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First, Sources and Recommendations

• Recommended Literature:

– RF Linear Accelerators – T. Wangler

• RF and Beam Optics for Linear Machines

• Extensive history with NC structures at Los Alamos

– RF Superconductivity for Accelerators – H. Padamsee

• Formative figure in Superconducting RF

• Lots of SRF theory and application, including cavity processing 

and limitations

– Microwave Electronics – J.C. Slater

• Head of the MIT Rad Lab and Bell Laboratories (!)

• Difficult to find, but outstandingly written and understandable

– Microwave Engineering – D.M. Pozar

• Common text for general microwave engineering classes
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RF Lectures Overview

• My goal is to give you a basic introduction to RF systems

• The class should introduce you to:

– EM Theory (Analytical calculations, scaling, derivations)

– Practical Concerns (Implementation, design, and limitations)

– Maxwell Equations, Helmholtz Equations

– Standard Transmission Line/Cavity Geometries

– Figures of Merit and Optimization

• Some Real Design Considerations

– Practical Concerns and Implications (fabrication, cleaning, etc.)

– Many Examples of RF structures in use today
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Quick Introduction
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Rutherford’s Desire

• Ernest Rutherford’s discovery of the structure of 

the nucleus in 1909 opened new fields of 

experimentation

– Nuclear Physics

– Eventually, High Energy Physics, Light 

Sources, etc.

• These fields (and eventually others) require 

particle “accelerators”

– Rutherford expressed a long-standing

“ambition to have available for study a copious

supply of atoms and electrons which have 

individual energy far transcending that of the

alpha and beta particles” available from natural

sources.

– This desire has lead to a century of 

accelerator physics research
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High Energy Particles

• What does the science want?

– More Energy!

• Different science available

– Controllable/Tunable Energy!

• Dynamic behavior studies

• Fine structure investigations like 

resonances

– More Intensity!

• Take data faster

• Study rare processes

– Rare isotopes

– Neutrinos

– Rare particle decays

– Variety of Particle Beams!

• The ability to create and use 

beams of any element/isotopes
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• What do they REALLY want?

Wall power

Desired Beam
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What force to use?

• Strong

• Weak

• Electromagnetic

• Gravity
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• Radioactive decay

– Limited Natural Sources (some 

artificial sources, not much better)

– Limited Intensity

– Very specific energies

– Limited set of available beams

• Extremely weak

– Using the Sun’s gravity well, you could 

get a proton up to ~22 MeV

– No comments on the practicality

• Electric Fields!

– Magnetic fields can’t do work

Δ𝐸 = 𝐹 ⋅ Δ𝑥 = 𝑞 Ԧ𝑣 × 𝐵 ⋅ Ԧ𝑣Δ𝑡 = 0



Most Simple Accelerator

• We don’t want Magnetic 

Fields

– Steering should be left to 

the magnets (most of the 

time), we’re just talking 

about energy gain

– If you assume B = 0, then 

we only get static electric 

fields

– We want only longitudinal 

electric fields, strong in the 

desired direction
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Static Electric Fields

• Electrostatic Accelerators

– Limited energy gain (60 MeV/q)

– Can accelerate DC beams (used 

often for particle sources)

• Tandem Accelerators

– By changing the particle charge from 

negative to positive, twice the energy 

can be achieved (limited current)

J. Holzbauer | Introduction to RF - Lecture 19

//upload.wikimedia.org/wikipedia/en/4/4c/Cockcroft_Walton_Voltage_multiplier.png


The Benefits of RF Fields
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Wideroe Drift Tube Linac

• First RF accelerator conceived 

and demonstrated by Wideroe

in 1927 in Aachen, Germany

• RF voltage of 25 kV from 1 MHz 

oscillator was applied to single 

electrode between two ground 

planes

• Accelerated potassium ions to 

50 keV, two gaps for twice the 

voltage

• Sloan and Lawrence built one of 

these style linacs with 30 

electrodes, applying 42 kV to 

get mercury ions up to 1.36 

MeV
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Wideroe’s Device (from his thesis)



How do we create V(t)?

• What do we need?

– Correct Frequency

– Accelerating fields that are 

easy to access

– “Clean” accelerating field 

distribution

– Reasonable mechanical 

properties

– Efficiency energy storage

• Coaxial Waveguide Modes!

• Cylindrical Waveguide Modes!

– Everything else is just 

topological adjustments of 

these
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How are these cavities judged?

• R/Q

– Measure efficiency of transferring 

energy to the beam
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• Geometry Factor

– Measure of efficiency of energy 

storage in the cavity

Charge

Maximum 

Accelerating 

Voltage

Transit Time 

Factor

Longitudinal 

Focusing Term



Other Design Considerations

• Mechanical Issues

– In operation, a cavity is exposed to 

many different pressures that deform 

their shape

– How this deformation changes the 

cavity frequency and performance 

must be well understood
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• Higher Order Modes

– As the beam passes through the 

cavity, it can excite ALL cavity modes

– Strong beam asymmetry or offset 

increases the strength of this coupling

– These modes must be strongly 

damped or they can cause emittance 

growth or beam breakup… in some 

cases



Cavity Design for Different Accelerators

• Synchrotrons (Ring Machines)

– The beam sees the cavity MANY times, 

low gradient is typical

– Field must be very clean and stable

– Very heavy higher order mode damping

– Very large aperture

– Acceleration and bunching

J. Holzbauer | Introduction to RF - Lecture 115

• Linacs (Linear Accelerators)

– Single (or low #) pass machine

– High Gradient is KEY (reduces # of 

cavities needed, therefore $$$)

– Reliability and ease of fabrication is 

very important (many cavities)

– Efficiency of operation also important



Summary by Tom Wangler (RF Linear Accelerators)

• In DC accelerators the energy gain is limited by the maximum applied 
voltage, which is limited by electric breakdown.

