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SUMMARY OF IDEA 
 
The dynamics of nonequilibrium beams under the influence of space charge is a 
fundamentally important concern for the production of high-brightness beams.  An 
experiment that is under consideration concerns the identification and measurement of 
fast evolutionary time scales.  The idea is to superpose a relatively localized density 
enhancement at a desired location in a beam bunch as it is formed from the cathode.  
Then, by using view foils and longitudinal diagnostics to monitor the size and location of 
this enhancement as the beam proceeds through the machine, one can hope to extract 
information on the time scale by which the enhancement mixes through the bunch.  This 
tactic would parallel an ongoing line of investigation involving simulations to illuminate 
evolutionary mechanisms in nonequilibrium beams in general, and to study the physics of 
phase mixing of initially localized density irregularities in particular. 
 
 
STATEMENT OF THE PROBLEM 
 
We adopt the viewpoint that, under the influence of space charge, the evolution of beams, 
and of confined nonneutral plasmas in general, may be understood in terms of phase 
mixing of the constituent particle orbits.  For example, linear Landau damping is merely 
phase mixing of regular orbits [1], a process by which initially neighboring orbits diverge 
secularly, i.e., as a power law in time [2].  A given space-charge potential may or may not 
support a population of globally chaotic orbits, i.e., orbits that wander over a large 
portion of their accessible phase space.  Initially neighboring globally chaotic orbits fill 
their accessible phase space exponentially, a process known as "chaotic mixing" that was 
initially conceived in the astrophysical context of galactic dynamics [3,4].  When a 
substantial population of globally chaotic orbits exists, it dissipates correlations 
irreversibly.  In beams the consequence is an irreversible emittance growth.  Inasmuch as 
chaotic mixing is irreversible and acts exponentially, it is essential to identify conditions 
for its presence in beams, and to quantify the time scale of the associated dynamics. 
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A semianalytic theory exists that relies on assumptions of ergodicity and a 
microcanonical distribution to estimate the largest Lyapunov exponents, i.e., the chaotic-
mixing rates, in lower-dimensional, e.g., fully coarse-grained, time-independent 
Hamiltonian systems [5].  Chaos arises generically from a parametric instability that can 
be modeled by a stochastic-oscillator equation; linearized perturbations of a chaotic orbit 
satisfy a harmonic-oscillator equation with a randomly varying frequency.  The 
underlying assumptions are, strictly speaking, invalid, yet the theory commonly yields 
estimates that are good to within a factor ~2 [6]. 
 
Applied to space-charge potentials, the theory yields an estimate of the chaotic-mixing 
rate  as [5]: 
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frequency at the system’s centroid, respectively,  is the density normalized to the 
centroid density, and "〈q〉" denotes a phase-space average of quantity q weighted by the 
microcanonical ensemble.  In a system that is moderately out of equilibrium, one would 
expect to have  ~ 1 typically, for which /f ~ 0.82, with f �
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"dynamical frequency", i.e., the average orbital frequency.  Thus, in such systems, the 
chaotic-mixing time scale is roughly one dynamical time.  Thus, for one to be reasonably 
sure of its efficacy, a process of emittance compensation, i.e., removal of correlations 
within the beam, should be completed within a plasma period as measured from the 
source of the correlations.  
 
Results thus far suggest the notion that chaotic orbits are common in space-charge 
configurations that are out of equilibrium, and they are present in both nonequilibrium 
and equilibrium configurations to a degree that tends to increase with increasing 
asymmetry.  One example, taken from Ref. [7] and corresponding to a time-independent 
potential, appears in Fig. 1, which plots the rate of mixing of chaotic orbits versus the 
individual particle energy in a space-charge-dominated thermal-equilibrium potential 
corresponding to a harmonic-oscillator external focusing potential.  The mixing rate is 
normalized to the orbital frequency, indicating that for this configuration mixing proceeds 
over an e-folding time comparable to an orbital period. 
 
