Linacs and Synchrotrons

- Essential difference:

- pass N cavities 1 time each
—or -
- pass 1 cavity N times

- otherwise, essentially the same longitudinal dynamics

Linacs and Synchrotrons

- Linac cavities can have different frequencies, each at different phases (e.g., FRIB); but typically one frequency, at least for major sections of the linac
- Synchrotron - with only 1 cavity system, - inherently same frequency, though its value must change if particle speed changes during acceleration (protons, ions)

Linear Accelerator

Circular Accelerator

- Must consider time of flight between cavities / passages

Repetitive Systems of Acceleration

- We will assume that particles are propagating through a system of accelerating cavities. Each cavity has oscillating fields with frequency $f_{R F}$, and maximum "applied" voltage V (i.e., this takes into account TTF's, etc.). The ideal particle would arrive at the cavity at phase ϕ_{s}.
- We will choose ϕ_{s} to be relative to the "positive zero-crossing" of the RF wave, such that the ideal particle acquires an energy gain of

$$
\Delta E_{s}=\Delta W_{s}=q V \sin \phi_{s}
$$

» this definition used for synchrotrons; linacs more often define ϕ_{s} relative to the "crest" of the RF wave

- apologies for this possible further confusion...
the physics, of course, is the same

Acceleration of Ideal Particle

Wish to accelerate the ideal particle. As this particle exits the ($n+1$)-th RF cavity/station we would have

$$
E_{s}^{(n+1)}=E_{s}^{(n)}+Q e V \sin \phi_{s}
$$

If we are considering a synchrotron, we can consider the above as the total energy gain on the ($n+1$)-th revolution. The ideal energy gain per second would be:

$$
d E_{s} / d t=f_{0} Q e V \sin \phi_{s} \quad f_{0}=\text { revolution frequency }
$$

Next, look at (longitudinal) motion of particles near the ideal particle: $\quad \phi=$ phase w.r.t. RF system

$$
\Delta E \equiv E-E_{s}=\text { energy difference from the ideal }
$$

- Assume accelerating system of cavities is set up such that ideal particle arrives at each cavity when the accelerating voltage V is at the same phase (called the "synchronous phase"); consider a "test" particle:

$$
\begin{aligned}
\phi_{n+1} & =\phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n} \\
\Delta E_{n+1} & =\Delta E_{n}+\operatorname{QeV}\left(\sin \phi_{n+1}-\sin \phi_{s}\right)
\end{aligned}
$$

Notes:

$$
h=L / \beta \lambda, \quad \lambda=c / f_{\mathrm{rf}} \quad \text { or, } \quad h=f_{\mathrm{rf}} L / v
$$

Desire h to be an integer, to arrive at same phase each time. If L is circumference of a synchrotron then: $h=f_{\mathrm{rf}} / f_{0}$ where f_{0} is the revolution frequency, In this case, h is called the "harmonic number"

$$
E=m c^{2}+W ; \quad \Delta E \Leftrightarrow \Delta W
$$

Applying the Difference Equations

while ($\mathrm{i}<$ Nturns+1) \{
phi $=$ phi $+k^{*} d W$
$\mathrm{dW}=\mathrm{dW}+$ QonA* $^{*} \mathrm{~V}^{*}(\sin ($ phi $)-\sin ($ phis $))$
points(phi*360/2/pi, dW, pch=21,col="red")
$\mathrm{i}=\mathrm{i}+1$
\}

Let's run a code...

Acceptance and Emittance

- Stable region often called an RF "bucket" - "contains" the particles
- Maximum vertical extent is the maximum spread in energy that can be accelerated through the system

Acceptance and Emittance

- Stable region often called an RF "bucket" - "contains" the particles
- Maximum vertical extent is the maximum spread in energy that can be accelerated through the system
- Desire the beam particles to occupy much smaller area in the phase space

Northern Illinois University

- got to here...
differential approach...

$$
\begin{aligned}
\phi_{n+1} & =\phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n} \\
\Delta E_{n+1} & =\Delta E_{n}+Q e V\left(\sin \phi_{n+1}-\sin \phi_{s}\right)
\end{aligned}
$$

differential approach...

$$
\begin{aligned}
\phi_{n+1} & =\phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n} \\
\Delta E_{n+1} & =\Delta E_{n}+Q e V\left(\sin \phi_{n+1}-\sin \phi_{s}\right)
\end{aligned}
$$

$$
\begin{align*}
\begin{array}{l}
\text { start with above } \\
\text { difference eqs }
\end{array} & \rightarrow \frac{d \phi}{d n}=\frac{2 \pi h \eta}{\beta^{2} E} \Delta E, \quad \frac{d \Delta E}{d n}=Q e V\left(\sin \phi-\sin \phi_{s}\right) \\
& \rightarrow \frac{d^{2} \phi}{d n^{2}}=\frac{2 \pi h \eta}{\beta^{2} E} \frac{d \Delta E}{d n}=\frac{2 \pi h \eta}{\beta^{2} E} Q e V\left(\sin \phi-\sin \phi_{s}\right) \tag{1}
\end{align*}
$$

differential approach...