• In RF accelerators (linacs, synchrotrons, cyclotrons) the final energy can 
exceed the maximum applied voltage, which is applied repeatedly to the 
beam. The final energy is limited only by economics.

• Synchrotrons are limited to low beam currents by beam instabilities 
associated with the repetitive cycling of the beam from turn to turn through 
unavoidable focusing lattice errors. (less true than it used to be)

• Cyclotrons are not pulsed but are limited to low beam currents by weak 
focusing and same inherent circular machine instabilities.

• Linacs can deliver high beam currents because they can provide strong 
focusing to confine the beam and are not subject to circular-machine 
repetitive instabilities. 
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Maxwell to Helmholtz
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• Maxwell’s Equations 

are very general, 

govern all classical 

electromagnetic 

interactions

• Lorentz Force

• Stored Energy density 

in EM fields

• Poynting Vector is 

useful conceptual tool 

(direction of energy 

flow in EM fields)

Basic Equations
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• 𝛻 ⋅ 𝐷 = 𝜌

• 𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡

• 𝛻 ⋅ 𝐵 = 0

• 𝛻 × 𝐻 = Ԧ𝐽 +
𝜕𝐷

𝜕𝑡

Where D = 𝜖0𝐸 and B = 𝜇0𝐻

• Ԧ𝐹 = 𝑞 𝐸 + Ԧ𝑣 × 𝐵

• 𝑢 =
1

2
𝜖0𝐸

2 +
1

𝜇0
𝐵2 in vacuum

• Ԧ𝑆 =
1

𝜇0
𝐸 × 𝐵 in vacuum



Any solution to the wave 

equation with a time-

independent form can be 

represented by the 

Helmholtz Equation

The solutions we want for 

RF applications are 

sinusoidal in time with 

frequency ω. 

Particles will generally be 

accelerated in vacuum, so 

we can assume 𝜌 = Ԧ𝐽 =
𝜖𝑟 = 𝜇𝑟 = 0, 𝑐2𝜇0𝜖0 = 1

• Starting from 𝑐2𝛻2 −
𝜕2

𝜕𝑡2
𝐸(Ԧ𝑟, 𝑡) = 0

• Assume 𝐸 Ԧ𝑟, 𝑡 = 𝐸𝑠 Ԧ𝑟 𝑇 𝑡

• Gives 
𝛻2𝐸𝑠

𝐸𝑠
=

1

𝑐2𝑇

𝑑2𝑇

𝑑𝑡2

• Assume both sides equal to a 

constant −𝑘2

• Gives:

• 𝛻2 + 𝑘2 𝐸𝑠 = 0

•
𝑑2

𝑑𝑡2
+𝜔2 𝑇 = 0

• We want: 𝑇 = 𝑒𝑖𝜔𝑡 Good!

Helmholtz Equation
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Bring it all together - Free Space and Beyond

• Plugging this back into Maxwell’s Equations, we get: 𝜔 = 𝑘𝑐

• Solving for 𝐸 = 𝐸0𝑒
−𝑖𝑘⋅ Ԧ𝑟−𝑖𝜔𝑡

• Note that the magnetic field is specified: 𝐵 =
𝑖

𝜔
𝑘 × 𝐸

• While we’ve solved for one frequency, we don’t have to only 

work in one frequency 

• If required we can solve for as many frequencies as required 

and add using Fourier Superposition to give the full, final field 

distribution

• Now, we have a powerful tool, just solve the Helmholtz 

Equation with whatever boundary conditions are appropriate 

to give us the RF fields in a structure of our choosing!
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Boundary Conditions
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Boundary Conditions

• For most of this class, we’ll only be considering surface 

boundary conditions

• For magnet design, it’s often important to simulate the device 

plus its surroundings because those fields (can) penetrate 

through materials, significantly complicating simulation

• For RF, metallic walls serves as an effectively perfect shield 

with very small (negligible) penetration depth

• Additionally, RF transmission will be bounded and well 

behaved, not free travel of plane waves

• Free propagation and interaction with EM fields and charges, 

like in a Free-Electron Laser are significantly more complex 

and will not be covered here (See G. Stupakov’s class at 

USPAS)
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Electric Metallic Boundary Condition:

𝐸𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 = 0
Magnetic Metallic Boundary Condition:

𝐻𝑛𝑜𝑟𝑚𝑎𝑙 = 0

• Gauss’/Faraday’s Laws 

applied to a pillbox/loop on 

the metallic surface gives 

two conditions:

• 𝐷𝑛1 − 𝐷𝑛2 = 𝜌𝑠
• 𝐸𝑡1 − 𝐸𝑡2 = 0

• Any field in the metal (2) will 

drive currents, so the only 

stable configuration is with 

𝐷𝑛2 = 𝐸𝑡2 = 0.

