# Science Advertisement <br> Intergovernmental Panel on Climate Change: <br> The Physical Science Basis http://www.ipcc.ch/SPM2feb07.pdf 

AOGCM Projections of Surface Temperatures


## http://www.foxnews.com/projects/pdf/SPM2feb07.pdf

## Status: Unit 2, Chapter 3

$\checkmark$ Vectors and Scalars
$\checkmark$ Addition of Vectors - Graphical Methods
$\checkmark$ Subtraction of Vectors, and Multiplication by a Scalar
$\checkmark$ Adding Vectors by Components
$\checkmark$ Unit Vectors

- Vector Kinematics
- Projectile Motion
- Solving Problems in Projectile Motion
- Relative Velocity


## Section Two Problem Assignment

- Q3.4, P3.6, P3.9, P3.11, P3.14, P3.73
- Q3.21, P3.24, P3.32, P3.43, P3.65, P3.88


## Vector Kinematics: Displacement, Velocity, Acceleration

- Now that we have vectors well described we can focus on the general description of motion in multiple dimensions.
- Each of the quantities displacement, velocity, and acceleration, which we discussed in Chapter 2, have a more general vector representation
- As shown in the figure the displacement:

$$
\Delta x=x-x_{o} \rightarrow \Delta \vec{r}=\overrightarrow{r_{2}}-\overrightarrow{r_{1}}
$$

Occurs in the time interval

$$
\Delta t=t_{2}-t_{1}
$$



$$
\overrightarrow{r_{1}}=x_{1} \vec{i}+y_{1} \vec{j}+z_{1} \vec{k} \text { and } \overrightarrow{r_{2}}=x_{2} \vec{i}+y_{2} \vec{j}+z_{2} \vec{k}
$$

so
$\Delta \vec{r}=\overrightarrow{r_{2}}-\overrightarrow{r_{1}}=\left(x_{1}-x_{2}\right) \vec{i}+\left(y_{1}-y_{2}\right) \vec{j}+\left(z_{1}-z_{2}\right) \vec{k}$

## Average and Instantaneous Velocity Vectors

- The average velocity vector is the obvious extension of average 1-D velocity:

$$
\bar{v}=\frac{\Delta x}{\Delta t} \rightarrow \overrightarrow{\bar{v}}=\frac{\Delta \vec{r}}{\Delta t}=\frac{\overrightarrow{r_{2}}-\overrightarrow{r_{1}}}{t_{2}-t_{1}}
$$

- Note that the direction of the average velocity and displacement are identical
- As $\Delta t$ approaches zero we have the instantaneous velocity vector:

$$
\vec{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{r}}{\Delta t}=\frac{d \vec{r}}{d t}
$$


(a)

(b)

- Taking the derivative of the vector equation we see

$$
\begin{aligned}
& \vec{v}=\frac{d \vec{r}}{d t} \\
& \vec{v}=\frac{d x}{d t} \vec{i}+\frac{d y}{d t} \vec{j}+\frac{d z}{d t} \vec{k} \\
& \vec{v}=v_{x} \vec{i}+v_{y} \vec{j}+v_{z} \vec{k}
\end{aligned}
$$

## Average and Instantaneous Acceleration Vectors

- The average acc. vector is the extension of ave. 1-D acc:

$$
\bar{a}=\frac{\Delta v}{\Delta t} \rightarrow \overrightarrow{\bar{a}}=\frac{\Delta \vec{v}}{\Delta t}=\frac{\overrightarrow{v_{2}}-\overrightarrow{v_{1}}}{t_{2}-t_{1}}
$$

- As $\Delta t$ approaches zero we have the instantaneous acc. vector:
- Notice that

$$
\vec{a}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{v}}{\Delta t}=\frac{d \vec{v}}{d t}
$$

- 1) acceleration may be in a different direction than vel.
- acceleration may be due to a change of velocity magnitude, direction, or both

(a)

(b)

$$
\begin{aligned}
& \vec{a}=\frac{d \vec{v}}{d t}=\frac{d v_{x}}{d t} \vec{i}+\frac{d v_{y}}{d t} \vec{j}+\frac{d v_{z}}{d t} \vec{k} \\
& \vec{a}=a_{x} \vec{i}+a_{y} \vec{j}+a_{z} \vec{k}
\end{aligned}
$$

