Linacs and Synchrotrons

Essential difference:

pass *N* cavities 1 time each

pass 1 cavity N times

— or —

- V(t)
- Circular Accelerator

V(t)

Linear Accelerator

otherwise, essentially the same longitudinal dynamics

Northern Illinois University

Linacs and Synchrotrons

- Linac cavities can have different frequencies, each at different phases (e.g., FRIB); but typically one frequency, at least for major sections of the linac
- Synchrotron with only 1 cavity system, — inherently same frequency, though its value must change if particle speed changes during acceleration (protons, ions)
- Must consider time of flight between cavities / passages

Circular Accelerator

Repetitive Systems of Acceleration

- We will assume that particles are propagating through a system of accelerating cavities. Each cavity has oscillating fields with frequency f_{RF} , and maximum "applied" voltage V (i.e., this takes into account TTF's, etc.). The ideal particle would arrive at the cavity at phase ϕ_s .
- We will choose ϕ_s to be relative to the "positive zero-crossing" of the RF wave, such that the ideal particle acquires an energy gain of

$$\Delta E_s = \Delta W_s = qV\sin\phi_s$$

- » this definition used for synchrotrons; linacs more often define $\phi_{\rm s}$ relative to the "crest" of the RF wave
 - apologies for this possible *further* confusion...
 - the physics, of course, is the same

Acceleration of Ideal Particle

Wish to accelerate the ideal particle. As this particle exits the (n+1)-th RF cavity/station we would have

$$E_s^{(n+1)} = E_s^{(n)} + QeV\sin\phi_s$$

If we are considering a synchrotron, we can consider the above as the total energy gain on the (n+1)-th revolution. The ideal energy gain per second would be:

$$dE_s/dt = f_0 QeV \sin \phi_s$$
 f_0 = revolution frequency

Next, look at (longitudinal) motion of particles near the ideal particle: ϕ = phase w.r.t. RF system

 $\Delta E \equiv E - E_s$ = energy difference from the ideal

 Assume accelerating system of cavities is set up such that ideal particle arrives at each cavity when the accelerating voltage V is at the same phase (called the "synchronous phase"); consider a "test" particle:

(difference equations)

Notes:

$$h=L/eta\lambda, \quad \lambda=c/f_{
m rf}$$
 or, $h=f_{
m rf}L/v$

Desire *h* to be an integer, to arrive at same phase each time. If *L* is circumference of a synchrotron then: $h = f_{\rm rf}/f_0$ where f_0 is the revolution frequency, In this case, *h* is called the "harmonic number"

$$E = mc^2 + W; \qquad \Delta E \Leftrightarrow \Delta W$$

Applying the Difference Equations


```
while (i < Nturns+1) {
    phi = phi + k*dW
    dW = dW + QonA*eV*(sin(phi)-sin(phis))
    points(phi*360/2/pi, dW, pch=21,col="red")
    i = i + 1
}</pre>
```

Let's run a code...