• Gauss’/Ampere’s Laws 

applied to a pillbox/loop on 

the metallic surface gives 

two conditions:

• 𝐵𝑛1 − 𝐵𝑛2 = 0

• 𝐻𝑡1 −𝐻𝑡2 = 𝐽𝑠
• Again, surface currents are 

fine, but not inside the 

material, so 𝐵𝑛2 = 𝐻𝑡2 = 0.

Perfect Conductor Boundary Conditions
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For copper at 1 GHz, this gives a 

2um skin depth. This perturbation on 

the very small for most applications. 

(Also, very simulation intensive)

Magnetic fields drive surface currents 

in a thin layer near the surface to 

oppose the fields penetrating the 

metal

• The charge/current density 

at the surface isn’t infinite.

• Fields do penetrate into the 

material some amount. 

• Fortunately, the generalized 

Helmholtz equation still 

applies, and gives

• 𝛿−1 = 𝜋𝑓𝜇0𝜎

• We will get to losses later

Normal Conducting Materials – Skin Depth
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The boundary conditions 

given are for real materials 

and will always represent 

the physical boundaries of 

your device.

Additional types of 

boundaries are used to 

reduce the size of the 

simulation or represent an 

interface with the outside 

world.

I’ll talk about losses later.

• Symmetry Boundaries

– In 2D sims - rotational symmetry

– In 3D sims - used to reduce size of 

the simulation and generally takes 

one of the following forms:

• Electric – just like metallic wall

• Magnetic - opposite conditions of 

electric B.C.

• Periodic – Fields must be related at 

two planes

– Ports to the outside – Places for 

power to flow into or out of your 

structure

• More complex B.C. that are defined in 

software.

Additional Boundaries - In ComputerLandTM

10/17/2019J. Holzbauer | Introduction to RF - Lecture 125



Basic RF Design Process – So Far

1. Define closed boundary that has all the features you want to 

simulate. 

2. Choose appropriate boundary conditions, including fixed 

frequency or eigenmode solver?

3. Use software to solve the Helmholtz Equation for the system

4. Repeat. Many times. 

• So, now the question becomes what geometries should we 

use? 

• In the next section, we’ll cover the most common geometries, 

play with them a while, then start to torture them into the most 

unreasonable geometries we can think of and see what’s 

useful.
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Circular Waveguide Modes
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Assumptions

• Metallic circular tube with Radius: 𝑅

• Axis of tube points in + Ƹ𝑧

• If we assume that the wave is propagating in + Ƹ𝑧, we get:

• 𝐸 Ԧ𝑥, 𝑡 = 𝐸0 𝜌, 𝜙 𝑒𝑖𝑘𝑧−𝑖𝜔𝑡

• 𝐻 Ԧ𝑥, 𝑡 = 𝐻0 𝜌, 𝜙 𝑒𝑖𝑘𝑧−𝑖𝜔𝑡

• This is just the generalized plane wave solution to Helmholtz

• Now, we assume 𝐵𝑧 = 0 (gotta pick something)

• Also, we need the fields to be azimuthally consistent, so let’s 

assume they have a 𝜙 dependence of the form 𝑒𝑖𝑚𝜙 where 𝑚
is an integer.

• 𝐸𝑧 𝜌, 𝜙, 𝑧, 𝑡 = 𝑓 𝜌 𝑒𝑖𝑘𝑧−𝑖𝜔𝑡−𝑖𝑚𝜙
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Helmholtz Solutions

• 𝐸𝑧 𝜌, 𝜙, 𝑧, 𝑡 = 𝑓 𝜌 𝑒𝑖𝑘𝑧−𝑖𝜔𝑡−𝑖𝑚𝜙

•
1

𝑐2
𝜕2𝓕

𝜕𝑡2
= 𝛻2𝓕 ֜

1

𝜌

𝑑

𝑑𝜌
𝜌
𝑑𝑓

𝑑𝜌
−

𝑚2

𝜌2
𝑓 +

𝜔2

𝑐2
− 𝑘2 𝑓 = 0

• 𝑓 𝜌 = 𝐸0𝐽𝑚(𝑘⊥𝜌) Bessel Functions! Wee. 

• One last thing, we have to satisfy our electric field boundary 

condition: ො𝑛 × ෠𝐸 = 0

• Thus: 𝐸𝑧 𝜌 = 𝑅 = 0

• Gives the condition that 𝑘⊥𝑅 = 𝑗𝑚,𝑛 where 𝑗𝑚,𝑛 is the 

𝑛𝑡ℎ Bessel Zero of order 𝑚. 

10/17/2019J.P. Holzbauer | Waveguides - Lecture 229

Math!



There is a frequency with no real 

solutions for 𝑘! Called Cutoff.

𝜔𝑐 =
𝑗𝑚,𝑛𝑐

𝑅𝑐

• The relationship between 

the wavenumber 𝑘 and 

frequency 𝜔 is called the 

dispersion curve. For a 

circular waveguide, we get 

the following equation:

• 𝑘𝑚,𝑛 = ±
𝜔2

𝑐2
−

𝑗𝑚,𝑛

𝑅2

Τ1 2

• Remember that 𝑣𝑃 = Τ𝜔 𝑘

and 𝑣𝐺 = Τ𝑑𝜔
𝑑𝑘

• Phase advances at 𝑣𝑝, 

energy advances at 𝑣𝐺

Dispersion Curve
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Practical Effects of Cutoff

• Cutoff is not a hard limit, i.e. frequencies above cutoff 

propagate freely and with no problems and frequencies below 

cutoff die immediately. 

