Mechanical Considerations in the Outer Tracker and VXD

Bill Cooper
Fermilab
Overview

• I’ll describe developments since the SLAC workshop in mechanical design efforts at Fermilab related to SiD tracking.
 – I’ll start with a brief suggestion of details relevant to the design of the outer tracker.
 – The remainder of the talk will raise questions and address a few issues which might influence the overall VXD design.
 – All of this represents work in process.

• I won’t cover efforts which have been described very well in other talks.
 – Structure of tracker modules
 – Baseline tracker and SiD geometry
 – Simulation studies
Layout of Outer Tracker Barrels with a Single Type of Module

- The layout shows one way in which modules in boxes could be arranged to provide overlap between all adjoining sensors.
 - It assumes single-sensor modules.
 - It retains the assumption of 5 barrels with axially aligned sensors, but it could be modified to accommodate other choices.
 - Modules are staggered in Z (different radii) and have pinwheel overlap in Phi.
 - There may be other arrangements which would work at least as well.
Layout of Outer Tracker Barrels with a Single Type of Module

Sensors:
Cut dim's: 104.44 W x 84 L
Active dim's: 102.4 W x 81.96 L
Boxes:
Outer dim's: 107.44 W x 87 L x 4 H
Support cylinders:
OR: 213.5, 462.5, 700, 935, 1170
Number of phi: 15, 30, 45, 60, 75
Central tilt angle: 10 degrees
Sensor phi overlap (mm):
Barrel 1: 5.3
Barrel 2: 0.57
Barrel 3: 0.40
Barrel 4: 0.55
Barrel 5: 0.63
Cyan and magenta sensors and boxes are assumed to be at different Z's and to overlap in Z.
Within a given barrel, cyan sensors overlap in phi as do magenta sensors.
Layout of Outer Tracker Barrels with a Single Type of Module

• Both barrels and modules have somewhat different geometry from simulation.
 – Different barrel radii
 • Partly a result of integer arithmetic in Phi
 • Partly in recognition of inner and outer boundaries
 – 4 mm high module boxes
 • Higher boxes did not seem to provide sensible sensor-sensor overlaps and the desired tilt angle while allowing a single type of sensor.

• Module and sensor dimensions and overlaps between sensors are realistic.
 – Sensor length was chosen to be consistent with 6” wafer technology.
 – Overlaps are greater than 0.4 mm.
Layout of Outer Tracker Barrels with a Single Type of Module

• A possible concern which should receive attention:
 – Precision of angular alignment of modules for stand-alone tracking (that is, with limited information regarding the Z-position of a hit)
 – The issue is how precisely a sensor can be placed rather than how well its position can be known.
 – Poor angular alignment degrades resolution in the absence of Z-information.
March 2005 Concept of an Open Tracker
Overall Design Questions

• How are cables and services supported as the end-caps are opened and closed?
• What are the outer tracker support details which allow it to be moved longitudinally?
• How accurately are the quads positioned and how stably are they supported?
Vertex Chamber Questions

• What is the detailed geometry of the beam pipe?
 – What wall thickness as a function of Z is needed to avoid collapse under vacuum?
 – What wall thickness is needed to address misalignments which occur as the end-caps are opened and closed?

• Forward disks
 – How are the “forward disks” supported?
 – What dimensions should they have?

• What sets alignment of the vertex chamber and forward disks with respect to the outer tracker?
Vertex Chamber Questions

• What is the baseline operating temperature?
 – Does a sandwich construction for “ladders” ensure adequate control of thermal bowing?
 • What foam should be used in the sandwich?
 – How do we deal with thermal contraction of cables and readout fibers?
 • Anchoring cables and fibers impacts the design of end plates to support the ladders.
 – How is dry gas for cooling distributed?
 – What is the heat leak from surrounding structures?