$$
\begin{aligned}
\phi_{n+1} & =\phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n} \\
\Delta E_{n+1} & =\Delta E_{n}+Q e V\left(\sin \phi_{n+1}-\sin \phi_{s}\right)
\end{aligned}
$$

$$
\begin{align*}
& \begin{array}{l}
\text { start with above } \\
\text { difference eqs }
\end{array} \rightarrow \frac{d \phi}{d n}=\frac{2 \pi h \eta}{\beta^{2} E} \Delta E, \quad \frac{d \Delta E}{d n}=\operatorname{QeV}\left(\sin \phi-\sin \phi_{s}\right) \\
& \tag{1}\\
& \rightarrow \frac{d^{2} \phi}{d n^{2}}=\frac{2 \pi h \eta}{\beta^{2} E} \frac{d \Delta E}{d n}=\frac{2 \pi h \eta}{\beta^{2} E} Q e V\left(\sin \phi-\sin \phi_{s}\right) \\
& \quad \Rightarrow \frac{d^{2} \phi}{d n^{2}}-\frac{2 \pi h \eta}{\beta^{2} E} Q e V\left(\sin \phi-\sin \phi_{s}\right)=0
\end{align*}
$$

differential approach...

$$
\begin{aligned}
\phi_{n+1} & =\phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n} \\
\Delta E_{n+1} & =\Delta E_{n}+Q e V\left(\sin \phi_{n+1}-\sin \phi_{s}\right)
\end{aligned}
$$

$$
\begin{align*}
& \begin{array}{l}
\begin{array}{l}
\text { start with above } \\
\text { difference eqs }
\end{array} \\
\qquad \begin{array}{l}
\rightarrow \frac{d \phi}{d n}=\frac{2 \pi h \eta}{\beta^{2} E} \Delta E, \quad \frac{d \Delta E}{d n}=\operatorname{dn} \phi \\
d n^{2}
\end{array}=\frac{2 \pi h \eta}{\beta^{2} E} \frac{d \Delta E}{d n}=\frac{2 \pi h \eta}{\beta^{2} E} Q e V\left(\sin \phi-\sin \phi-\sin \phi_{s}\right)
\end{array} \\
& \quad \Rightarrow \frac{d^{2} \phi}{d n^{2}}-\frac{2 \pi h \eta}{\beta^{2} E} Q e V\left(\sin \phi-\sin \phi_{s}\right)=0 \tag{1}
\end{align*}
$$

$$
\int\left(\frac{d^{2} \phi}{d n^{2}}\right) \frac{d \phi}{d n} d n-\frac{2 \pi h \eta}{\beta^{2} E} Q e V \int\left(\sin \phi-\sin \phi_{s}\right) \frac{d \phi}{d n} d n=0
$$

differential approach...

$$
\begin{aligned}
\phi_{n+1} & =\phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n} \\
\Delta E_{n+1} & =\Delta E_{n}+Q e V\left(\sin \phi_{n+1}-\sin \phi_{s}\right)
\end{aligned}
$$

$$
\begin{align*}
& \begin{array}{l}
\text { start with above } \\
\text { difference eqs }
\end{array} \rightarrow \frac{d \phi}{d n}=\frac{2 \pi h \eta}{\beta^{2} E} \Delta E, \quad \frac{d \Delta E}{d n}=\operatorname{QeV}\left(\sin \phi-\sin \phi_{s}\right) \\
& \tag{1}\\
& \rightarrow \frac{d^{2} \phi}{d n^{2}}=\frac{2 \pi h \eta}{\beta^{2} E} \frac{d \Delta E}{d n}=\frac{2 \pi h \eta}{\beta^{2} E} Q e V\left(\sin \phi-\sin \phi_{s}\right) \\
& \\
& \Rightarrow \frac{d^{2} \phi}{d n^{2}}-\frac{2 \pi h \eta}{\beta^{2} E} Q e V\left(\sin \phi-\sin \phi_{s}\right)=0
\end{align*}
$$

find $1^{\text {st }}$ integral:

$$
\begin{array}{r}
\int\left(\frac{d^{2} \phi}{d n^{2}}\right) \frac{d \phi}{d n} d n-\frac{2 \pi h \eta}{\beta^{2} E} Q e V \int\left(\sin \phi-\sin \phi_{s}\right) \frac{d \phi}{d n} d n=0 \\
\frac{1}{2}\left(\frac{d \phi}{d n}\right)^{2}+\frac{2 \pi h \eta}{\beta^{2} E} Q e V\left(\cos \phi+\phi \sin \phi_{s}\right)=\text { constant }
\end{array}
$$

differential approach...