• From the dispersion curve, it’s clear that the group velocity 

drops to zero at cutoff. Waves just above cutoff propagate 

very slowly, and this makes their transmission very sensitive 

to mechanical errors or perturbations (fractionally larger 

change in impedance close to cutoff). Very dangerous design 

situation.

• What does it mean to be below cutoff? Imaginary wave 

number!

• Imaginary 𝑘 means that the wave propagates like 𝑒−𝑘𝑧, 
exponentially decaying. Can be slowly so if 𝑘 is small. 
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Dispersion – Other Comments

• Every mode (different 𝑗𝑚,𝑛) has a different cutoff. Higher order 

modes (higher 𝑚 and 𝑛) will have a higher cutoff frequency. 

The most important implication of this is that there is a 

frequency range where only ONE mode is allowed. Which is 

nice. 

• Circular Waveguide modes have a rotational degeneracy, 

which is a huge pain to work with. The lowest mode is a 

dipole mode, which with the slightest provocation, will rotate 

as it propagates. (Which is why you only use circular 

waveguides except in very specific applications)
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Phase Velocity Synchronization

• To be useful for acceleration, the phase velocity must be 

synchronized with the particles (𝑣𝑃 ≤ 𝑐)

• For Circular Waveguide modes:

•
𝑣𝑃

𝑐
=

𝜔

𝑐
𝜔

𝑐

2
−

𝑗𝑚,𝑛
𝑅

2
=

𝜔

𝜔2−
𝑗𝑚,𝑛𝑐

𝑅

2
=

1

1−
𝑗𝑚,𝑛𝑐

𝜔𝑅

2
> 1

• Not great. Why doesn’t this break physics? 

• This means that we can’t synchronize no matter what. 

• What can we do to slow down the phase velocity?

• Note:

•
𝑣𝐺

𝑐
= 1 −

𝑗𝑚,𝑛𝑐

𝜔𝑅

2
which is always less than 1. Phew. 
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Transverse Magnetic Modes (TMm,n)

• Note: Use 𝛻 × 𝐸 = 𝑖𝜔𝐵 to get the magnetic field.

• 𝐸𝑧 = 𝐸0𝐽𝑚 𝑗𝑚,𝑛
𝜌

𝑅
𝑒𝑖𝑘𝑚,𝑛𝑧−𝑖𝜔𝑡−𝑖𝑚𝜙

• 𝐸𝜌 = 𝐸0
𝑖𝑘𝑚,𝑛𝑅

𝑗𝑚,𝑛
𝐽𝑚
′ 𝑗𝑚,𝑛

𝜌

𝑅
𝑒𝑖𝑘𝑚,𝑛𝑧−𝑖𝜔𝑡−𝑖𝑚𝜙

• 𝐸𝜙 = −𝐸0
𝑚𝑘𝑚,𝑛𝑅

2

𝜌𝑗𝑚,𝑛
2 𝐽𝑚 𝑗𝑚,𝑛

𝜌

𝑅
𝑒𝑖𝑘𝑚,𝑛𝑧−𝑖𝜔𝑡−𝑖𝑚𝜙

• 𝐵𝜌 = 𝐸0
𝑚𝜔𝑅2

𝑐2𝑗𝑚,𝑛
𝐽𝑚 𝑗𝑚,𝑛

𝜌

𝑅
𝑒𝑖𝑘𝑚,𝑛𝑧−𝑖𝜔𝑡−𝑖𝑚𝜙

• 𝐵𝜙 = 𝐸0
𝑖𝜔𝑅

𝑐2𝑗𝑚,𝑛
𝐽𝑚
′ 𝑗𝑚,𝑛

𝜌

𝑅
𝑒𝑖𝑘𝑚,𝑛𝑧−𝑖𝜔𝑡−𝑖𝑚𝜙

• Standard notation with m,n indicating the order.

• If you need TE modes, set 𝐸𝑧 = 0 and go crazy. 
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Standing Wave Structures

• You can build an entirely different class of accelerating 

structures if you counter-propagate two traveling waves with  

± 𝑘𝑚,𝑛

• Then you get a space terms:

•
1

2
𝑒𝑖𝑘𝑚,𝑛𝑧 + 𝑒−𝑖𝑘𝑚,𝑛𝑧 = cos(𝑘𝑚,𝑛𝑧)

•
1

2
𝑘𝑚,𝑛𝑒

𝑖𝑘𝑚,𝑛𝑧 − 𝑘𝑚,𝑛𝑒
−𝑖𝑘𝑚,𝑛𝑧 = i𝑘𝑚,𝑛 sin(𝑘𝑚,𝑛𝑧)

• Rolling the factor of 2 into 𝐸0 makes sense here.