## Summary of Generalization

$$
\begin{aligned}
& \Delta x=x-x_{0} \rightarrow \Delta \vec{r}=\vec{r}_{2}-\vec{r}_{1} \\
& v=\frac{d x}{d t} \rightarrow \vec{v}=\frac{d \vec{r}}{d t} \\
& a=\frac{d v}{d t} \rightarrow \vec{a}=\frac{d \vec{a}}{d t}
\end{aligned}
$$

## Vector Generalization of Eq. of Motion.

- If we have a constant acceleration vector, then the equations derived for 1-D apply separately for the perpendicular directions.

$$
\begin{aligned}
& a_{x}=\text { constant }, a_{y}=\text { constant } \\
& v_{x}=v_{x 0}+a_{x} t \\
& x=x_{0}+v_{x o} t+\frac{1}{2} a_{x} t^{2} \\
& y=y_{0}+v_{y o} t+\frac{1}{2} a_{y} t^{2} \\
& v_{x}^{2}=v_{x 0}^{2}+2 a_{x}\left(x-x_{0}\right) \\
& v_{y}^{2}=v_{y 0}^{2}+2 a_{y}\left(y-y_{0}\right) \\
& \bar{v}_{x}=\frac{v_{x 0}+v_{x}}{2} \\
& \bar{v}_{y}=\frac{v_{y 0}+v_{y}}{2}
\end{aligned}
$$

- Some of these can be recast as vector equations, though the component form is more practical.

$$
\begin{aligned}
& \vec{v}=\vec{v}_{0}+\vec{a} t \\
& \vec{r}=\vec{r}_{0}+\vec{v}_{o} t+\frac{1}{2} \vec{a} t^{2}
\end{aligned}
$$

## Example: A 2D Spacecraft



- The spacecraft has an initial velocity of
$-V_{o x}=+22 \mathrm{~m} / \mathrm{s}$ and
$-\mathrm{V}_{\text {oy }}=+14 \mathrm{~m} / \mathrm{s}$
- and an acceleration of
$-a_{x}=+24 \mathrm{~m} / \mathrm{s}^{2}$ and
$-a_{y}=+12 \mathrm{~m} / \mathrm{s}^{2}$.
- The directions to the right and up have been chosen as positive components.
- After a time of 7.0 s find
- a) $x$ and $V_{x}$,
- b) $y$ and $V_{y}$, and
- c) the final velocity.
- Since the directions are independent we simply follow the 1-D drill from Chapter 2.
- x-Direction:

| Known | Unknown |
| :--- | :--- |
| $t=7.0 \mathrm{~s}$ | $\mathrm{x}=?$ |
| $\mathrm{v}_{\mathrm{ox}}=+22 \mathrm{~m} / \mathrm{s}$ | $\mathrm{v}_{\mathrm{x}}=?$ |
| $\mathrm{a}_{\mathrm{x}}=+24 \mathrm{~m} / \mathrm{s}^{2}$ |  |

- The eqs. we need:

$$
\begin{aligned}
& v_{x}=v_{x 0}+a_{x} t \\
& x=x_{0}+v_{x o} t+\frac{1}{2} a_{x} t^{2}
\end{aligned}
$$

- Substituting

$$
\begin{aligned}
& v_{x}=v_{x 0}+a_{x} t \\
& =22 \mathrm{~m} / \mathrm{s}+24 \mathrm{~m} / \mathrm{s}^{2} \times 7.0 \mathrm{~s} \\
& =+190 \mathrm{~m} / \mathrm{s} \\
& x=x_{0}+v_{x 0} t+\frac{1}{2} a_{x} t^{2} \\
& =0+22 \mathrm{~m} / \mathrm{s} \times 7.0 \mathrm{~s}+\frac{1}{2}\left(24 \mathrm{~m} / \mathrm{s}^{2}\right)(7.0 \mathrm{~s})^{2} \\
& =+740 \mathrm{~m}
\end{aligned}
$$