$$
\begin{aligned}
\phi_{n+1} & =\phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n} \\
\Delta E_{n+1} & =\Delta E_{n}+Q e V\left(\sin \phi_{n+1}-\sin \phi_{s}\right)
\end{aligned}
$$

$$
\begin{align*}
& \begin{array}{l}
\begin{array}{l}
\text { start with above } \\
\text { difference eqs }
\end{array} \\
\qquad \begin{array}{l}
\rightarrow \frac{d \phi}{d n}=\frac{2 \pi h \eta}{\beta^{2} E} \Delta E, \quad \frac{d \Delta E}{d n}=Q e V\left(\sin \phi-\sin \phi_{s}\right) \\
\\
\\
\\
\end{array} \quad \Rightarrow \frac{d^{2} \phi}{n^{2}}=\frac{2 \pi h \eta}{\beta^{2} E} \frac{d \Delta E}{d n}=\frac{2 \pi h \eta}{\beta^{2} E} Q e V\left(\sin \phi-\sin \phi_{s}\right) \\
\text { find 1st integral. }
\end{array}
\end{align*}
$$

find $1^{\text {st }}$ integral:

$$
\begin{align*}
& \int\left(\frac{d^{2} \phi}{d n^{2}}\right) \frac{d \phi}{d n} d n-\frac{2 \pi h \eta}{\beta^{2} E} Q e V \int\left(\sin \phi-\sin \phi_{s}\right) \frac{d \phi}{d n} d n=0 \\
& \frac{1}{2}\left(\frac{d \phi}{d n}\right)^{2}+\frac{2 \pi h \eta}{\beta^{2} E} Q e V\left(\cos \phi+\phi \sin \phi_{s}\right)=\text { constant } \\
& \text { or, } \quad \Delta E^{2}+2 \frac{\beta^{2} E}{2 \pi h \eta} Q e V\left(\cos \phi+\phi \sin \phi_{s}\right)=\text { constant } \tag{2}
\end{align*}
$$

The equation of the trajectories in phase space!

Synchrotron Oscillations

- Particles near the synchronous phase and ideal energy will oscillate about the synchronous particle with the "synchrotron frequency" (this is called synchrotron motion, even for a linac!) In a synchrotron, ...
- "synchrotron tune" == \# of synch. osc.'s per revolution
compute small oscillation frequency:

$$
\phi=\phi_{s}+\Delta \phi \quad \rightarrow \quad \sin \phi-\sin \phi_{s}=\sin \phi_{s} \cos \Delta \phi+\cos \phi_{s} \sin \Delta \phi-\sin \phi_{s}
$$

in (1), let

$$
\approx \Delta \phi \cos \phi_{s}
$$

$$
\Rightarrow \frac{d^{2} \Delta \phi}{d n^{2}}-\left(\frac{2 \pi h \eta}{\beta^{2} E} Q e V \cos \phi_{s}\right) \Delta \phi=0
$$

$$
\nu_{s}=\sqrt{-\frac{h \eta Q e V}{2 \pi \beta^{2} E} \cos \phi_{s}}
$$

if $\eta>0$, choose $\cos \phi_{s}<0$

Comment on Frequencies of the Motion

- From what we've just seen, the synchrotron motion in a circular accelerator takes many (perhaps hundreds of) revolutions to complete one synchrotron period
- On the other hand, in the transverse plane, a particle will typically undergo many betatron oscillations during one revolution
- Thus, transverse/longitudinal dynamics typically occur on very different time scales - this actually justifies us studying them independently

Motion Near the Ideal Particle

Linearize the motion, and write in matrix form...

$$
\begin{aligned}
\phi_{n+1} & =\phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n} \\
\Delta E_{n+1} & =\Delta E_{n}+Q e V\left(\sin \phi_{n+1}-\sin \phi_{s}\right) \\
& \left.=\Delta E_{n}+Q e V\left(\sin \phi_{s} \cos \Delta \phi_{n+1}+\sin \Delta \phi_{n+1} \cos \phi_{s}\right)-\sin \phi_{s}\right) \\
& =\Delta E_{n}+Q e V \cos \phi_{s} \Delta \phi_{n+1} \\
& =\Delta E_{n}+Q e V \cos \phi_{s}\left[\Delta \phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n}\right]
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\Delta \phi_{n+1} & =\Delta \phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n} \\
\Delta E_{n+1} & =Q e V \cos \phi_{s} \Delta \phi_{n}+\left(1+\frac{2 \pi h \eta}{\beta^{2} E} Q e V \cos \phi_{s}\right) \Delta E_{n}
\end{aligned}
$$