• Assuming metal walls at 0 and 𝐿 gives the requirement that 

𝐸𝜙 𝑧 = 𝐿 = 𝐸𝜙 𝑧 = 0 = 𝐸𝜌 𝑧 = 𝐿 = 𝐸𝜌 𝑧 = 0 = 0

• Which leads to: sin 𝑘𝑚,𝑛𝐿 = 0 ∴ 𝑘𝑚,𝑛𝐿 = 𝑙𝜋

• Where 𝑙 is the longitudinal order (TMmnl modes!)
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Standing Waveguide Modes

• 𝐸𝑧 = 𝐸0𝐽𝑚 𝑗𝑚,𝑛
𝜌

𝑅
cos

𝑙𝜋𝑧

𝐿
𝑒−𝑖𝜔𝑡−𝑖𝑚𝜙

• 𝐸𝜌 = −𝐸0
𝑙𝜋𝑅

𝑗𝑚,𝑛𝐿
𝐽𝑚
′ 𝑗𝑚,𝑛

𝜌

𝑅
sin

𝑙𝜋𝑧

𝐿
𝑒−𝑖𝜔𝑡−𝑖𝑚𝜙

• 𝐸𝜙 = −𝐸0
𝑖𝑚𝑙𝜋𝑅2

𝜌𝑗𝑚,𝑛
2 𝐿

𝐽𝑚 𝑗𝑚,𝑛
𝜌

𝑅
sin

𝑙𝜋𝑧

𝐿
𝑒−𝑖𝜔𝑡−𝑖𝑚𝜙

• 𝐵𝜌 = 𝐸0
𝑚𝜔𝑅2

𝑐2𝜌𝑗𝑚,𝑛
2 𝐿

𝐽𝑚 𝑗𝑚,𝑛
𝜌

𝑅
cos

𝑙𝜋𝑧

𝐿
𝑒−𝑖𝜔𝑡−𝑖𝑚𝜙

• 𝐵𝜙 = 𝐸0
𝑖𝜔𝑅

𝑐2𝑗𝑚,𝑛
𝐽𝑚
′ 𝑗𝑚,𝑛

𝜌

𝑅
cos

𝑙𝜋𝑧

𝐿
𝑒−𝑖𝜔𝑡−𝑖𝑚𝜙

• Note the change in the dispersion curve! No longer 

continuous with all frequencies allowed. 

• 𝜔𝑚,𝑛,𝑙 =
𝑐𝑙𝜋

𝐿

2
+

𝑐𝑗𝑚,𝑛

𝑅

2
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Pillbox Cavity

• You can repeat all this for TE modes, but we want longitudinal 

electric fields for acceleration!

• Pick the lowest frequency, simplest mode: TM010 

• 𝐵𝜌 = 𝐸𝜌 = 𝐸𝜙 = 0 and 𝑗𝑚,𝑛 = 2.405

• 𝐸𝑧 = 𝐸0𝐽0
2.405𝜌

𝑅
𝑒−𝑖𝜔𝑡

• 𝐻𝜙 =
𝐸0

𝜂
𝐽1

2.405𝜌

𝑅
𝑒−𝑖𝜔𝑡𝑒

𝑖3𝜋

2 with 𝜂 =
𝜇0

𝜖0
≅ 376.7 Ω is the 

impedance of free space. 

• 𝜔010 =
2.405𝑐

𝑅
Note: only depends on radius, not length!
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Pillbox Monopole Mode – Current Model

38

--
-

---
+

+
+

+
+

+

Equivalent to 
Compressing/Stretching 
Spring

R

Z



Resulting Electric Fields

39

What happens when we 
stop holding the 
charges in place?



Releasing the Spring

40

--
-

--
- +

+
+

+
+

+

Time = 0

Time = 
𝜏

2
where 𝜏 = 1/𝑓

Equivalent of a spring 
moving from 
compression to tension



Magnetic Fields

▪ At t = τ/4, all electric 
fields are gone, 
replaced by magnetic 
fields

▪ The moving charges act 
as currents, creating the 
magnetic fields around 
the cavity equator 

41



Examples of Monopole-Mode (Accelerating) Cavities

42



SPX Dipole-Mode Cavity

▪ Dipole-Mode: Two high 
electric field regions

▪ A repetition of the process 
we just used for the 
monopole mode shows:
– Shape of Magnetic field

– τ will be smaller (higher 
frequency)

▪ Strong, Transverse 
Magnetic Field on Axis
– Produces desired deflection

▪ Degenerate modes must be 
split

▪ SPX Deflecting Mode

43



Now we…. Wellll…… First thing’s first. RF Losses!

• Now it’s unavoidable, how is power dissipated in a metallic 

surface?

• We showed that the skin depth was related to the 

conductivity and frequency: 𝛿−1 = 𝜋𝑓𝜇0𝜎

• This came from solving for the fields in a metallic layer as it 

screened the imposed fields, and we did it with the Electric 

Field: 𝐸𝑧 = 𝐸0𝑒
−𝜏𝑛𝑥 where 𝜏𝑛 = 𝑖𝜔𝜎𝜇0 (the real part of this 

gives the skin depth)

• We want the surface resistance, which is the real part of the 

surface impedance.
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Surface Resistance – Normal Conducting Materials

• First, need the total current: 𝐼 = 0׬
∞
𝑗𝑧 𝑥 𝑑𝑥 =

0׬
∞
𝑗0 𝑒

−𝜏𝑛𝑥𝑑𝑥 = 𝑗0/𝜏𝑛

• So, Impedance 𝑍𝑠 =
𝐸0

𝐼
=

𝜏𝑛

𝜎
=

𝑖𝜔𝜇0𝜎

𝜎
= 𝑅𝑠 + 𝑖Χ𝑠

• Turn the crank: 𝑅𝑠 =
𝜋𝜇0𝑓

𝜎
=

1

𝜎𝛿

• Two things to note:

– Highly conducting materials, low 𝑅𝑠 (~𝑚Ω), good!