A second example is the well-known accelerator-physics experiment of Martin Reiser 
and collaborators [8] concerning the propagation of five beamlets in a 5-m-long periodic 
solenoidal transport channel.  The beam is nonrelativistic and subject to considerable 
space-charge forces. The relaxation time via two-body collisions in this beam 
corresponds to a propagation distance ~1 km.  Yet, regardless how well the beam was 
root-mean-square (rms) matched to the transport channel, the beamlets were seen to 
reappear only once, at a point ~1 m from the source.  Their failure to reappear again 
would seem to reflect a collisionless process that, in effect, causes the particle orbits to 
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lose memory of their initial conditions.  Simulations with a particle-in-cell code well 
reproduced the measurements.  This is an example of evolution involving a strongly time-
dependent potential. 
 
A simulation of phase mixing in the 5-beamlet experiment recently done by Rami Kishek 
(University of Maryland) is depicted in Fig. 2 [7].  One sees that typical ensembles that 
are initially localized in phase space grow exponentially to fill much of their respective 
accessible regions of phase space.  Meanwhile the five beamlets lose their identity.  Plans 
for simulations include further explorations, especially in connection with designing 
laboratory experiments to decipher rapid evolutionary time scales in nonequilibrium 
beams, such as the experiment discussed herein. 
 
 
PROCEDURAL PLAN 
 
One can assess the influence of space charge on the photoinjector beam by comparing the 
Debye length to the full beam width: 

Figure 1.  Mixing rate of chaotic orbits in a thermal-equilibrium potential of 
dimensionless form (x) = ( 2/2)[(a/b)2x2+y2+(c/b)2z2] + sc(x), in which 2 = 1.0002/3, 
(a/b)2 = 4/5, (c/b)2 = 4/3, and sc(x) is the space-charge potential found from Poisson’s 
equation.  The simulation results reflect statistics from ~2000-particle samplings of orbits 
that were started at various locations in configuration space and at zero velocity.  They 
agree well with analytic theory. 
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This expression is obtained by using the properties of a beam bunch corresponding to its 
"equivalent uniform ellipsoid" [7,8]; IA is the Alfven current (17 kA), c is the speed of 
light, γ is the beam kinetic energy in units of the electron rest mass, q is the bunch charge, 
σx and σz are the rme transverse and longitudinal sizes of the beam bunch, and εx is the 
rms transverse emittance.  Space charge is important if this ratio is less than unity.  Using 
representative parameters for the photoinjector beam, i.e., γ ~ 30, q ~ 1 nC, σx ~ 1 mm, σz 
~ 3 mm, and εx ~ 3 µm, one finds the Debye length is ~ 0.15 of the full beam width, 
indicating that space charge remains active downstream of the 9-cell booster cavity. 
 
The total potential that drives the beam dynamics is strongly time-dependent in the beam 
frame, and it is difficult to ascribe an “equilibrium configuration” to this beam.  
Nonetheless, inasmuch as space charge is active, the plasma period enters as a dynamical 
time scale.  An estimate of the plasma period derives by first using Ref. [11] to relate the 
plasma period (measured in the lab frame) to the beam perveance, and then using Table 1 

 

 

Generally clear exponential 
growth, indicating chaotic  

mixing is active. 

Figure 2: Evolution of five representative ensembles of test particles in the five-beamlet 
simulation.  Beam parameters are: 5 keV energy, 44 mA current, 4.6 mm radius, and 64.8 

P�IXOO�������HPLWWDQFH���7KH�OHIW�SDQHO�VKRZV�VQDSVKRWV�DW��WRS-to-bottom left column) 0 
m, 0.98 m, 2.88 m and (top-to-bottom right column) 5.24 m, 11.52 m, 31.68 m.  The right 
panel shows the evolution of the natural logarithm of the x and y "emittance" moments of the 
ensembles.  
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of Ref. [12], a paper that concerns configurations of thermal equilibrium for beams as 
functions of space charge, to relate the perveance to σx and εx.  Upon doing so, one finds 
that a (correspondingly crude) estimate of the length of FNPL beamline spanning one 
plasma period is ~ 4σx

2/εx, or ~1 m.  Accordingly, evolution associated with rapid space-
charge-induced phase mixing would seem to be accessible for observation with FNPL.  
 