or,

$$
\begin{aligned}
& \binom{\Delta \phi}{\Delta E}_{n+1}=\left(\begin{array}{cc}
1 & \frac{2 \pi h \eta}{\beta^{2} E} \\
Q e V \cos \phi_{s} & \left(1+\frac{2 \pi h \eta}{\beta^{2} E} Q e V \cos \phi_{s}\right)
\end{array}\right)\binom{\Delta \phi}{\Delta E}_{n} \\
& =\left(\begin{array}{cc}
1 & 0 \\
Q e V \cos \phi_{s} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{2 \pi h \eta}{\beta^{2} E} \\
0 & 1
\end{array}\right)\binom{\Delta \phi}{\Delta E}_{n} \\
& M \quad=\quad M_{c} \quad . \quad M_{d} \\
& \text { "thin" cavity drift } \\
& \text { (acts as longitudinal focusing element) }
\end{aligned}
$$

Note: for $\eta<0, M_{d}$ is a "backwards" drift; i.e., $\Delta \phi$ decreases for $\Delta E>0$ (when no bending)

$$
\eta=-1 / \gamma^{2} \text { in straight region (linac) }
$$

Remember from transverse motion, $x \propto \sqrt{\beta} \sin \Delta \psi$
and when M was periodic,

$$
M=\left(\begin{array}{cc}
\cos \Delta \psi+\alpha \sin \Delta \psi & \beta \sin \Delta \psi \\
-\gamma \sin \Delta \psi & \cos \Delta \psi-\alpha \sin \Delta \psi
\end{array}\right) \quad \text { and } \quad \operatorname{tr} M=2 \cos \Delta \psi
$$

$\Delta \psi=$ phase advance through periodic section
Can imagine "longitudinal" $\beta, \alpha, \gamma, \Delta \psi$ parameters as well Note: from M of previous page, if represents periodic structure (synchrotron or portion of linac), then

$$
\begin{array}{r}
\operatorname{tr} M=2+\frac{2 \pi h \eta}{\beta^{2} E} Q e V \cos \phi_{s}=2 \cos \Delta \psi_{s} \\
\text { longitudinal phase advance }
\end{array}
$$

$\Delta \psi_{s}=2 \pi \nu_{s}$
oscillation frequency w.r.t. cavity number, " n " (e.g., synchrotron tune)

$$
\cos \Delta \psi_{s} \approx 1-\frac{1}{2}\left(\Delta \psi_{s}\right)^{2}=1+\frac{\pi h \eta}{\beta^{2} E} Q e V \cos \phi_{s}\left[=\frac{1}{2} \operatorname{tr} M\right]
$$

$$
\nu_{s}=\sqrt{-\frac{h \eta}{2 \pi \beta^{2} E} Q e V \cos \phi_{s}}
$$

The Stationary Bucket

- Suppose do not wish to accelerate the ideal particle...
- for lower energies, where the slip factor is negative, then need to choose $\phi_{\mathrm{s}}=0^{\circ}$

"stationary" bucket: $\phi_{s}=0,2 \pi \quad\left(\sin \phi_{s}=0\right) \quad \rightarrow>$ no average acceleration anticipate stability: \rightarrow choose $\phi_{s}=0, \quad \eta<0$
then,

$$
\Delta E^{2}+2 \frac{\beta^{2} E}{2 \pi h \eta} Q e V \cos \phi=\mathrm{constant}
$$ on the separatrix: $\quad \Delta E=0$ at $\phi= \pm \pi$

$$
0-2 \frac{\beta^{2} E}{2 \pi h \eta} Q e V=\text { constant }
$$

thus, the Eq. of separatrix: $\quad \Delta E^{2}+(1+\cos \phi) \frac{\beta^{2} E}{\pi h \eta} Q e V=0$

$$
\Delta E^{2}+\frac{2 \beta^{2} E}{\pi h \eta} Q e V \cos ^{2}(\phi / 2)=0
$$

separatrix: $\quad \Delta E= \pm \sqrt{-\frac{2 \beta^{2} E}{\pi h \eta} Q e V} \cos (\phi / 2)$
thus, "bucket height": $\quad a=\sqrt{\frac{2 \beta^{2} E}{\pi h|\eta|} Q e V}$
Phase space area of a stationary bucket: $\quad 4 \int_{0}^{\pi} a \cos (\phi / 2) d \phi=8 a$ and, if use $\Delta E-\Delta t$ coordinates rather than $\Delta E-\phi$, then area of a stationary bucket is...

$$
\begin{gathered}
\text { (here, units of } \mathrm{eV} \text {-sec) } \\
\text { since } \phi=2 \pi f_{\mathrm{rf}} t
\end{gathered}
$$

$$
\Delta \mathrm{t}(\mathrm{sec})
$$

Note: for $\sin \phi_{s} \neq 0$

$\mathcal{A}=\mathcal{A}_{0} \cdot \mathcal{F}\left(\phi_{s}\right)$

$$
\text { where } 0<\mathcal{F}<1
$$

(determined numerically)