v0_RFtrack.R ×		E Fi	iles F	Plots	Packages	Help	Viewer						-	-0
	🗐 📄 🖸 Source on Save 🔍 🎽 🕶 🗐 👻 📑 Run 📴 📑 Source 🗸	= <		۵	Zoom 🏼 🚈	Export -	0	1				😏 Pub	lish 👻	C
1	# Program to plot longitudinal phase space motion													
2	<pre># through a system of cavities (just an example)</pre>	_												
3		_												
4	Nturns = 100	_												
5	# Come Dependence	_	0	, Г										
7	# some parameters	_	0.1	5										
8	nbis = 30*ni/180 # synchronous phase angle	_												
9	$eV = 0.2 \# MeV/\mu$	_												
10	0 onA = 0.25	_												
11	gamma = (931 + Ws)/931	_								- 00	a			
12	$beta = sqrt(1-1/gamma^2)$	_	5						,	8000	888			
13	eta = $-1/gamma^2$	_	0.0	2						0 0000	10 68 M			
14	h = 1/(beta*3e8/80.5e6)	_	0	´					680	80000 C	6 6 G	2		
15	<pre>k = 2*pi*h*eta/beta^2*(gamma-1)/gamma/Ws</pre>	_								Conserve a	0 8 8	22		
16		_							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	J.S.S.	BOBS	828		
17	# initialize the phase space plot	_						6	z~@ 88		Ro a	880		
10			_						0000			8		
20	uw = v n + (n + 1) = v + (-180 + 180) + (-0.1 + (-0.1 + 1)) + (-0.1 + (-0.1 + 1))	≥	Ö.	<u> </u>				8	3028		808	8		
21	proc(pint, un, xttm=c(-100,100), yttm=c(-0.1,0.1), typ= ii)	0	0	`				Se	0880 L	1 2	8000			
22	trk = 1	_						60	88	028	0 8 0%	0 0		
23 -	while (trk < 16) {	_						88	88	and a co		- -	5	
24	<pre># initialize particle positions in phase space</pre>	_						00	0	and a start	280			
25	u0 <- locator(1)	_	10					829	- Conce		10 × 10		0	
26	phi <- u0\$x/180*pi	_	0	2				Sec.	Com O	and a solution			0	
27	d₩ <- u0\$y	_	9	, I				2	2009	800			-	
28	# track the particle	_							CO CO CO				3	
29	i = 1	_												
30 -	while (1 < Nturns+1) {	_												
32	$dW = dW + 0004 \text{ eV}^{*}(sin(nbi) - sin(nbis))$	_												
33	points(phi*360/2/pi, dW, pch=21, col="red")	_	5	2										
34	i = i + 1	_	9	; L										
35	}						1		1	1				
36	trk = trk + 1				-150	-1(00	-50	0	50	100	150		
37	}													
38									phi					
38:1	(Top Level) \$	pt ‡							2					

Acceptance and Emittance

- Stable region often called an RF "bucket"
 - "contains" the particles
- Maximum vertical extent is the maximum spread in energy that can be accelerated through the system

Acceptance and Emittance

- Stable region often called an RF "bucket"
 - "contains" the particles
- Maximum vertical extent is the maximum spread in energy that can be accelerated through the system
- Desire the beam particles to occupy much smaller area in the phase space

area: "eV-sec" Note: *E*, *t* canonical

• got to here...

$$\phi_{n+1} = \phi_n + \frac{2\pi h\eta}{\beta^2 E} \Delta E_n$$

$$\Delta E_{n+1} = \Delta E_n + QeV(\sin \phi_{n+1} - \sin \phi_s)$$
Northern Illinois
University

start with above
$$\rightarrow \frac{d\phi}{dn} = \frac{2\pi h\eta}{\beta^2 E} \Delta E, \qquad \frac{d\Delta E}{dn} = QeV(\sin\phi - \sin\phi_s)$$

(1)

$$\phi_{n+1} = \phi_n + \frac{2\pi h\eta}{\beta^2 E} \Delta E_n$$

$$\Delta E_{n+1} = \Delta E_n + QeV(\sin \phi_{n+1} - \sin \phi_s)$$
Northern Illinois
University

start with above
difference eqs
$$\rightarrow \frac{d\phi}{dn} = \frac{2\pi h\eta}{\beta^2 E} \Delta E, \qquad \frac{d\Delta E}{dn} = QeV(\sin\phi - \sin\phi_s)$$
$$\frac{d^2\phi}{dr} = 2\pi hn d\Delta E = 2\pi hn$$

$$\rightarrow \frac{d^2\phi}{dn^2} = \frac{2\pi\hbar\eta}{\beta^2 E} \frac{d\Delta E}{dn} = \frac{2\pi\hbar\eta}{\beta^2 E} QeV(\sin\phi - \sin\phi_s) \tag{1}$$

$$\phi_{n+1} = \phi_n + \frac{2\pi h\eta}{\beta^2 E} \Delta E_n$$

$$\Delta E_{n+1} = \Delta E_n + QeV(\sin \phi_{n+1} - \sin \phi_s)$$
Northern Illinois
University

