Status: Unit 4 - Circular Motion and Gravity

v"Uniform circular motion, angular variables,
and the equations of motion for angular
motion (3-9, 10-1, 10-2)

e Applications of Newton’s Laws to circular
motion (5-2, 5-3, 5-4)

e Harmonic Motion (14-1, 14-2)

e The Universal Law of Gravitation,
Satellites, and Kepler's Law’s (Chapter 6)
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Overview of Important Results
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Dynamics of Uniform Circular Motion

e Consider the centripetal acceleration ag of
a rotating mass:

— The magnitude is constant.

— The direction is perpendicular to the
velocity and inward.

— The direction is continually changing.

e Since ag is nonzero, according to Newton'’s
2" Law, there must be a force involved.

2
V

2F, =ma, :mE
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e Consider a ball on a string: e ~

~
< Forceonball N
— There must be a net force ;7 exerted by

force in the radial direction =~ ! string
for it to move in a circle.  Fiorcs o0 Baad

— Other wise it would just fly | exerted by
out along a straight line, with | string
unchanged velocity as stated \
by Newton’s 1st Law \

e Don't confuse the outward N
force on your hand (exerted S~
by the ball via the string)
with the inward force on o7 <
the ball (exerted by your / \
hand via the string).

e That confusion leads to the I
mis-statement that there is \ w¢
In . ///
\
\
N e o

a “centrifugal” (or center-
fleeing) force on the ball.
That's not the case at all!
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Example 1: Force on a Revolving Ball

e As shown in the figure, a ball of mass 0.150 kg
fixed to a string is rotating with a period of
T=0.500s and at a radius of 0.600 m.

e What is the force the person holding the ball
must exert on the string?
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e As usual we start with the | | ¢ Looking at just the x
free-body diagram. component then we have
 Note there are two forces a pretty simple result:
— gravity or the weight, by =may —
9 s, =mY
— tbensri]onal forceFexerted x =M
y the string, F; > | TV
e We'll make the 2y EPCLARREN
approximation that the !
ball’s mass is small @
enough that the rotation
remains horizontal, $=0. 472%(0.15kg)(0.60m)
(This is that judgment (0.505)?
aspect that's often '
required in physics.) ~14N
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Example 2: A Vertically Revolving Ball

e Now lets switch the

orientation of the ball to A
the vertical and lengthen 7 r;;“x\
the string to 1.10 m. S %

e For circular motion

{ \
(constant speed and {\ ® )
radius), what’s the speed N\ Fm &
of the ball at the top? AU B
e What's the tension at the B 4
bottom if the ball is il

moving twice that speed?
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So to the free-body diagram, at the top, at point

A, there are two forces:

— tensional force exerted by the string, Fy,
— gravity or the weight, mg

In the x direction:

Let’s talk about the
dependencies of this
equation. Since mg is
constant, the tension
will be larger should v,
increase. This seems

2
Va_

v

2F,=ma, =m

2F, =F,, +mg
2
y
mszTA +mg

intuitive.

Now the ball will fall
if the tension vanishes

or if F;, is zero

2
y
m—=0+mg —>
r

VA:\/EZ

V9.80m /s> x1.10m =
3.28m/s
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e At point B there are also two forces but
both acting in opposite directions. Using
the same coordinate system.

2

XF, =ma, —mYE
r
2F, = Fp—mg —

2
v

m—2-=F_,—mg—
r
2

v
Frg :m(%+g)

Now since we were given v, =6.56m/ s,

(6.56m/s)’

F., =0.150kg( +9.80m/s”)

F,, =7.34N

e Note that the tension still provides the
radial acceleration but now must also be
larger than ma, to compensate for
gravity.
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Example 3: The
Conical Pendulum
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Here we have a small
mass m hangi]mg from a
cord of length Lat an

angle 6 with the vertical.

The ball is revolving in a
circle as shown a radius
r=Lsino

What is the origin and
direction of the mass
acceleration

Calculate the speed v and
period of revolution T for
the object in terms of

L, 6, g, and m.

We assume that

— this pendulum is in uniform
circular motion

— the vertical position does
not change.

— there is no friction
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Of course we turn to the free
body diagram and apply
Newton’s 2" law.