Area of a Moving Bucket

—> net average acceleration
curve: $\quad \Delta E^{2}+2 \frac{\beta^{2} E}{2 \pi h \eta} Q e V\left(\cos \phi+\phi \sin \phi_{s}\right)=$ constant

"kinetic"-like "potential"-like "total Energy"-like

ϕ_{1} is where
"potential like"
has derivative $=0: \quad \phi_{1}=\pi-\phi_{\mathrm{s}}$

Given $\phi_{1}=\pi-\phi_{s}$, can now determine the "constant": $\Delta E=0$ at ϕ_{1}, and so...
$(0)^{2}+2 \frac{\beta^{2} E}{2 \pi h \eta} Q e V\left(\cos \phi_{1}+\phi_{1} \sin \phi_{s}\right)=$ constant

Then, find that ϕ_{2} must satisfy:

$$
\cos \phi_{2}+\phi_{2} \sin \phi_{s}+\cos \phi_{s}+\left(\pi-\phi_{s}\right) \sin \phi_{s}=0
$$

Numerical Solution for Bucket Area

\# Solve for bucket area; phis = 0 is "stationary"
Xout <- $\operatorname{array}(0, \operatorname{dim}=\mathrm{c}(91,4))$
phisDeg <- -1
for $(i$ in (1:90)) \{
phisDeg <- phisDeg + 1
phis <- phisDeg*pi/180
f <- function(x) \{
$\cos (x)+x^{*} \sin ($ phis $)+\cos ($ phis $)-($ pi-phis)*sin(phis) $\}$
dE <- function(x)\{
$\operatorname{sqrt}\left(\cos (\right.$ phis $)-($ pi-phis) $) \sin ($ phis $)+\cos (x)+x^{*} \sin ($ phis $\left.\left.)\right)\right\}$

phi1 <- pi-phis

phi2 <- uniroot(f, c(-pi, 2*pi))\$root
A <- - $1 / 4 /$ sqrt(2)*integrate(dE, phi1, phi2)\$value
Xout[i,] = c(phis*180/pi, phi1*180/pi, phi2*180/pi, A) \}
plot(Xout[,1],Xout[,4],typ="l"
xlab="Synchronous Phase (deg)", ylab="A/A_0", xaxs="i", yaxs="i",xlim=c(0,90))
Xout

Back to Small Oscillations...

from (2),
if $\phi=\phi_{s}+\underset{\text { (small) }}{\Delta} \phi$, then \ldots

$$
\begin{gathered}
\Delta E^{2}+2 \frac{\beta^{2} E}{2 \pi h \eta} Q e V\left(\cos \phi_{s} \cos \Delta \phi-\sin \phi_{s} \sin \Delta \phi+\left(\phi_{s}+\Delta \phi\right) \sin \phi_{s}\right)=\text { constant } \\
\Delta E^{2}+2 \frac{\beta^{2} E}{2 \pi h \eta} Q e V\left(\cos \phi_{s}\left(1-\frac{1}{2} \Delta \phi^{2}\right)-\sin \phi_{s} \Delta \phi\right. \\
\left.\quad+\phi_{s} \sin \phi_{s}+\Delta \phi \sin \phi_{s}\right)=\text { constant }
\end{gathered}
$$

$$
\begin{equation*}
\Delta E^{2}+\left(-\frac{\beta^{2} E}{2 \pi h \eta} Q e V \cos \phi_{s}\right) \Delta \phi^{2}=\text { constant } \tag{3}
\end{equation*}
$$

This Eqn. represents trajectories in longitudinal phase space of particles near the ideal particle.

Back to Small Oscillations...

from (2), $\quad \Delta E^{2}+2 \frac{\beta^{2} E}{2 \pi h \eta} Q e V\left(\cos \phi+\phi \sin \phi_{s}\right)=$ constant if $\phi=\phi_{s}+\Delta \phi$, then \ldots

$\Delta E^{2}+2 \frac{\beta^{2} E}{2 \pi h \eta} Q e V\left(\cos \phi_{s} \cos \Delta \phi-\sin \phi_{s} \sin \Delta \phi+\left(\phi_{s}+\Delta \phi\right) \sin \phi_{s}\right)=$ constant

$$
\begin{array}{r}
\Delta E^{2}+2 \frac{\beta^{2} E}{2 \pi h \eta} Q e V\left(\cos \phi_{s}\left(1-\frac{1}{2} \Delta \phi^{2}\right)-\sin \phi_{s} \Delta \phi\right. \\
\left.+\phi_{s} \sin \phi_{s}+\Delta \phi \sin \phi_{s}\right)=\text { constant }
\end{array}
$$

$$
\begin{equation*}
\Delta E^{2}+\left(-\frac{\beta^{2} E}{2 \pi h \eta} Q e V \cos \phi_{s}\right) \Delta \phi^{2}=\text { constant } \tag{3}
\end{equation*}
$$

This Eqn. represents trajectories in longitudinal phase space of particles near the ideal particle.