start with above difference eqs $\rightarrow \frac{d\phi}{dn} = \frac{2\pi h\eta}{\beta^2 E} \Delta E, \qquad \frac{d\Delta E}{dn} = QeV(\sin\phi - \sin\phi_s)$ $\rightarrow \frac{d^2\phi}{dn^2} = \frac{2\pi h\eta}{\beta^2 E} \frac{d\Delta E}{dn} = \frac{2\pi h\eta}{\beta^2 E} QeV(\sin\phi - \sin\phi_s)$ $\Rightarrow \frac{d^2\phi}{dn^2} - \frac{2\pi h\eta}{\beta^2 E} QeV(\sin\phi - \sin\phi_s) = 0$ (1)

$$\phi_{n+1} = \phi_n + \frac{2\pi h\eta}{\beta^2 E} \Delta E_n$$

$$\Delta E_{n+1} = \Delta E_n + QeV(\sin \phi_{n+1} - \sin \phi_s)$$
Northern Illinois
University

start with above
difference eqs
$$\rightarrow \frac{d\phi}{dn} = \frac{2\pi h\eta}{\beta^2 E} \Delta E, \qquad \frac{d\Delta E}{dn} = QeV(\sin\phi - \sin\phi_s)$$

$$\rightarrow \frac{d^2\phi}{dn^2} = \frac{2\pi h\eta}{\beta^2 E} \frac{d\Delta E}{dn} = \frac{2\pi h\eta}{\beta^2 E} QeV(\sin\phi - \sin\phi_s)$$

$$\Rightarrow \frac{d^2\phi}{dn^2} - \frac{2\pi h\eta}{\beta^2 E} QeV(\sin\phi - \sin\phi_s) = 0$$
find 1st integral:
$$(1)$$

muegrai: IIII T.

$$\int \left(\frac{d^2\phi}{dn^2}\right) \frac{d\phi}{dn} \, dn - \frac{2\pi h\eta}{\beta^2 E} QeV \int (\sin\phi - \sin\phi_s) \frac{d\phi}{dn} \, dn = 0$$

$$\phi_{n+1} = \phi_n + \frac{2\pi h\eta}{\beta^2 E} \Delta E_n$$

$$\Delta E_{n+1} = \Delta E_n + QeV(\sin \phi_{n+1} - \sin \phi_s)$$
Northern Illinois
University

start with above
difference eqs
$$\rightarrow \frac{d\phi}{dn} = \frac{2\pi h\eta}{\beta^2 E} \Delta E, \qquad \frac{d\Delta E}{dn} = QeV(\sin\phi - \sin\phi_s)$$

$$\rightarrow \frac{d^2\phi}{dn^2} = \frac{2\pi h\eta}{\beta^2 E} \frac{d\Delta E}{dn} = \frac{2\pi h\eta}{\beta^2 E} QeV(\sin\phi - \sin\phi_s) \tag{1}$$

$$\Rightarrow \frac{d^2\phi}{dn^2} - \frac{2\pi h\eta}{\beta^2 E} QeV(\sin\phi - \sin\phi_s) = 0$$

find 1st integral:

$$\int \left(\frac{d^2\phi}{dn^2}\right) \frac{d\phi}{dn} \, dn - \frac{2\pi h\eta}{\beta^2 E} QeV \int (\sin\phi - \sin\phi_s) \frac{d\phi}{dn} \, dn = 0$$
$$\frac{1}{2} \left(\frac{d\phi}{dn}\right)^2 + \frac{2\pi h\eta}{\beta^2 E} QeV (\cos\phi + \phi\sin\phi_s) = constant$$

$$\phi_{n+1} = \phi_n + \frac{2\pi h\eta}{\beta^2 E} \Delta E_n$$

$$\Delta E_{n+1} = \Delta E_n + QeV(\sin \phi_{n+1} - \sin \phi_s)$$

Northern Illinois
University

start with above
$$\rightarrow \frac{d\phi}{dn} = \frac{2\pi h\eta}{\beta^2 E} \Delta E, \qquad \frac{d\Delta E}{dn} = QeV(\sin\phi - \sin\phi_s)$$