- $y$-Direction:

| Known | Unknown |
| :--- | :--- |
| $t=7.0 \mathrm{~s}$ | $\mathrm{y}=?$ |
| $\mathrm{v}_{\mathrm{oy}}=+14 \mathrm{~m} / \mathrm{s}$ | $\mathrm{v}_{\mathrm{y}}=?$ |
| $\mathrm{a}_{\mathrm{y}}=+12 \mathrm{~m} / \mathrm{s}^{2}$ |  |

$$
v_{y}=+98 m / s \text { and } y=+380 \quad m
$$

- The two velocity components can be combined using the Pythagorean Theorem to find the magnitude of the final velocity:

$$
V^{2}=V_{x}{ }^{2}+V_{y}^{2}=(190 \mathrm{~m} / \mathrm{s})^{2}+(98 \mathrm{~m} / \mathrm{s})^{2} \text { or } V=+210 \mathrm{~m} / \mathrm{s}
$$

(We keep only the positive solution as it's the only physical one.)

- The direction is given by

$$
\theta=\tan ^{-1}(\mathrm{Vy} / \mathrm{Vx})=\tan ^{-1}(98 \mathrm{~m} / \mathrm{s} / 190 \mathrm{~m} / \mathrm{s})=27^{\circ}
$$

- Thus, after 7.0 s the spacecraft is moving with a speed of $210 \mathrm{~m} / \mathrm{s}$ above the positive x axis. Note how we treated the two directions independently. This is a crucial point.


## Thought Experiment One:

- From the top of a cliff overlooking a lake, a person throws two stones. The stones have identical speeds $V_{0}$, but stone 1 is thrown downward at an angle $\theta$ and stone 2 is thrown upward at the same angle above the horizontal.
- Which stone, if either,
 strikes the water with greater velocity?
- My naive guess is that the downward thrown stone will have the greater velocity, actually that's not true.
- Consider the upwardly thrown stone. First it rises to its maximum height and then falls back to earth.
- When the stone returns to its initial height it has the same speed horizontal and vertical speed as when thrown. (We discussed the vertical speed symmetry in one dimensional motion.)


## Projectile Motion

- Generally: Any object moving freely through air in two dimensions near the earth's surface
- Only vertical acceleration involved, $\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2}$ downward.
- Galileo was the first to analyze projectile motion
- The two dimensions independently
- The horizontal component has no acceleration
- The vertical subject to the acceleration of gravity.


# http://webphysics.davidson.edu/course material/ py130/demo/illustration2 4.html 

## More Elements of Projectile Motion

- The key: The individual components or dimensions can be analyzed separately.
- Consider a ball moving in two dimensions: The horizontal component of the motion, which is acceleration free, is independent of the vertical component of the motion which is subject to acceleration!
- Vertical direction: Vy is zero but increases linearly with time due to g .
- Horizontal Direction: no acceleration and constant velocity

- Note in this figure a dropped ball and a thrown ball fall at the same rate and reach the ground at the same time.


## Thought Experiment Two:

- A child sits upright in a wagon which is moving to the right at constant speed. The child tosses up an apple while the wagon continues to move forward.
- Ignoring air
resistance will the apple land behind, in or in front of the wagon?
- Well we could do a full blown analysis calculating how much time the ball is in flight and how far it would carry and how far the wagon would move.
- But that's unnecessary once we realized both the ball and the wagon have the same, unchanging horizontal velocity.
- No matter how long the ball is in flight both travel the same distance during that time.
- The ball will land in the wagon.
- By the way this is why a tossed ball in your car always lands in your lap! There's no air resistance involved inside the car and you and the ball have the same constant velocity.


## Kinematic Equations for Projectile Motion ( +y up, $\mathrm{a}_{\mathrm{x}}=0, \mathrm{a}_{\mathrm{y}}=-\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$




## Finding Final Variables Given Initial Variables: A kicked football

- A football is kicked at an angle $\theta=37.0^{\circ}$ with an initial velocity of $20.0 \mathrm{~m} / \mathrm{s}$.
- What will be
- Maximum height?
- Time of travel?
- Final displacement?
- Velocity at apex?
- Acceleration at apex?
- From just the initial conditions the projectile equations provide all subsequent history of the trajectory