Beam Longitudinal Emittance

Suppose beam is well contained within an ellipse given by (3), and suppose we know either $\Delta \hat{E}$ or $\Delta \hat{\phi}$ (or, $\Delta \hat{t}$) of the distribution (i.e., maximum extent). Then, the constant is easily seen to be:

$$
\text { constant }=\Delta \hat{E}^{2}=-\frac{\beta^{2} E}{2 \pi h \eta} Q e V \cos \phi_{s} \Delta \hat{\phi}^{2}
$$

So, area of ellipse (the longitudinal emittance) is: $\pi \Delta \hat{E} \Delta \hat{\phi}$
or, in E-t coordinates, $\quad S \equiv \pi \Delta \hat{E} \Delta \hat{t}=\pi \Delta \hat{E} \frac{\Delta \hat{\phi}}{2 \pi f_{\mathrm{rf}}}$

$$
\begin{aligned}
& S=\frac{1}{2 f_{\mathrm{rf}}} \sqrt{-\frac{\beta^{2} E e V}{2 \pi h \eta} Q \cos \phi_{S}} \Delta \hat{\phi}^{2} \\
& \quad \text { or, } \quad S=2 \pi^{2} f_{\mathrm{rf}} \sqrt{-\frac{\beta^{2} E e V}{2 \pi h \eta} Q \cos \phi_{S}} \Delta \hat{t}^{2}
\end{aligned}
$$

 units: "eV-sec"

Golf Clubs vs. Fish

- Our analysis "assumes" slowly changing variables (including the energy gain!). Quite reasonable in many Alvarez-style linacs and in synchrotrons
- In linacs, fractional energy change can be large, and so this will distort the phase space
- Plots from Wangler's book:

Here, a more
rapid acceleration
is included

Here, assume that energy is "constant" or varying very slowly
(synchrotron)

Golf Clubs vs. Fish

- Our analysis "assumes" slowly changing variables (including the energy gain!). Quite reasonable in many Alvarez-style linacs and in synchrotrons
- In linacs, fractional energy change can be large, and so this will distort the phase space
- Plots from Wangler's book:

Here, a more
rapid acceleration
is included
(linac)

Here, assume that energy is "constant" or varying very slowly
(synchrotron)

Momentum Compaction Factor

- How does path length along the beam line depend upon momentum?
- in straight sections, no difference; in bending regions, can be different

Look closely at an infinitesimal section along the ideal trajectory...

$$
\begin{aligned}
d \theta=\frac{d s}{\rho} & =\frac{d s_{1}}{\rho+\Delta x} \\
d s_{1}-d s & =\left(\frac{\rho+\Delta x}{\rho}-1\right) d s \\
& =\frac{\Delta x}{\rho} d s=\frac{D}{\rho} \frac{\Delta p}{p} d s
\end{aligned}
$$

if $L=$ path length along ideal trajectory between 2 points, then

$$
\frac{\Delta L}{L}=\frac{\int \frac{D(s)}{\rho(s)} d s}{\int d s} \cdot \frac{\Delta p}{p}
$$

The relative change in path length, per relative change in momentum, is called the momentum compaction factor,

$$
\alpha_{p}=<D / \rho>\text { along the ideal path }
$$

Transition Energy

- In a synchrotron, there can be an energy at which the slip factor changes sign - this is call the "transition energy"

$$
\begin{array}{ll}
\eta=\alpha_{p}-\frac{1}{\gamma^{2}}=\left\langle\frac{D}{\rho}\right\rangle-\frac{1}{\gamma^{2}} & \\
& \eta=0=\alpha_{p}-\frac{1}{\gamma^{2}} \\
\eta=\frac{1}{\gamma_{t}^{2}}-\frac{1}{\gamma^{2}} & \gamma_{t} \equiv \frac{1}{\sqrt{\alpha_{p}}}
\end{array}
$$

- In a typical FODO-style synchrotron, the transition gamma is roughly equal to the betatron tune

Transition

Northern Illinois University

We had... $\Rightarrow \frac{d^{2} \Delta \phi}{d n^{2}}-\left(\frac{2 \pi h \eta}{\beta^{2} E} Q e V \cos \phi_{s}\right) \Delta \phi=0$

$$
\nu_{s}=\sqrt{-\frac{h \eta}{2 \pi \beta^{2} E} Q e V \cos \phi_{s}}
$$

if $\eta>0$, choose $\cos \phi_{s}<0$
So,
when $\eta<0$, we want $\cos \phi_{s}>0$
when $\eta>0$, we want $\cos \phi_{s}<0$

\therefore if γ_{t} exists, need "phase jump" to occur at transition crossing

$$
\gamma_{t} m c^{2}=\text { transition energy }
$$

Transition Crossing

- If the synchrotron accelerates through its transition energy, then the phase of the RF system has to be shifted at the time of transition crossing
- The synchrotron motion slows down as approach transition it would stop if the slip factor were exactly zero!
- loss of phase stability!
- momentum spread also gets larger near transition
- So, best to accelerate quickly through this energy region!

$$
\nu_{s}=\sqrt{-\frac{h \eta}{2 \pi \beta^{2} E} Q e V \cos \phi_{s}}
$$

Buckets, Bunches, Batches, ...