There are two forces, and only
two, since there is no friction
— The weight mg

— The tension, F;

That's it!
In the vertical direction the 2nd
Law gives:

Frcos6 — mg =0

In the horizontal direction there
IS one force F;sin6 but since we
have uniform circular motion the
2nd [aw tells us:

Frsin6=mv?/r
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We were asked to find vand T. At this point we have

three equations, that will be enough :

2
V

F,.cos@=mg, F,smO@=m—,andr = Lsin0
r

Solving the second for v we find :

rF,.sin 6@ i :
V= \/ ! where we take the positive, physical root.
m

We can substitute for F. using the first equation and for

r using the third,

Lgsin® @
cosd

cosd
m

y =

Lsin0( "% )sin@ \/

Note there is no dependence on the mass, only L, g, 6.
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What about the period? Well we can relate it the

the derived velocity by noting that v=2mz/T.

We just derived the velocity, lets turn this around and

substitute r and vinto 7' = 2—”
N

. 2 .2

T 27l sin @ Py L s1.n26’ _
Lgsin® 6 Lgsin” 6
cos @ cos @

L L
T=2rx |——=2x_|—cos@

g g

cos @

Again the period does not depend on the mass, only
L,g, and 6.
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sin” @

v=(\/E cos @

T =2 £\/cos@
g
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Designing Your Highways!

\/

Force on car
A (sum of friction forces
acting on each tire)

’TW 5

Tendency for
passenger to
go straight

Force on ‘
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Turns out this stuff is actually
useful for
— civil engineering such as road
design
— A NASCAR track

Let’s consider a car taking a
curve, by now it's pretty clear
there must be a centripetal
forces present to keep the car
on the curve or, more precisely,
in uniform circular motion.

This force actually comes from
the friction between the wheels
of the car and the road.

Don't be misled by the outward
force against the door you feel
as a passenger, that's the door
pushing you inward to keep
YOU on track!
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Example 4: Analysis of a Skid

e The setup: a 1000kg
car negotiates a

curve of radius 50m \
at 14 m/s.

e The problem:

— If the pavement is dry
and n.=0.60, will the |
car make the turn? Fo=rmg

— How about, if the
pavement is icy and
u.=0.257
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(a) (b)

Looking at the car head-on the
free-body diagram shows
three forces, gravity, the
normal force, and friction.

We see only one force offers
the inward acceleration
needed to maintain circular
motion - friction.

First off, in order to maintain
uniform circular motion the

centripetal force must be:

2
V

2F, =ma, =m7=

(14m/s)’ B

1000kg x
& 50m

3900N

To find the frictional force we
start with the normal force,
from Newton’s second law:

2F,=0=F,—mg —>
F, =mg =1000kg x9.8m / s’
=9800N
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At the point a wheel contacts
the road the relative velocity
between the wheel and road is
Zero.

Proof:

— From the top figure we see
that when a rolling wheel
travels through arc “'s” the
wheel and car move forward
distance “d”, so s=d.

— If we divide both by t, the
time of the roll and the
translation forward, we get

s/t=d/t—>

Vi = Veur

— Thus a point on the wheel is
moving forward with the same
velocity as the car, v, While
rotating about its axis

d=s
B
Vo
Q C —
A V1

A

The entire car
and wheel
move forward
with veloeity v.

— For point B the total velocity is
just the addition

Viow =Vr Y Veur =

Vivar = Vear T Vear = 2Veur

— And for point A
Vot = Vr T Vear =

|
Vvt = —Vear T Vear =0
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Back to the analysis
of a skid.

Since v=0 at contact,
if a car is holding the
road, we can use the
static coefficient of
friction.

If it's sliding, we use
the kinetic coefficient
of friction.