A key to the experiment is the purposeful formation of a density enhancement at a select 
location in a beam bunch as the bunch is formed at the cathode.  The essential idea is to 
implement a delay line, as pictured in Fig. 3, to superpose a localized spatio-temporal 
laser pulse onto the main laser pulse during formation of the beam bunch at the 
photocathode.  Perfecting this technique of “pulse stacking” is a prerequisite for these 
experiments, and doing so is a nontrivial matter.  Yang Xi, a laser/optics specialist, will 
be a key contributor to the success of this experiment. 

 

 
Another key to the experiment is adequate control of both the longitudinal and transverse 
laser-pulse profile [13].  For example, to do the control experiment, one needs to produce 
a stable pulse with a smooth profile, i.e., one that is free of hot spots.  This may be 
challenging with the existing system. 
 
One possibility for producing the density enhancement is to use the existing laser-beam 
optics so that "intensified spot" is unstacked and the main beam goes through the existing  
4-way pulse stacker, so the FWHM of the intensified spot is 4 times  
shorter than the main beam.  Makng a longitudinally uniform pulse-stacked beam has 
thus far proven challenging and has met with limited success.  Accordingly, the 
successful conduct of a phase-mixing experiment using the photoinjector hinges on 
improving the control and stability of the drive laser itself, and on perfecting the pulse-
stacking procedure. 
 
Another possibility for producing the intensified spot is to use a separate telescope rather 
than use the mask.  The advantage would be preservation of intensity because scraping 
would be avoided. 
 
The FNPL photoinjector is equipped with an array of viewers both at low energy (i.e., at 
the exit of the electron gun) and at high energy (i.e., at the exit of the 9-cell booster 

Figure 3.  Using time delay to produce a density enhancement in a beam bunch.   
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cavity).  With these viewers the transverse evolution of the beam, and of the density 
enhancement, can in principle be monitored.  One uncertainty is the signal-to-noise ratio 
of the viewers, which will become especially critical as the density enhancement mixes 
away.  Work to improve this signal-to-noise ratio may prove necessary. 
 
Monitoring the longitudinal density distribution requires different instrumentation.  A 
streak camera is available and can be used to measure the temporal properties of the laser 
pulse and the longitudinal distribution of the beam at one location downstream of the 9-
cell cavity.  Interferometric and electro-optic diagnostics, discussed under a separate EOI 
[14], would yield better spatio-temporal resolution of the beam properties. 
 
Ideally, the intensified spot would be localized within the bunch and be sufficiently small 
to constitute a collection of test particles.  In practice this clearly will not be possible, and 
the evolution of the density enhancement will proceed according to self-consistent phase 
mixing in general.  Accordingly, simulations will be necessary to interpret the 
experimental results.  The force acting on a particle as a function of position and time can 
be generated with a suitable injector simulation code, such as ASTRA, a code developed 
by Klaus Floettmen of DESYwhich is used routinely to model the performance of the 
photoinjector.  Given the force tabulation, Ioannis Sideris has on hand all the necessary 
tools for simulating phase mixing of particle orbits, from which evolutionary time scales 
can be inferred.  Accordingly, this EOI offers the prospect of a self-contained research 
effort. 
 
The essential goal is a fundamentally correct, microscopic understanding of the dynamics 
of nonequilibrium beams.  Work done to date suggests the underlying physics is 
generally applicable to self-interacting many-body systems governed by a long-range 
force, such as self-gravitating systems.  Accordingly, in that it is an analog of the 
dynamics of galaxies that are far from equilibrium, the outlined effort comprises a form 
of laboratory astrophysics. 
 
 
ESTIMATED RESOURCE REQUIREMENTS 
 
Optics for delay line: 5 k$ (firmer estimate TBD) 
Time to set up the delay line: 140 hours (160 person-hours) 
Beam time: 480 hours (12 weeks of single-shift operation) 
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