Angular momentum dominated electron beam and flat beam generation

yinesun@uchicago.edu
outline

• angular momentum dominated electron beam and its applications

• production and measurements of angular momentum dominated beam

• removal of the angular momentum and generation of flat beam:
 – a bit of theory
 – measurement method
 – data analysis and recent results
 – comparison with simulations

• conclusion
beam dynamics: three different regimes

emittance

canonical angular momentum

space charge

envelope equation in a drift:

$$\sigma'' + \frac{\varepsilon^2}{\sigma^3} - \frac{L^2}{\sigma^3} - \frac{K}{4\sigma} = 0$$

where

$$K = \frac{2I}{I_0 \beta^3 \gamma^3}.$$
Applications of angular momentum dominated beam

• electron cooling for heavy ion

\[
\tau_{mag}^c \approx \frac{\rho}{(v_{z}^\text{ion} - v_{z}^e)}
\]

\[
\tau_{free}^c \approx \frac{\rho}{v_{e}^\perp}
\]

• flat beam for linear e^+e^- collider:
 reduce beamstrahlung

luminosity $\propto \frac{1}{\sigma_x \sigma_y}$

$\delta_E \propto \frac{1}{(\sigma_x + \sigma_y)^2}$

e.g. TESLA 500GeV 10/0.03 mm mrad for 3 nC
Applications of angular momentum dominated beam

- **flat beam for light sources**
 - Linac based ultra-short X-ray pulse (LBNL)
 \[\Delta l = \Delta y \frac{2 \sin \theta \sin \alpha}{\sin(\theta + \alpha)} \]
 - Smith-Purcell radiator or image charge undulator

U of Chicago, Dartmouth U.

JLab.
Generation of angular momentum dominated e beam

\[L = \gamma mr^2 \dot{\Phi} + \frac{1}{2} eB_z r^2 \]

On the photocathode: \(\langle L \rangle = eB_0 \sigma_c^2 \)

\(B_z = 0 \): mechanical angular momentum

FNPL 1.625-cell RF gun, 1.3 GHz
Fermilab/NICADD Photoinjector Lab. (FNPL)

- RF gun
- TESLA superconducting cavity
- 4 MeV
- 16 MeV
- Round-to-flat
- Beam transformer
- (skew quadrupoles)
Measurement of canonical angular momentum on the photocathode

\[\langle L \rangle = eB_0 \sigma_c^2 \]

- \(B_0 \): B-field on cathode
- \(s_c \): RMS beam size on cathode
Measurement of mechanical angular momentum in a drift space

\[\langle L \rangle = 2 p_z \frac{\sigma_1 \sigma_2 \sin \theta}{D} \]
Measurement of mechanical angular momentum vs B-field

RMS beam size at $z_1 = 3.678$ m

RMS beam size at $z_2 = 5.053$ m

Magnetic field on cathode [Gauss]

Angle θ

Magnetic field on cathode [Gauss]
Demonstration of conservation of canonical angular momentum as a function of magnetic field on cathode

\[\langle L \rangle = 2 p_z \sigma_1 \sigma_2 \sin \theta / D \ (\text{neV s}) \]

\[\langle L \rangle = e B_0 \sigma_c^2 \ (\text{neV s}) \]

\(\sigma_c = 0.97 \pm 0.04 \text{ mm} \)

experiment
Parametric dependencies of angular momentum

- Angular momentum versus
 - beam longitudinal position z
 - bunch charge
 - beam size on the cathode

\[\langle L \rangle = eB_0 \sigma_c^2 \]

$B_z = 962 \text{ G}$

$\sigma_c = 0.90 \pm 0.04 \text{ mm}$

$B_z = 683 \text{ G}$

$\sigma_c = 0.82 \pm 0.05 \text{ mm}$
Round-to-flat beam transformation

\[\Sigma_{\text{round}} = \begin{bmatrix} \varepsilon_{\text{eff}} \beta & 0 & 0 & L \\ 0 & \varepsilon_{\text{eff}} / \beta & -L & 0 \\ 0 & -L & \varepsilon_{\text{eff}} \beta & 0 \\ L & 0 & 0 & \varepsilon_{\text{eff}} / \beta \end{bmatrix} \]

General form of a round beam
(K.-J. Kim)

\[e_{\text{eff}} = \sqrt{\varepsilon_u^2 + L^2} \]

Un-correlated emittance
“normalized” canonical angular momentum

Transfer matrix
of the round-to-flat beam transformer

\[\Sigma_{\text{flat}} = M \Sigma_{\text{round}} \tilde{M} \]