- Have seen definition of "buckets" - stable phase space area
- Buckets can be occupied by "bunches" of particles
- note: need not be - can have "empty buckets"
- thus, can (in principle) adjust bunch spacing, bunch arrangements, etc.
- A set of bunches that are created in an accelerator (pulsed) is often called a Batch (especially if from a synchrotron)
- can also be called a Bunch Train as well (especially if from a linac)

Some Movies...

- Bucket Transformation
- Snap Capture
- Adiabatic Capture
- Parabolic acceleration
- Parabolic acceleration — full bucket
- Transition Crossing

Northern Illinois University

Phase space contours, for various values of k. Synchronous phase: $\quad \phi_{\mathrm{S}}=167.25 \mathrm{deg}$

M. Syphers

Northern Illinois University

Phase space contours, for various values of k. Synchronous phase: $\quad \phi_{\mathrm{S}}=167.25 \mathrm{deg}$

M. Syphers

$\sigma_{\mathrm{EonE}_{\mathrm{t}}}=1.958 \times 10^{-3} \quad \mathrm{t}=2.161 \times 10^{3}$

$\sigma_{\mathrm{EonE}_{\mathrm{t}}}=1.958 \times 10^{-3} \quad \mathrm{t}=2.161 \times 10^{3}$

Northern Illinois
University

$$
\mathrm{eV}(\mathrm{n})=193.334 \mathrm{keV}
$$

Northern Illinois
University

$$
\mathrm{eV}(\mathrm{n})=193.334 \mathrm{keV}
$$

Discrete vs. Continuous Motion...

- Since longitudinal motion is "slow", can usually treat time as differential variable
- However, acceleration happens at a "point" (or limited number of points) in the synchrotron; more accurate to treat as a "map":

$$
\begin{aligned}
\Delta E_{n+1} & =\Delta E_{n}+e V\left(\sin \omega_{\mathrm{rf}} \Delta t_{n}-\sin \phi_{s}\right) \\
\Delta t_{n+1} & =\Delta t_{n}+k \Delta E_{n+1}
\end{aligned}
$$

" Essentially the "Standard Map" (when $\phi_{s}=0$)

- (or Chirikov-Taylor map, or Chirikov standard map)

$$
\begin{aligned}
p_{n+1} & =p_{n}-K \sin \theta_{n} \\
\theta_{n+1} & =\theta_{n}+p_{n+1}
\end{aligned}
$$

Phase Space of the Standard Map

- A Limit of Stability?
we know how to analyze this ...

$$
\begin{aligned}
p_{n+1} & =p_{n}-K \sin \theta_{n} \\
\theta_{n+1} & =\theta_{n}+p_{n+1}
\end{aligned}
$$

Each view uses the same initial conditions for 27 particles

Typical synchrotrons:

$$
K \sim 0.0001-0.1
$$

we had, for small synchrotron oscillations:

$$
\begin{aligned}
\Delta \phi_{n+1} & =\Delta \phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n} \\
\Delta E_{n+1} & =Q e V \cos \phi_{s} \Delta \phi_{n}+\left(1+\frac{2 \pi h \eta}{\beta^{2} E} Q e V \cos \phi_{s}\right) \Delta E_{n}
\end{aligned}
$$

Phase Space of the Standard Map

- A Limit of Stability? we know how to analyze this ...

$$
\begin{aligned}
p_{n+1} & =p_{n}-K \sin \theta_{n} \\
\theta_{n+1} & =\theta_{n}+p_{n+1}
\end{aligned}
$$

Each view uses the same initial conditions for 27 particles

Typical synchrotrons:

$$
K \sim 0.0001-0.1
$$

we had, for small synchrotron oscillations:

$$
\begin{aligned}
\Delta \phi_{n+1} & =\Delta \phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n} \\
\Delta E_{n+1} & =Q e V \cos \phi_{s} \Delta \phi_{n}+\left(1+\frac{2 \pi h \eta}{\beta^{2} E} Q e V \cos \phi_{s}\right) \Delta E_{n}
\end{aligned}
$$

Phase Space of the Standard Map

- A Limit of Stability?
we know how to analyze this ...