– 𝑅𝑠 ∝ 𝑓
1

2 Increases with frequency, but not quickly. 
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Surface Resistance – Superconducting Materials!

• Some materials, when cooled below a certain ‘transition’ 

temperature lose their DC resistance. 

• Technically they are even better than a ‘perfect conductor’ 

because upon transition, they expel magnetic field instead of 

trap it.

• Most common superconducting material for cavities (but not 

only!) is niobium (9.2 K)

• However, no free lunch. While DC resistance is zero, RF 

resistance is merely very, very small (electrons still have 

mass, after all)
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Surface Resistance – Superconductivity!

• The physics of this is very different than normal metals:

– Surface resistance is now determined by a far more complex 

physical process, modeled by BCS theory:

– 𝑅𝐵𝐶𝑆 =
2−4𝐶𝑅𝑅𝑅

𝑇

𝑓

1.5

2
𝑒−

17.67

𝑇

• 𝑓 is in GHz

• 𝑇 is in Kelvin

• 𝐶𝑅𝑅𝑅 varies from 1 to 1.5 depending on material purity

– Even worse! High magnetic fields (the thing we’ll be applying to 

the cavity) break the superconducting state. 

– If the superconductivity is broken in one place, it reverts to a 

normal conducting metal, and the dissipated power there will 

almost certainly rapidly heat the rest of the cavity above the 

transition temperature.
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Superconducting Practicalities

• Runaway is called a quench, and it’s a bad thing.

• Peak surface magnetic field matters quite a bit for 

superconducting applications, often totally dominating design

• The real surface resistance, what’s achievable, is actually a 

combination of effects:

• 𝑅𝑆 = 𝑅𝐵𝐶𝑆 + 𝑅𝑟𝑒𝑠 where 𝑅𝑟𝑒𝑠 is a combination of many factors

– Impurities on the cavity surface

– Adsorbed gasses

– Ambient magnetic field trapped during cooldown

– Many more

• Modern processing techniques can achieve 𝑅𝑠 = 10𝑛Ω
reliably in most applications, and sometimes < 1𝑛Ω in certain 

circumstances (real cavities, though!).
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More superconducting…

• Last take away points:

– 𝑅𝑠,𝑆𝑅𝐹 ∝ 𝑓2 Pushes applications to lower frequency

– Complex dependence on temperature, but lower is almost 

universally better (from a performance point of view, not cost!)

– Achieving the best performance is very labor/infrastructure/cost 

intensive. Just ask LCLS-II! Or ILC! Or XFEL! Or CEBAF!

• I’ll spare you the math, but the equivalent skin depth for this 

application is about 350Å.

• Also, remember your Carnot: 𝜂𝑐 =
𝑇𝑐

𝑇𝐻−𝑇𝐶
, and operating at 

4𝐾, we get 𝜂𝑐 = 0.013. We save six orders of magnitude on 

𝑅𝑠 but lose three because of the temperature. We gain 

efficiency, but pay for it in complexity. 
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Pillbox, for real this time.

• What quantities do we care about?

– Accelerating Voltage

– Stored Energy

– Peak Surface Fields

– Efficiency of storing energy

– Efficiency of transferring energy to the beam

• Peak Fields are obviously defined. 

• Let’s tackle the others in detail.
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Accelerating Voltage – Transit Time Factor

• We must now account for 

the finite speed of the 

particles

• 𝑑𝑉𝑎𝑐𝑐 = 𝐸𝑎𝑐𝑐 𝑧 𝑒𝑖𝜔𝑡+𝜙𝑑𝑧

• 𝑑𝑉0 = |𝐸𝑎𝑐𝑐 𝑧 |𝑑𝑧

• 𝑇 = 𝑉𝑎𝑐𝑐/𝑉0
• Integrating across all 

synchronized gaps gives a 

Transit Time Factor less 

than 1

• Model as 𝑇 = 𝑇𝑔𝑆 𝑁,
𝛽𝑠

𝛽
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Plotted is the synchronism factor 

for 20% error in 𝛽 for gaps ranging 

from 4 to 20. 

Larger number of gaps have 

smaller velocity acceptance.

Machine parameters drive design 

here, heavy ion v electrons, for 

instance.

For wide range of 𝛽, multiple cavity 

types may be needed. 

FRIB is accelerating anything from 

carbon to uranium, so the 

acceptance has to be huge, SLC 

was only electrons

Gap Synchronism
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• Optimization of cavity 

styles, number, etc. is a 

very complex process

• Ultimately it comes down 

to complexity and cost

• This also shows the 

limited usefulness of 

geometric beta

• Look at the difference 

made by having one 

module of HWRs!

• Largest cost savings 

comes from reducing 

number of cavity types

• Electron machines don’t 

worry about this

PIP-II Cavity Choices
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One Last Comment:

An often quoted figure of 

merit is the Accelerating 

Electric Field: 𝐸𝑎𝑐𝑐 =
𝑉𝑎𝑐𝑐

𝐿

While pillbox-style cavities 

are relative easy to 

determine the length, 

more complex geometries 

are more open to 

interpretation.

𝑉𝑎𝑐𝑐 is unambiguous. 