• What is the power dissipation of the readout?
• How do we ensure that dry gas flow will not cause excessive vibration?
 – Heat leak, readout power dissipation, and the required uniformity of temperature determine the required gas flow rate.
Beam Tube

• For guidance, I’ve assumed an all beryllium, thin-walled beam tube and made standard Rourke and Young collapse calculations.
• The wall thickness to avoid collapse under 30 psid external pressure (a reasonable requirement for vacuum design) is shown below.
• $R = 12 \text{ mm} \rightarrow t = 0.165 \text{ mm}$ (a familiar number)

R varies linearly with t
Beam Tube

- For a cone angle with \(\frac{dR}{dZ} = \frac{17}{351} \) starting at \((R,Z) = (12 \text{ mm}, 62.5 \text{ mm})\), the wall thickness to address vacuum is shown below. For SS, the wall thickness would increase by a factor of 1.145.
Beam Tube Joints

- Brush-Wellman Electrofusion developed a proprietary electron beam brazing technique for beryllium to beryllium joints. The braze material is thought to be aluminum.
- Joint concept for 1.16” OD (14.7 mm OR) DZero beam pipe:

- Similar concept for ILC:
Beam Tube Deflection (Preliminary)

- Wall thickness has been taken to be the minimum to avoid collapse.
 - We might learn later that that isn’t make sufficient.
- Weight of a 10 m (conservatively long) beam tube ≈ 34.7 Kg.
- Simple support from ends doesn’t work.
- Stresses and deflections are unacceptable: 436 KSI and 590 mm.
Beam Tube Deflection (Preliminary)

- Deflection of the same beryllium beam tube under its own weight with the ends held aligned
- Deflections and stresses are negligible.
Beam Tube Deflection (Preliminary)

- With ends reasonably guided, beam tube stresses are OK.
- Maximum stress ≈ 2.9 KSI for a parallel offset of 1 mm.
- Braze joint stresses will need to be examined.
Beam Tube Deflection (Preliminary)

- Deflection with additional symmetric loads of 250 grams at $Z = \pm 900$ mm and beam tube ends aligned.
- Additional deflection from the 250 gram loads is negligible.
Concept of Inner Tracker (VXD) Support

- The previously discussed VXD plus disks beyond each end of it are supported within an insulating, double-walled cylinder.
- Note that an obsolete outer tracker geometry is shown.
Concept of Inner Tracker (VXD) Support

- The cylinder bears on the beam tube at \(Z = \pm 880 \text{ mm} \) and \(Z = \pm 200 \text{ mm} \).
- In addition to supporting detector elements, the cylinder aids in keeping the beam tube straight.
Concept of Inner Tracker (VXD) Support

- Beam tube deflection calculations remain to be completed.
- Note that:
 - Cables can be dressed along the beam tube but need to avoid one disk.
 - “Forward disks” are in a thermal enclosure
 - Some space along the beam tube is available for readout.
Concept of Inner Tracker (VXD) Support

- An additional cylinder is shown to aid in VXD support.
 - We may not need it.
 - We should be able to match longitudinal thermal contraction of a carbon fiber cylinder to that of silicon.
 - Leaf spring fingers in end membranes of the cylinder can provide longitudinal compliance.
Concept of Inner Tracker (VXD) Support

- We will need to look at the joint details between central and conical beam pipe sections carefully to allow space for the first disk.
- Barrel and disk support details have not been addressed yet.
Thermal Bowing of VXD “Ladders”

- Simple two-dimensional model for ladders with length >> width
- Takes into account elastic moduli and cross-sections but ignores the stiffnesses of an individual components
- Assumes silicon – epoxy – carbon foam – epoxy – silicon sandwich and examines the effects of non-equal epoxy layer thicknesses

![Graph showing thermal bowing as a function of delta T in a 250 mm long silicon-epoxy-CF foam-epoxy-silicon sandwich with one epoxy layer thickness fixed at 0.025 mm.](image-url)
Thermal Bowing of VXD “Ladders”

- Effects of ladder length and temperature for epoxy thicknesses of 0.035 mm and 0.025 mm
In Summary

• We have begun to accumulate a shopping list of questions to be answered.
• Some issues have been partially addressed; others, such as cabling, have not been (yet).
• Proceeding with the mechanical design may suggest answers to many of the questions.