$$
\begin{aligned}
p_{n+1} & =p_{n}-K \sin \theta_{n} \\
\theta_{n+1} & =\theta_{n}+p_{n+1}
\end{aligned}
$$

Each view uses the same initial conditions for 27 particles

Typical synchrotrons:

$$
K \sim 0.0001-0.1
$$

we had, for small synchrotron oscillations:

$$
\begin{aligned}
\Delta \phi_{n+1} & =\Delta \phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n} \\
\Delta E_{n+1} & =Q e V \cos \phi_{s} \Delta \phi_{n}+\left(1+\frac{2 \pi h \eta}{\beta^{2} E} Q e V \cos \phi_{s}\right) \Delta E_{n}
\end{aligned}
$$

Phase Space of the Standard Map

- A Limit of Stability? we know how to analyze this ...

$$
\begin{aligned}
p_{n+1} & =p_{n}-K \sin \theta_{n} \\
\theta_{n+1} & =\theta_{n}+p_{n+1}
\end{aligned}
$$

Each view uses the same initial conditions for 27 particles

Typical synchrotrons:

$$
K \sim 0.0001-0.1
$$

we had, for small synchrotron oscillations:

$$
\begin{aligned}
\Delta \phi_{n+1} & =\Delta \phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n} \\
\Delta E_{n+1} & =Q e V \cos \phi_{s} \Delta \phi_{n}+\left(1+\frac{2 \pi h \eta}{\beta^{2} E} Q e V \cos \phi_{s}\right) \Delta E_{n}
\end{aligned}
$$

Phase Space of the Standard Map

- A Limit of Stability? we know how to analyze this ...

$p_{n+1}=p_{n}-K \sin \theta_{n}$
$\theta_{n+1}=\theta_{n}+p_{n+1}$

Each view uses the same initial conditions for 27 particles

Typical synchrotrons:

$$
K \sim 0.0001-0.1
$$

we had, for small synchrotron oscillations:

$$
\begin{aligned}
\Delta \phi_{n+1} & =\Delta \phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n} \\
\Delta E_{n+1} & =Q e V \cos \phi_{s} \Delta \phi_{n}+\left(1+\frac{2 \pi h \eta}{\beta^{2} E} Q e V \cos \phi_{s}\right) \Delta E_{n}
\end{aligned}
$$

Phase Space of the Standard Map

- A Limit of Stability?

we know how to analyze this ...

$$
\begin{aligned}
p_{n+1} & =p_{n}-K \sin \theta_{n} \\
\theta_{n+1} & =\theta_{n}+p_{n+1}
\end{aligned}
$$

Each view uses the same initial conditions for 27 particles

Typical synchrotrons:

$$
K \sim 0.0001-0.1
$$

we had, for small synchrotron oscillations:

$$
\begin{aligned}
\Delta \phi_{n+1} & =\Delta \phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n} \\
\Delta E_{n+1} & =Q e V \cos \phi_{s} \Delta \phi_{n}+\left(1+\frac{2 \pi h \eta}{\beta^{2} E} Q e V \cos \phi_{s}\right) \Delta E_{n}
\end{aligned}
$$

θ

Phase Space of the Standard Map

- A Limit of Stability?

we know how to analyze this ...

$$
\begin{aligned}
p_{n+1} & =p_{n}-K \sin \theta_{n} \\
\theta_{n+1} & =\theta_{n}+p_{n+1}
\end{aligned}
$$

Each view uses the same initial conditions for 27 particles

Typical synchrotrons:

$$
K \sim 0.0001-0.1
$$

we had, for small synchrotron oscillations:

$$
\begin{aligned}
\Delta \phi_{n+1} & =\Delta \phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n} \\
\Delta E_{n+1} & =Q e V \cos \phi_{s} \Delta \phi_{n}+\left(1+\frac{2 \pi h \eta}{\beta^{2} E} Q e V \cos \phi_{s}\right) \Delta E_{n}
\end{aligned}
$$

Phase Space of the Standard Map

- A Limit of Stability?
we know how to analyze this ...

θ

$$
\begin{aligned}
p_{n+1} & =p_{n}-K \sin \theta_{n} \\
\theta_{n+1} & =\theta_{n}+p_{n+1}
\end{aligned}
$$

Each view uses the same initial conditions for 27 particles

Typical synchrotrons:

$$
K \sim 0.0001-0.1
$$

we had, for small synchrotron oscillations:

$$
\begin{aligned}
\Delta \phi_{n+1} & =\Delta \phi_{n}+\frac{2 \pi h \eta}{\beta^{2} E} \Delta E_{n} \\
\Delta E_{n+1} & =Q e V \cos \phi_{s} \Delta \phi_{n}+\left(1+\frac{2 \pi h \eta}{\beta^{2} E} Q e V \cos \phi_{s}\right) \Delta E_{n}
\end{aligned}
$$

Let's analyze this....