Flat beam emittances given by:

\[\varepsilon_{\pm} = \sqrt{\varepsilon_u^2 + L^2} \pm L \]

e.g. \(L=20 \text{ mm mrad}, e_u=1 \text{ mm mrad} \)
\(e_+=47 \text{ mm mrad}; e_-=0.02 \text{ mm mrad} \)
Round-to-flat beam transformation using skew quadrupoles

Flat beam: large transverse emittance ratio, zero average angular momentum.

\[
\langle \tau \rangle_{\text{total}} = 2 \cdot \sum q_i \langle x_i, y_i \rangle
\]

Two sets of solutions:

\[
q_1 = \pm \sqrt{\frac{-d_2 S_{11} + S_{12} - d_2 d_T S_{21} + d_T S_{22}}{d_2 d_T S_{12}}}
\]

\[
q_2 = -\frac{S_{12} + d_T S_{22}}{d_2 d_3 (1 + S_{12} q_1)}
\]

\[
q_3 = -\frac{q_1 + q_2 + d_2 S_{11} q_1 q_2 + S_{21}}{1 + (d_T q_1 + d_3 q_2) S_{11} + d_2 d_3 q_2 (S_{21} + q_1)}
\]

(D. Edwards)
Position and velocity snap shots at the entrance/exit of the transformer

Round beam

flat beam
Beam evolution through the transformer for the first solution

Right before 1st quad

Right before 2nd Quad

Right before 3rd quad

Right after 1st quad

Right after 2nd Quad

Right after 3rd quad
Removing of angular momentum and generating a flat beam
single slit emittance measurement method

Blue: flat beam at X7; green: H or V slit inserted at X7; red: slit image at X8.

0.6 mm

6 mm
Recent flat beam experiment 1

Data of Jan. 6, 2005
Solenoid setting: main=190A, buck=0A, secondary=75A
UV drive-laser rms size = 0.76 mm, rms pulse length = 3 ps
beam energy = 15.8 MeV bunch charge = 0.50 ± 0.05 nC
Data analysis: RMS beam size calculation

1. Choose area of interest

 ![Area of Interest Diagram]

2. Decide the background level

 ![Intensity Graph]
Data analysis: RMS beam size calculation

1. area of interest

![Graph showing the relationship between the number of pixels used for rms calculation and the rms beam size.]
Data analysis: RMS beam size calculation

2. background level

![Graph showing RMS beam size calculation](image)

- Red line: using average background level
- Rising background level

Number of pixels used vs. \(\sigma_x \) (pixel)
Compare experiment 1 with simulation

<table>
<thead>
<tr>
<th></th>
<th>Experiment</th>
<th>Simulation (ASTRA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90%</td>
<td>95%</td>
</tr>
<tr>
<td>rms_cathode (mm)</td>
<td>0.71±0.05</td>
<td>0.76±0.06</td>
</tr>
<tr>
<td>B_cathode (Gauss)</td>
<td>876</td>
<td></td>
</tr>
<tr>
<td>I_Quad1 (A)</td>
<td>-1.92</td>
<td></td>
</tr>
<tr>
<td>I_Quad2 (A)</td>
<td>2.40</td>
<td></td>
</tr>
<tr>
<td>I_Quad3 (A)</td>
<td>-2.99</td>
<td></td>
</tr>
<tr>
<td>rms_X7y (mm)</td>
<td>0.59±0.03</td>
<td>0.63±0.04</td>
</tr>
<tr>
<td>rms_X7x (mm)</td>
<td>0.077±0.005</td>
<td>0.087±0.006</td>
</tr>
<tr>
<td>rms_X8_hslit (mm)</td>
<td>1.15±0.02</td>
<td>1.24±0.02</td>
</tr>
<tr>
<td>rms_X8_vslit (mm)</td>
<td>0.12±0.01</td>
<td>0.13±0.01</td>
</tr>
<tr>
<td>emitx (mm mrad)</td>
<td>0.36±0.04</td>
<td>0.45±0.06</td>
</tr>
<tr>
<td>emity (mm mrad)</td>
<td>26±2</td>
<td>30±2</td>
</tr>
<tr>
<td>emit ratio</td>
<td>73±10</td>
<td>68±10</td>
</tr>
<tr>
<td>(emitx· emity)^0.5</td>
<td>3.1</td>
<td>3.7</td>
</tr>
</tbody>
</table>
ASTRA Simulation with 01/06/2005 experiment conditions

emit. ratio ϵ

ϵ_x (mm mrad)

