
Overview

- Need improved laser intensity.
- Need improved laser stability.
- Need to run laser continuously.
- Need adequate spares for laser.
- Need scheduled routine maintenance of laser.
- Need continuous monitoring and data logging of laser.
- Need motorized laser tuning for Photoinjector users.

Recent Major Laser Failures

- January 2001 to April 2001
 - o Oscillator rod face damaged
 - o Pulse Picker has low extinction ratio
 - o Multi-Pass will not lase or amplify
- May 2001
 - o Multi-Pass cavity damaged
- June 2001
 - o Q-Switch failed slow fall time
- August 2001
 - Oscillator rod face damaged
- December 2001
 - o Multi-Pass not lighting

- -LCW leak at rod
- -Pockels Cell bad
- -Cavity needs rebuilding
- -Burned rod and Q-Switch
- -Pockels Cell bad
- -Condensation from LCW
- -Simmer supply failed

FNPL Laser Performance

- March 2002
 - Cross 1 optics damaged

-Roof leak

- April 2002
 - o 2-Pass 6mm head not lighting

-Simmer wire broke

- May 2002
 - o Multi-Pass not lighting

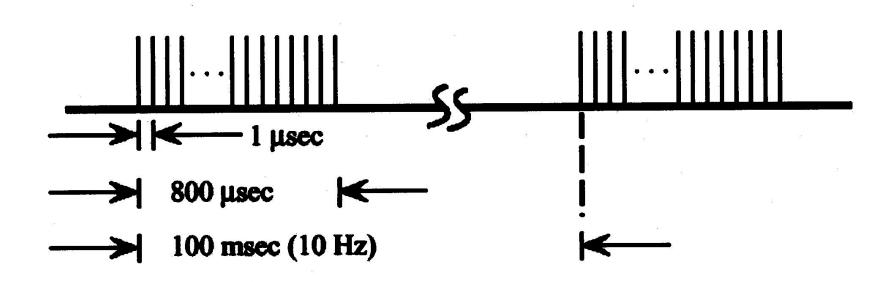
-Simmer supply failed

- June 2002
 - Oscillator Lamp not lighting

-Load cable & Broken lamp

- July 2002
 - Multi-Pass not lighting

-Simmer supply failed


- August 2002
 - o Multi-Pass PS failed

- -Burned rod and Q-Switch
- -HV power supply regulation

Short Term Laser Stability Issues

-BEAM TIMING-

- **Micro**: Pulse to pulse instability (10⁻⁶ sec).
 - Chop off first pulses in train (~ EASY)
 - o Balance amplifier outputs (EASY)
 - Implement feed back systems
 - Acquire a long memory scope (\$\$\$)
- Macro: Shot to shot instability (10⁻⁰ sec).
 - o Implement feed forward systems
 - o Reduce air currents (EASY)
- **Drift**: Room temperature fluctuations (10^{+4} sec) .
 - Lock AC compressor on (~ EASY)
 - Phase controller on electric reheat (~ EASY)
 - Omega temperature controller (~ EASY)

Laser timing.

FNPL Laser Performance

-BEAM QUALITY-

- Intensity low.
 - o Reduce optical path length
 - o Reduce optical elements
 - Increase Amplifiers power
 - Improve alignment (EASY)
- Spatial profile poor.
 - Tune higher modes out of Amplifiers
 - Need Spatial Filter after each amp stage
 - Install cameras for monitoring (EASY)
- Air currents
 - Install table tents with curtains (EASY)
 - Install air tubes (EASY)
 - o Install enclosures (EASY)
- Optics movements
 - Procure better optic mounts (EASY)
 - Stabilize room temperature (EASY)

Short Term Equipment Stability Issues

- Oscillator
 - Room temperature fluctuations
- Multi-Pass
 - Thermal lensing
 - o Internal cavity temperature fluctuations and micro air currents
- Two-Pass
 - Thermal lensing
 - Unbalanced rod sizes
 - o Air currents
- Spatial Filter
 - Up stream beam movement
- Gratings
 - Transmission efficiency
 - Air currents

FNPL Laser Performance

- Crystals
 - o Doubling efficiency low
 - Crystal temperature fluctuations
 - Poorly collimated beams
 - Third lens between crystals
- Pulse Stacker
 - Up stream beam movement
- Transport vacuum pipe
 - Transmission efficiency
 - Relay imaging of UV to Cathode
- Cathode UV spot
 - o Size
 - o Position
 - Intensity

Summary

- Need improved laser stability.
- Need improved laser stability.
- Need to run laser continuously.
- Need adequate spares for laser.
- Need scheduled routine maintenance of laser.
- Need continuous monitoring and data logging of laser.
- Need to motorize laser tuning for users.

In order to accomplish this:

- Need 3 people for a month for initial stability improvements.
- Need 75% larger laser operating budget than FY2002. (\$65K).

<u>FNPL Laser Performance</u>

Feedback scheme from paper by Ingo Will:

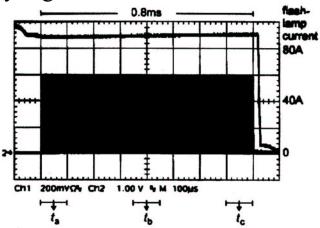


Fig. 8. Pulse train measured at the output of the laser system, when both the shot-to-shot stabilizer and the slope compensation system were active. The upper trace shows the instantaneous flashlamp current.

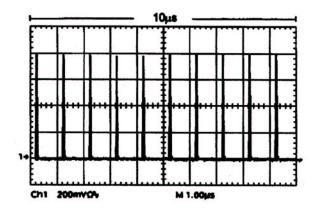


Fig. 9. Record showing the individual micropulses with a 1.0-MHz repetition rate (zoomed into Fig. 8 with increased temporal resolution).