Plasma Wakefield Acceleration

FNPL Advisory Meeting, Oct. 14-15, 2002 Nick Barov

Prepared with OpenOffice

Introduciton and Impressions from AAC2002

Plasma-related activities at FNPL

The plasma source - problems and solutions

Witness beam and beam loading

Introduction

Advantages of Plasma Wakefield Acceleration (PWFA):

- Operates in intermediate wavelength range between RF cavities and laser-driven accelerators (our case: λ =3mm)
- Blow-out of plasma electrons provides linear focusing

Impressions from AAC2002

- Two approaches for future: the afterburner and staging. afterburner-- single-pass plasma device at end of linac staging-- one work-horse linac drives many plasma stages
- Three experiments that were reported on (SLAC E-162, LANL, FNAL) are all quoting gradients around 100 MeV/m

Present and future plasma activities

- EOI's: Gennady Shvets RF-driven plasma acceleration, Matt Thompson - Density transition trapping (collaboration with UCLA, J. Rosenzweig)
- Dan Bollinger (NIU student)
- Daniel Mihalcea
- Ioannis Sideris, computer cluster at NIU
- PWFA acceleration, deceleration, witness beam and beam loading studies

Plasma experiment timeline

- 3/2000(?) Photoinjector kept from being shut down in order to finish plasma experiment
- 8/2000 Plasma installed in beamline
- 9/2000 Huge deceleration of the drive beam recorded with some electrons being nearly stopped
- 6/2001 Last advisory meeting
- 9/2001 Window failure
- 9/01-present: Rebuild and test source;

energy loss theory

Plasma chamber

Results: acceleration

6-8 nC, 10¹⁴/cc plasma, 1 mm σ_z

Results: deceleration

Window break

Ion bombardment on window will be reduced by biasing the cathode at -30 V (box has been built)

Damaged components

Improvements

Bearings allow for heat expansion

EDM procedure simplifies fabrication

Improvements II

Redesigned flange after plasma operation (not much damage)

Copper heat sink draws heat toward water cooled area

Vacuum: 5x10⁻⁸ Torr at full cathode temperature

Conclusions

Initial results are very encouraging

Reliability problems have largely been addressed

Next step: witness beam and beam loading

New experiments (Matt Thompson's talk)

Future studies: Beam Loading

The plasma wave has no 'crest', so the way to limit energy spread is through beam loading.

6.7 nC driver, 1.3 nC witness (1.1 ps σ_,)

6.7 nC driver, 170 pC witness