$$\rightarrow \frac{d^2\phi}{dn^2} = \frac{2\pi h\eta}{\beta^2 E} \frac{d\Delta E}{dn} = \frac{2\pi h\eta}{\beta^2 E} QeV(\sin\phi - \sin\phi_s) \tag{1}$$

$$\Rightarrow \frac{d^2\phi}{dn^2} - \frac{2\pi h\eta}{\beta^2 E} QeV(\sin\phi - \sin\phi_s) = 0$$

find 1st integral:

$$\int \left(\frac{d^2\phi}{dn^2}\right) \frac{d\phi}{dn} dn - \frac{2\pi h\eta}{\beta^2 E} QeV \int (\sin\phi - \sin\phi_s) \frac{d\phi}{dn} dn = 0$$
$$\frac{1}{2} \left(\frac{d\phi}{dn}\right)^2 + \frac{2\pi h\eta}{\beta^2 E} QeV (\cos\phi + \phi\sin\phi_s) = constant$$

or,

(2)

The equation of the *trajectories* in phase space!

Synchrotron Oscillations

- Particles near the synchronous phase and ideal energy will oscillate about the synchronous particle with the "synchrotron frequency" (this is called *synchrotron motion*, even for a linac!) In a synchrotron, ...
 - "synchrotron tune" == # of synch. osc.'s per revolution

compute small oscillation frequency:

$$\phi = \phi_s + \Delta \phi \quad \rightarrow \quad \sin \phi - \sin \phi_s = \sin \phi_s \cos \Delta \phi + \cos \phi_s \sin \Delta \phi - \sin \phi_s$$

in (1), let
$$\approx \Delta \phi \ \cos \phi_s$$

if $\eta > 0$, choose $\cos \phi_s < 0$

Comment on Frequencies of the Motion

Northern Illinois University

- From what we've just seen, the synchrotron motion in a circular accelerator takes many (perhaps hundreds of) revolutions to complete one synchrotron period
- On the other hand, in the transverse plane, a particle will typically undergo many betatron oscillations during one revolution
- Thus, transverse/longitudinal dynamics typically occur on very different time scales — this actually justifies us studying them independently

Motion Near the Ideal Particle

Linearize the motion, and write in matrix form...

$$\phi = \phi_s + \Delta \phi$$

$$\phi_{n+1} = \phi_n + \frac{2\pi h\eta}{\beta^2 E} \Delta E_n$$

$$\Delta E_{n+1} = \Delta E_n + QeV(\sin\phi_{n+1} - \sin\phi_s)$$

$$= \Delta E_n + QeV(\sin\phi_s \cos\Delta\phi_{n+1} + \sin\Delta\phi_{n+1}\cos\phi_s) - \sin\phi_s)$$

$$= \Delta E_n + QeV\cos\phi_s \Delta\phi_{n+1}$$

$$= \Delta E_n + QeV\cos\phi_s \left[\Delta\phi_n + \frac{2\pi h\eta}{\beta^2 E}\Delta E_n\right]$$

Thus,

$$\Delta \phi_{n+1} = \Delta \phi_n + \frac{2\pi h\eta}{\beta^2 E} \Delta E_n$$

$$\Delta E_{n+1} = QeV \cos \phi_s \Delta \phi_n + \left(1 + \frac{2\pi h\eta}{\beta^2 E} QeV \cos \phi_s\right) \Delta E_n$$

or,

$$\begin{pmatrix} \Delta \phi \\ \Delta E \end{pmatrix}_{n+1} = \begin{pmatrix} 1 & \frac{2\pi h\eta}{\beta^2 E} \\ QeV \cos \phi_s & \left(1 + \frac{2\pi h\eta}{\beta^2 E} QeV \cos \phi_s\right) \end{pmatrix} \begin{pmatrix} \Delta \phi \\ \Delta E \end{pmatrix}_n$$
$$= \begin{pmatrix} 1 & 0 \\ QeV \cos \phi_s & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{2\pi h\eta}{\beta^2 E} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \Delta \phi \\ \Delta E \end{pmatrix}_n$$
$$\mathcal{M} = \mathcal{M}_C \cdot \mathcal{M}_d$$