Pillbox: 𝐸𝑎𝑐𝑐 =
𝑉𝑎𝑐𝑐

𝐿
=

2𝐸0

𝜋

Effective Length – A Warning
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Stored Energy

• We stated earlier: 𝑢 =
1

2
𝜖0𝐸

2 +
1

𝜇0
𝐵2

• So it follows that U = 𝑉׬
1

2
𝜖0𝐸

2 +
1

𝜇0
𝐵2 𝑑𝑉

• While this is generally true, we can chose a time where this 

calculation is easier. Choose time such that the electric fields 

are zero and magnetic fields are maximized. 

• So, U = 𝑉׬
1

2

1

𝜇0
𝐵2 𝑑𝑉

• Generally, this is done for you in simulation. For a pillbox, this 

can be done analytically. 

• 𝑈 = 𝐸0
2𝜋𝐿𝜖0 0׬

𝑅
𝜌𝐽1

2 2.405𝜌

𝑅
𝑑𝜌 =

𝜋𝜖0𝐸0
2

2
𝐽1
2 2.405 𝐿𝑅2
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Peak Surface Fields

• We want to calculate the peak surface fields.

• 𝐸𝑝𝑘 = 𝐸0 is easy. 

• Maximizing magnetic field on the end wall:

• 𝐵𝑝𝑘 =
𝐸0

𝑐
𝐽1 1.84 =

𝐸0

𝑐
0.583 or where 𝜌 = 0.77𝑅

• But what we also want are normalized quantities. 

•
𝐵𝑝𝑘

𝑈
,
𝐸𝑝𝑘

𝑈
and, by extension, 

𝑉𝑎𝑐𝑐

𝑈

• These quantities can be scaled nicely, and are less prone to 

change during optimization of unrelated features. 

• Speaking of, that last one seems quite useful…
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Shunt Impedance

• Remember, we want a quantity that can be used to judge the 

efficiency of transferring the stored energy to the beam.

• The (effective) shunt impedance is defined as:

•
𝑅

𝑄
≝

𝑉𝑎𝑐𝑐
2

𝜔𝑈
which is the ratio of the accelerating voltage squared 

and the reactive power in the cavity (in the equivalent circuit).

• This is a purely geometric factor that is very useful in 

describing the accelerating efficiency of a cavity geometry. 

• Other definitions of this may not include the TTF, or may have 

a factor of two for historical reasons, so watch out. 

• Note that this does not scale with frequency. You can directly 

scale a geometry to a different frequency, and this will stay 

the same. Very useful.  
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Shunt Impedance 2

• Smashing together the equations we know for a pillbox:

•
𝑅

𝑄
≅ 150 Ω

𝐿

𝑅
≅ 196𝛽 Ω

• Linear with optimum particle velocity! Higher frequencies are 

better.

• Makes sense,  𝑈 scales like 𝐿, but so does 𝑉𝑎𝑐𝑐.

• Note: Reactive Power in circuit theory is the power flow IN the resonator, 

in this case equivalent to 𝜔𝑈

• Think of this as the full stored energy in the cavity flowing through a plane 

𝜔 times a second
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Quality Factor

• A standard metric for how efficiently a resonator stores 

energy is the quality factor. 

• This is a quantity related to the number of cycles it would take 

to dissipate a given amount of stored energy. 

• 𝑄0 =
𝜔𝑈

𝑃𝑑
But this means that we need a definition of 𝑃𝑑

• Fortunately, we’ve done the ground work:

• 𝑃𝑑 =
1

2
𝑅𝑠 𝑆׬ 𝐻

2
𝑑𝐴 Integrated over the cavity walls

• Note the implicit assumption, that surface resistance is uniform over the 

entire cavity! Probably not the greatest assumption for superconductors, 

but not much else you can do without significant effort. 
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Temperature Mapping
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Geometry Factor

• 𝑅𝑠 is quite variable, especially for superconducting cavities. 

• The quality factor that doesn’t depend on 𝑅𝑠 would be of 

great usefulness.

• The 𝑅𝑠 dependence comes from the dissipated power.

• 𝑄0 =
𝜔𝑈

𝑃𝑑
=

𝜔𝑈
𝑃𝑑
𝑅𝑠
𝑅𝑠
, 𝐺 = 𝑅𝑠𝑄0 =

𝜔𝑈
𝑃𝑑
𝑅𝑠

• This, while adding dimensions to the quality, depends strictly 

on geometry and not material. 

• Again, doesn’t scale with frequency (make sure to gather all 

the scaling of 𝑈 and 𝑃𝑑)
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Pillbox Quality Factor

• 𝑃𝑑 =
𝑅𝑠𝐸0

2

𝜂2
2𝜋 0׬

𝑅
𝜌𝐽1

2 2.405𝜌

𝑅
𝑑𝜌 + 𝜋𝑅𝐿𝐽1

2 2.405

• Outer wall + end wall

• 𝑃𝑑 =
𝜋𝑅𝑠𝐸0

2

𝜂2
𝐽1
2 2.405 𝑅 𝑅 + 𝐿

• Giving:

• 𝐺 =
𝜔0𝜇0𝐿𝑅

2

2 𝑅2+𝑅𝐿
= 𝜂

2.405𝐿

2 𝑅+𝐿
=

453
𝐿

𝑅

1+
𝐿

𝑅

Ω With an optimum 𝐿…

•
𝐿

𝑅
=

𝛽𝜋

2.405
, 𝐺 = 257𝛽 Ω

• A highly useful result, indicating that pillbox cavities are more 

efficient at higher optimum particle velocities. 
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Cryogenic Efficiency

• A quantity that is often used to compare efficiency of 

superconducting cavities is 
𝑅

𝑄
∗ 𝐺 =

𝑉𝑎𝑐𝑐
2

𝑃𝑑
𝑅𝑠

• Calculates directly cost of voltage to dissipated power. 