Remember, we need
3900N to stay In
uniform circular
motion.

e Static friction force
first:

Fj(max) = u F, =
0.60x9800N =5900N
Holds the road!

e Now Kkinetic,
Ffr = IUKFN =
0.25x9800N =2500N
Off 1t goes!
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The Theory of Banked Curves

e The Indy picture shows that
the race cars (and street cars
for that matter) require some
help negotiating curves.

e By banking a curve, the car’s
own weight, through a
component of the normal
force, can be used to provide
the centripetal force needed to
stay on the road.

e In fact for a given angle there
is @ maxinum speed for which
no friction is required at all.

e From the figure this is given by

2
v

F,smf@=m—
r
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Example 5: Banking Angle

e Problem: For a car traveling at speed v
around a curve of radius r, what is the
banking angle 6 for which no friction is
required? What is the angle for a
50km/hr (14m/s) off ramp with radius
50m?

e To the free-body diagram! Note that
we've picked an unusual coordinate
system. Not down the inclined plane,
but aligned with the radial direction.
That's because we want to determine
the component of any force or forces

that may act as a centripetal force.

e We are ignoring friction so the only two
forces to consider are the weight mg
and the normal force F . As can be
seen only the normal force has an

inward component.
2/23/2007
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As we discussed earlier in the
horizontal or + x direction,

Newton’s 2" law leads to:

2
V

F,sm@=m—
r
In the vertical direction we

have:
LF, =F,cosf@—-mg —

F,cos@-mg=0

Since the acceleration in this
direction is zero, solving for F,

mg
F =
Y cosd

Note that the normal force is
greater than the weight.

This last result can be
substituted into the first:

2
m . \%
g sl =m—-—>

cos @ 2

V2
mgtan =m— —

v

2

gtanH:v——>

For v=14m/s and r= 50m

2 2
ang < _ (14m2/ s)
gr 9.8m/s°x50m
0 =22°

=0.40
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Non-uniform circular motion

- g . a
e More specifically lets consider constant r, but LT TTOR an
changing speed. g 7 \\
e This means there will be a tangential _dv // 255 // \\
» » . . —_— - N
acceleration with magnitude given by ™ ¢ I ag \
. . - @
e But the radial acceleration remains: 2 :
a, =m— \ /
r \ /
e These two vectors are always perpendicular, so Mg 7
. » ~
the total acceleration has magnitude: ~—___--"

v\ v i
a=+la,’ +d’ = (jtj J{mrj

e This notion can actually be generalized to any
circular portion of a trajectory
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Example 6: The Anne-Glidden Exit

e When taking the Anne Glidden | || The radial acceleration is
exit your speed drops from 65

mph (30m/s) to 30 mph a _v
(13m/s) in 5.0 seconds. The oy
radius of the curve is 500 m. At the start of the curve
e What is your average 2
tangential deceleration and a, = BOmIS)" 1 gy s
your radial acceleration at the 500m
beginning and end of your At the end of the curve
exit? 2
(13m/s)
e Well the average deceleration ap = =0.3m/s’

IS just given in the usual way >00m

y _v,=v, 13m/s-30m/s _
-t 5.0s
~3.4m/s’
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A small diversion

e The equation relating the total acceleration to
a function of the derivative of velocity and the
velocity squared is quite common in form.

e In fact velocity-dependent forces are not
unusual. Terminal velocity which we've
already discussed is a good example.

e An object falling in a liquid is quite interesting.
Here the object is subject to a drag force from
friction which is proportion and opposite the
velocity of the object or Fy,=-bv

e Here Newton's 2" Law gives
2, =mg—bv—
mg —bv =ma —

dv

mg—bv:mE

2/23/2007

FD =-bv

mg

(a)
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m —bv—mﬂ—>
s di
AL BN
dt s m
d‘;? =dt >
g——v
m
d"m _—
e
b

But this can be integrated from v=0att=0:

¢ d « b
J ==
g mV
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¢ dv b
j 5 :J‘—;Ch—)
og—iv 0
m
b
mg
s
In b :—ét
_mg | m
b
Raising both side to the exponential
- )
b =e " —
_mg
b
v=£(l—e_’")
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e Note the limits
— At t=0, v=0
— At t=infinity, v=mg/b

(b)
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Summary

e For uniform circular motion the key notion involves a
combination of Newton’s 2" Law with the geometric
observation that ag=v4/r.

e We've explored the physics of a ball on a string, a
conical pendulum, and banked curves.

e We've also taken a look at how to handle circular motion
at constant radius but changing speed.

e Next we'll do something a bit different and discuss
harmonic motion, although not strictly “circular” it's got
much in common...and for your future reference it turns
out to be one of the most instructive points of contact
between classical and quantum physics.
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