"thin" cavity

drift

(acts as longitudinal focusing element)

Note: for $\eta < 0$, M_d is a "backwards" drift; i.e., $\Delta \phi$ decreases for $\Delta E > 0$

(when no bending)

 $\eta = -1/\gamma^2$ in straight region (linac)

Remember from transverse motion, $\,x\propto \sqrt{\beta}\sin\Delta\psi\,$ and when M was periodic,

$$M = \begin{pmatrix} \cos \Delta \psi + \alpha \sin \Delta \psi & \beta \sin \Delta \psi \\ -\gamma \sin \Delta \psi & \cos \Delta \psi - \alpha \sin \Delta \psi \end{pmatrix} \quad \text{and} \quad trM = 2\cos \Delta \psi$$

 $\Delta\psi$ = phase advance through periodic section

Can imagine "longitudinal" β , α , γ , $\Delta \psi$ parameters as well

Note: from *M* of previous page, if represents periodic structure (synchrotron or portion of linac), then

 $\nu_s = \sqrt{-\frac{h\eta}{2\pi\beta^2 E}} QeV \cos\phi_s$

$$trM = 2 + \frac{2\pi h\eta}{\beta^2 E} QeV \cos \phi_s = 2 \cos \Delta \psi_s$$
 Iongitudinal phase advance

$$\Delta \psi_s = 2\pi \nu_s$$

oscillation frequency w.r.t. cavity number, "n" (e.g., synchrotron *tune*)

$$\cos\Delta\psi_s \approx 1 - \frac{1}{2}(\Delta\psi_s)^2 = 1 + \frac{\pi h\eta}{\beta^2 E} QeV \cos\phi_s \left[= \frac{1}{2}trM \right]$$

The Stationary Bucket

- Suppose do not wish to accelerate the ideal particle...
 - for lower energies, where the slip factor is negative, then need to choose $\phi_s = 0^\circ$

University

18

"stationary" bucket: $\phi_s = 0$, 2π (sin $\phi_s = 0$) —> no average acceleration

anticipate stability: —> choose $\phi_s = 0, \quad \eta < 0$

then,
$$\Delta E^2 + 2 \frac{\beta^2 E}{2\pi h\eta} QeV \cos\phi = constant$$

on the separatrix: $\Delta E = 0$ at $\phi = \pm \pi$

$$0 - 2\frac{\beta^2 E}{2\pi h\eta} QeV = constant$$

 $\begin{array}{c} \Delta E \\ \hline \phi \\ = 0 \end{array}$

thus, the Eq. of separatrix: $\Delta E^2 + (1+\cos\phi) \frac{\beta^2 E}{\pi h \eta} Q eV = 0$

$$\Delta E^2 + \frac{2\beta^2 E}{\pi h\eta} QeV \cos^2(\phi/2) = 0$$

separatrix:

 $\Delta E = \pm \sqrt{-\frac{2\beta^2 E}{\pi h\eta}} QeV \cos(\phi/2)$

(for "stationary bucket")

thus, "bucket height":

$$a = \sqrt{\frac{2\beta^2 E}{\pi h |\eta|} QeV}$$

Phase space area of a stationary bucket: $4 \int_0^{\pi} a \cos(\phi/2) \ d\phi = 8a$

and, if use ΔE - Δt coordinates rather than ΔE - ϕ , then area of a *stationary* bucket is...