ϵ_y (mm mrad)

z (m)

0.18 mm mrad

30 mm mrad

165
Recent flat beam experiment 2

Data of Feb. 25, 2005
Solenoid setting: main=195A, buck=0A, secondary=75A
UV drive-laser rms size = 0.97 mm, rms pulse length = 3 ps (?)
beam energy = 15.86 MeV bunch charge = 0.51 ± 0.17 nC
Compare experiment 2 with simulation

<table>
<thead>
<tr>
<th></th>
<th>Experiment</th>
<th>Simulation (ASTRA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90%</td>
<td>95%</td>
</tr>
<tr>
<td>rms_cathode (mm)</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>B_cathode (Gauss)</td>
<td>898</td>
<td>898</td>
</tr>
<tr>
<td>I_Quad1 (A)</td>
<td>-1.97</td>
<td>-1.98</td>
</tr>
<tr>
<td>I_Quad2 (A)</td>
<td>2.56</td>
<td>2.58</td>
</tr>
<tr>
<td>I_Quad3 (A)</td>
<td>-4.55</td>
<td>-5.08</td>
</tr>
<tr>
<td>rms_X7y (mm)</td>
<td>0.58±0.01</td>
<td>0.63±0.01</td>
</tr>
<tr>
<td>rms_X7x (mm)</td>
<td>0.084±0.001</td>
<td>0.095±0.001</td>
</tr>
<tr>
<td>rms_X8_hslit (mm)</td>
<td>1.57±0.01</td>
<td>1.68±0.01</td>
</tr>
<tr>
<td>rms_X8_vslit (mm)</td>
<td>0.12±0.01</td>
<td>0.13±0.01</td>
</tr>
<tr>
<td>emitx (mm mrad)</td>
<td>0.39±0.02</td>
<td>0.49±0.02</td>
</tr>
<tr>
<td>emity (mm mrad)</td>
<td>35.2±0.5</td>
<td>41.0±0.5</td>
</tr>
<tr>
<td>emit ratio</td>
<td>90±5</td>
<td>83±4</td>
</tr>
<tr>
<td>(emitx· emity)^0.5</td>
<td>3.7</td>
<td>4.5</td>
</tr>
</tbody>
</table>
conclusion

• A series of experimental investigation of angular momentum dominated electron beam was carried out;

• Simulations show that an emittance ratio >100 is possible when the chromatic effect and space charge are taking into account.

• Recent flat beam emittance measurements are very encouraging
 – at 0.5 nC, normalized emittance of \(0.4 \sim 0.5\) \(\text{mm mrad}\) was measured (LUX design value but at 1nC);
 – emittance ratio of \(70 \sim 90\) was achieved;
 – ideas and simulations of further improving the emittance ratio is underway.

• However as beam size approaches to 10’s of \(\mu\)m, dispersion and camera resolution come to play.

• laser pulse length and temporal profile
acknowledgements

Contributors to the work presented here:

Guidance and leadership
Helen Edwards, Don Edwards, Kwang-je Kim, Philippe Piot

Laser work:
Jianliang Li, Rodion Tikhoplav, Jamie Santucci, Nick Barov

Cryogenics and vacuum:
Wade Muranyi, Brian Degraff, Mike Heinz, Rocky Rauchmiller

RF:
Markus huening, Peter Prieto, Renee Padilla, John Reid

Software:
Jason Wennerberg

Discussions:
Court Bohn, Klaus Flöttmann
Chromatic effects

\[q_0(1 - \delta + \delta^2), \quad \text{transfer matrix?} \quad M(q_1, q_2, q_3, d_2, d_3) \approx M_0 + \delta \Delta_1 + \delta^2 \Delta_2, \]

\[\varepsilon_{x,y} = \sqrt{\left(\varepsilon_{eff} + \mathcal{L}\right)^2 + \langle \delta^2 \rangle^2 \left[|\Delta_{11} \text{ or } 22| + (\varepsilon_{eff} + \mathcal{L})^2 \text{Tr}(T\Delta_{11}^\dagger \text{ or } 22) \right]}. \]

thermal emittance = 1 mm mrad.

space charge force is turned off.
RF asymmetry caused by gun RF coupler kick

- Accelerating mode center is shifted
- Time-dependent dipole kick
- Vertical emittance growth

(Khabiboulline)

1 mm
Quadrupole alignment: rotation and displacement around each axis