• More specifically lets consider constant r, but More specifically lets consider constant r, but 
changing speed.changing speed.

•• This means there will be a tangential This means there will be a tangential 
acceleration with magnitude given byacceleration with magnitude given by

•• But the radial acceleration remains:But the radial acceleration remains:

•• These two vectors are always perpendicular, so These two vectors are always perpendicular, so 
the total acceleration has magnitude:the total acceleration has magnitude:

•• This notion can actually be generalized to any This notion can actually be generalized to any 
circular portion of a trajectorycircular portion of a trajectory
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Example 6: The AnneExample 6: The Anne--Glidden ExitGlidden Exit

•• When taking the Anne Glidden When taking the Anne Glidden 
exit your speed drops from 65 exit your speed drops from 65 
mph (30m/s) to 30 mph mph (30m/s) to 30 mph 
(13m/s) in 5.0 seconds.  The (13m/s) in 5.0 seconds.  The 
radius of the curve is 500 m.radius of the curve is 500 m.

•• What is your average What is your average 
tangential deceleration and tangential deceleration and 
your radial acceleration at the your radial acceleration at the 
beginning and end of your beginning and end of your 
exit?exit?

•• Well the average deceleration Well the average deceleration 
is just given in the usual wayis just given in the usual way

•• The radial acceleration isThe radial acceleration is
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A small diversionA small diversion
•• The equation relating the total acceleration to The equation relating the total acceleration to 

a function of the derivative of velocity and the a function of the derivative of velocity and the 
velocity squared is quite common in form. velocity squared is quite common in form. 

•• In fact velocityIn fact velocity--dependent forces are not dependent forces are not 
unusual. Terminal velocity which weunusual. Terminal velocity which we’’ve ve 
already discussed is a good example.already discussed is a good example.

•• An object falling in a liquid is quite interesting.  An object falling in a liquid is quite interesting.  
Here the object is subject to a drag force from Here the object is subject to a drag force from 
friction which is proportion and opposite the friction which is proportion and opposite the 
velocity of the object or Fvelocity of the object or FDD==--bvbv

•• Here NewtonHere Newton’’s 2s 2ndnd Law givesLaw gives
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SummarySummary

•• For For uniform circular motionuniform circular motion the key notion involves a the key notion involves a 
combination of combination of NewtonNewton’’s 2s 2ndnd LawLaw with the geometric with the geometric 
observation that observation that aaRR=v=v22/r./r.

•• WeWe’’ve explored the physics of a ball on a string, a ve explored the physics of a ball on a string, a 
conical pendulum, and banked curves.conical pendulum, and banked curves.

•• WeWe’’ve also taken a look at how to handle circular motion ve also taken a look at how to handle circular motion 
at constant radius but changing speed.at constant radius but changing speed.

•• Next weNext we’’ll do something a bit different and discuss ll do something a bit different and discuss 
harmonic motion, although not strictly harmonic motion, although not strictly ““circularcircular”” itit’’s got s got 
much in commonmuch in common……and for your future reference it turns and for your future reference it turns 
out to be one of the most instructive points of contact out to be one of the most instructive points of contact 
between classical and quantum physics.between classical and quantum physics.