⊿t (sec)

Note: for $\sin \phi_s \neq 0$

$$\mathcal{A} = \mathcal{A}_0 \cdot \mathcal{F}(\phi_s)$$

where $0 < \mathcal{F} < 1$

(determined numerically)

Area of a Moving Bucket

—> net average acceleration

 $\Delta E^2 + 2\frac{\beta^2 E}{2\pi h\eta} QeV(\cos\phi + \phi\sin\phi_s) = constant$ curve: "kinetic"-like "potential"-like "total Energy"-like cos(x) + x * sin(pi/6) ဖ N N I ဖ -5 -10 0 5 10

Then, find that ϕ_2 must satisfy:

Х

 ϕ_1 is where "potential like" has derivative = 0: $\phi_1 = \pi - \phi_s$

Given $\phi_1 = \pi - \phi_s$, can now determine the "constant": $\Delta E = 0$ at ϕ_1 , and so...

$$(0)^{2} + 2\frac{\beta^{2}E}{2\pi h\eta}QeV(\cos\phi_{1} + \phi_{1}\sin\phi_{s}) = constant$$

 $\cos\phi_2 + \phi_2 \sin\phi_s + \cos\phi_s + (\pi - \phi_s) \sin\phi_s = 0$

Numerical Solution for Bucket Area

Back to Small Oscillations...

if $\phi = \phi_s + \Delta \phi$, then ... (small) $\Delta E^2 + 2 \frac{\beta^2 E}{C} O eV(\cos \phi - \cos \Delta \phi - \sin \phi - \sin \Delta \phi + (\phi - \Delta \phi))$

from (2),

 $\Delta E^2 + 2\frac{\beta^2 E}{2\pi h\eta} QeV(\cos\phi_s \cos\Delta\phi - \sin\phi_s \sin\Delta\phi + (\phi_s + \Delta\phi) \sin\phi_s) = constant$

$$\Delta E^{2} + 2\frac{\beta^{2}E}{2\pi h\eta}QeV(\cos\phi_{s}(1-\frac{1}{2}\Delta\phi^{2}) - \sin\phi_{s}\Delta\phi + \phi_{s}\sin\phi_{s} + \Delta\phi\sin\phi_{s}) = constant$$

$$\Delta E^2 + \left(-\frac{\beta^2 E}{2\pi h\eta} QeV \cos\phi_s\right) \Delta\phi^2 = constant \tag{3}$$

This Eqn. represents trajectories in longitudinal phase space of particles *near* the ideal particle. M. Syphers PHYS 790-D FALL 2019 22

Northern Illinois

Back to Small Oscillations...

if
$$\phi = \phi_s + \Delta \phi$$
 , then ...

 $\Delta E^2 + 2\frac{\beta^2 E}{2\pi hn} QeV(\cos\phi_s \cos\Delta\phi - \sin\phi_s \sin\Delta\phi + (\phi_s + \Delta\phi) \sin\phi_s) = constant$

$$\Delta E^{2} + 2\frac{\beta^{2}E}{2\pi h\eta}QeV(\cos\phi_{s}(1-\frac{1}{2}\Delta\phi^{2}) - \sin\phi_{s}\Delta\phi) + \phi_{s}\sin\phi_{s} + \Delta\phi\sin\phi_{s}) = constant$$

$$\Delta E^2 + \left(-\frac{\beta^2 E}{2\pi h\eta} QeV \cos\phi_s\right) \Delta\phi^2 = constant \tag{3}$$

This Eqn. represents trajectories in longitudinal phase space of particles *near* the ideal particle. M. Syphers 22 PHYS 790-D FALL 2019

Northern Illinois

Beam Longitudinal Emittance

Suppose beam is well contained within an ellipse given by (3), and suppose we know either $\Delta \hat{E}$ or $\Delta \hat{\phi}$ (or, $\Delta \hat{t}$) of the distribution (i.e., maximum extent). Then, the *constant* is easily seen to be:

$$constant = \Delta \hat{E}^2 = -\frac{\beta^2 E}{2\pi h\eta} QeV \cos\phi_s \Delta \hat{\phi}^2$$

So, area of ellipse (the *longitudinal emittance*) is: $\pi \ \Delta E \Delta \phi$

or, in *E-t* coordinates,
$$S \equiv \pi \Delta \hat{E} \Delta \hat{t} = \pi \Delta \hat{E} \frac{\Delta \phi}{2\pi f_{\rm rf}}$$