• Cryogenic refrigeration is at a premium, so this can be an 

excellent comparison between very different cavity 

geometries. 
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Clearly better at high beta, 

best at 𝛽 = 1.

Mechanical concerns also 

come into play:

Aspect ratio:
𝐿

𝑅
=

𝛽𝜋

2.405
This gets pretty sub-

optimal at low beta, thin 

pancake cavities have 

poor mechanical 

properties. 

• 𝐺 = 257𝛽 Ω

•
𝑅

𝑄
= 196𝛽 Ω

• 𝐸𝑝𝑘 = 𝐸0

• 𝑐𝐵𝑝𝑘 = 0.583𝐸0

• 𝑈 =
𝜋𝜖0𝐸0

2

2
𝐽1
2 2.405 𝐿𝑅2

• 𝑃𝑑 =
𝜋𝑅𝑠𝐸0

2

𝜂2
𝐽1
2 2.405 𝑅 𝑅 + 𝐿

• 𝑇𝑇𝐹 =
2

𝜋

Pillbox Scaling
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• Superconducting Cavity

– Peak Surface Fields 

dominate design

– ~220 mT is theoretical max, 

120 mT is doing very well in 

practice

– Pushes for high Q

– Technologically Challenging

– Processing requirements 

put significant constraints 

on complex cavity 

geometries

– 𝑅𝑠 ∝ 𝑓2, 𝑃𝑑 ∝ 𝑓, 𝑄 ∝ 𝑓−2

• Normal Conducting Cavity

– Limited by dissipated power

– Limits duty cycle or gradient

– Pushes for highest 
𝑅

𝑄

– Local power density also a 

concern (local heating), 

maxes at ~20 W/cm2

– Electrical breakdown limited 

peak electric fields

– Cheaper material (copper!)

– Cooling design can be quite 

complex (non-uniform)

– 𝑅𝑠 ∝ 𝑓
1

2, 𝑃𝑑 ∝ 𝑓−
1

2, 𝑄 ∝ 𝑓−
1

2

Material Comparison
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‹#›Frank Tecker CLIC – 2nd Int. Acc. School for Linear Colliders - 8.10.2007

More energy: electrons generate plasma and melt surface

Molten surface splatters and generates new field emission points!
 limits the achievable field

Excessive fields can also damage the structures

Design structures with low Esurf/Eacc

Study new materials (Mo, W)

Conditioning limits

Damaged CLIC structure iris

Used with Permission



‹#›Frank Tecker CLIC – 2nd Int. Acc. School for Linear Colliders - 8.10.2007

Iris material tests in CTF2

Damage on iris after runs of the 30-cell clamped structures tested in CTFII.

First (a, b and c) and generic irises (d, e and f) of W ,Mo and Cu structures respectively.

W Mo Cu

First 
iris

downstream 
iris

Used with Permission



Coaxial Resonators
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Coaxial Waveguide

• A fundamentally different transmission line is coaxial 

geometry

• In contrast to circular/rectangular waveguide, there is a 

second conducting surface that’s disconnected (in a 

waveguide) from the outer conductor. 

• Assume that we have a cylindrical outer conductor, radius 𝑏
and co-radial inner conductor, radius 𝑎. Both are aligned on 

the Ƹ𝑧 axis. 

• Solving the Helmholtz Equation and putting shorting plates at 

±
𝐿

2
we get similar solutions:

• 𝐸𝜌 =
𝐸0𝑎

𝜌
cos

𝑝𝜋𝑧

2𝐿
𝑒𝑖𝜔𝑡, 𝐵𝜙 = −𝑖

𝐸0𝑎

𝜌𝑐
sin

𝑝𝜋𝑧

2𝐿
𝑒𝑖𝜔𝑡

• 𝜔 = 𝑝𝑐𝜋/2𝐿
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Half Wave Resonator
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Quarter-Wave Resonator
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Short

“Open”



Coaxial Cavity Discussion

• Decouples beam line/accelerating gap size/geometry from 

the transverse dimension. 

• Allows very low frequency resonators with small gaps in a 

mechanically robust geometry, very low beta resonators.

• Complicated fabrication and processing

• Quarter Wave Resonators are significantly different from ideal 

because the ‘open’ boundary condition isn’t physical. 

• Lack of rotational symmetry can lead to transverse 

accelerating fields, especially with QWRs. 
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FNAL Recycler Upgrade RF Cavity

https://indico.fnal.gov/event/2665/con

tribution/10/material/paper/1.pdf

FNAL Main Injector RF Cavity

http://lss.fnal.gov/archive/2005/conf/fe

rmilab-conf-05-102-ad.pdf

Technical Point of Order (Quarter Wave OR Pillbox?)
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Summary

• We went through an overview of how bound RF waves could 

be used to build accelerators, and we saw a bit of the 

process of optimization that’s used to arrive at a final design. 

• We got to a pillbox cavity, the most simple work-horse cavity 

topology that’s used today. 

• For homework, you’ll explore simple cavity geometries and 

fields. 

• Tomorrow is a deep dive into how we characterize and 

optimize these cavities and into the zoo of topologies actually 

used in the real world (read: lots of pictures!). 
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