- Well what do we know? the initial velocity and initial position and acceleration.
$-x_{0}=0$
$-y_{0}=0$
- $\mathrm{v}_{\mathrm{xo}}=\mathrm{v}_{\mathrm{o}} \cos \theta_{\mathrm{o}}=$
$(20.0 \mathrm{~m} / \mathrm{s}) \cos 37.0^{\circ}=$ $+16.0 \mathrm{~m} / \mathrm{s}$
$-\mathrm{v}_{\mathrm{yo}}=\mathrm{v}_{\mathrm{o}} \sin \theta_{\mathrm{o}}=$ $(20.0 \mathrm{~m} / \mathrm{s}) \sin 37.0^{\circ}=$ $+12.0 \mathrm{~m} / \mathrm{s}$
- $\mathrm{a}_{\mathrm{x}}=0$
$-a_{y}=-9.8 \mathrm{~m} / \mathrm{s}$
- The first unknown quantity is the maximum height. Well, we get this by considering the $y$ dimension. You've done this before! Filling out the table:

| Known | Unknown |
| :--- | :--- |
| yo $=0$ | $\mathrm{y}=?$ |
| $\mathrm{v}_{\mathrm{oy}}=+12 \mathrm{~m} / \mathrm{s}$ |  |
| $\mathrm{v}_{\mathrm{y}}=0$ |  |
| $\mathrm{a}_{\mathrm{y}}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ |  |

- The third y-equation does the trick!

$$
\begin{aligned}
& v_{y}^{2}=v_{y 0}{ }^{2}-2 g y \rightarrow \\
& y=\frac{v_{y 0}{ }^{2}-v_{y}{ }^{2}}{2 g}=
\end{aligned}
$$

$\frac{(12.0 \mathrm{~m} / \mathrm{s})^{2}-0}{2 \times 9.8 \mathrm{~m} / \mathrm{s}^{2}}=$
$7.35 m$

- Next comes the time of travel. If we just consider the $y$ dimension we see a very familiar problem:

| Known | Unknown |
| :--- | :--- |
| yo $=0$ | $v=?$ |
| $v_{o y}=+12 \mathrm{~m} / \mathrm{s}$ | $\mathrm{t}=?$ |
| $\mathrm{y}=0$ |  |
| $\mathrm{a}_{\mathrm{y}}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ |  |

- And we use the $2^{\text {nd }} y$ equation which as shown on the right has two roots corresponding to the initial kick and to the return to earth.

$$
\begin{aligned}
& y=y_{0}+v_{y o} t-\frac{1}{2} g t^{2} \rightarrow \\
& 0=0+(12 m / s) t-\frac{1}{2}\left(9.8 m / s^{2}\right) t^{2} \rightarrow \\
& \frac{1}{2}\left(9.8 m / s^{2}\right) t^{2}=(12 m / s) t \rightarrow \\
& \frac{1}{2}\left(9.8 m / s^{2}\right) t^{2}-(12 m / s) t=0 \rightarrow \\
& \left(\frac{1}{2}\left(9.8 m / s^{2}\right) t-(12 m / s)\right) t=0 \rightarrow \\
& \left(\left(4.9 m / s^{2}\right) t-(12 m / s)\right) t=0 \rightarrow \\
& t=0 \text { and } t=2.45 s
\end{aligned}
$$

- Now that we have the time of travel we simply turn to the $x$ dimension equations to get the final displacement

$$
\begin{aligned}
& x=x_{0}+v_{x o} t \rightarrow \\
& x=0+16 . m / s \times 2.45 s \rightarrow \\
& x=39.2 \mathrm{~m}
\end{aligned}
$$

- At the apex $\mathrm{v}_{\mathrm{y}}=0$ so there is only horizontal motion so $\mathrm{v}=\mathrm{v}_{\mathrm{x}}=\mathrm{v}_{\mathrm{xo}}=+16.0 \mathrm{~m} / \mathrm{s}$
- The question at the acceleration at the apex is a trick question. Acceleration is always $-9.8 \mathrm{~m} / \mathrm{s}$ down!


## Schedule

- Projectile motion is quite rich, we'll continue to explore the consequences.
- Review Feb 7
- No class Feb 9
- Test Feb 12
- First two problem sets due Feb 12
- If you need help see me soon!