 $S = \frac{1}{2f_{\rm rf}} \sqrt{-\frac{\beta^2 EeV}{2\pi h\eta} Q \cos \phi_S} \Delta \hat{\phi}^2$
or, $S = 2\pi^2 f_{\rm rf} \sqrt{-\frac{\beta^2 EeV}{2\pi h\eta} Q \cos \phi_S} \Delta \hat{t}^2$
units: "eV-sec"

Golf Clubs vs. Fish

- Our analysis "assumes" slowly changing variables (including the energy gain!). Quite reasonable in many Alvarez-style linacs and in synchrotrons
- In linacs, fractional energy change can be large, and so this will distort the phase space
- Plots from Wangler's book:

- Here, assume that energy is "constant" or varying very slowly
- (synchrotron)

Golf Clubs vs. Fish

- Our analysis "assumes" slowly changing variables (including the energy gain!). Quite reasonable in many Alvarez-style linacs and in synchrotrons
- In linacs, fractional energy change can be large, and so this will distort the phase space
- Plots from Wangler's book:

Here, assume that energy is "constant" or varying very slowly

(synchrotron)

Momentum Compaction Factor

- How does path length along the beam line depend upon momentum?
 - in straight sections, no difference; in bending regions, can be different

Look closely at an infinitesimal section along the ideal trajectory...

$$d\theta = \frac{ds}{\rho} = \frac{ds_1}{\rho + \Delta x}$$

$$d\theta = \frac{ds}{\rho} = \frac{ds_1}{\rho + \Delta x}$$

$$ds_1 - ds = \left(\frac{\rho + \Delta x}{\rho} - 1\right) ds$$

$$= \frac{\Delta x}{\rho} ds = \frac{D \Delta p}{\rho} ds$$

if L = path length along ideal trajectory
 between 2 points, then

$$\frac{\Delta L}{L} = \underbrace{\frac{\int \frac{D(s)}{\rho(s)} ds}{\int ds}}_{p} \cdot \frac{\Delta p}{p}$$

The relative change in path length, per relative change in momentum, is called the *momentum compaction factor*, $\alpha_{\rho} = \langle D/\rho \rangle$ along the ideal path

Transition Energy

In a synchrotron, there can be an energy at which the slip factor changes sign — this is call the "transition energy"

$$\eta = \alpha_p - \frac{1}{\gamma^2} = \left\langle \frac{D}{\rho} \right\rangle - \frac{1}{\gamma^2}$$
$$\eta = 0 = \alpha_p - \frac{1}{\gamma^2}$$
$$\eta = \frac{1}{\gamma_t^2} - \frac{1}{\gamma^2}$$
$$\gamma_t \equiv \frac{1}{\sqrt{\alpha_p}}$$

In a typical FODO-style synchrotron, the transition gamma is roughly equal to the betatron tune

Transition

We had...
$$\Rightarrow \frac{d^{2}\Delta\phi}{dn^{2}} - \left(\frac{2\pi h\eta}{\beta^{2}E}QeV\cos\phi_{s}\right)\Delta\phi = 0$$

$$\nu_{s} = \sqrt{-\frac{h\eta}{2\pi\beta^{2}E}QeV\cos\phi_{s}}$$
if $\eta > 0$, choose $\cos\phi_{s} < 0$

$$\phi = 0$$
for $\gamma < \gamma_{t}$
for $\gamma > \gamma_{t}$
when $\eta > 0$, we want $\cos\phi_{s} < 0$

 \therefore if γ_t exists, need "phase jump" to occur at transition crossing

 $\gamma_t mc^2 = \text{transition energy}$

Transition Crossing

- If the synchrotron accelerates through its transition energy, then the phase of the RF system has to be shifted at the time of transition crossing
- The synchrotron motion slows down as approach transition it would stop if the slip factor were exactly zero!
 - loss of phase stability!
 - momentum spread also gets larger near transition
- So, best to accelerate quickly through this energy region!

$$\nu_s = \sqrt{-\frac{h\eta}{2\pi\beta^2 E}} QeV\cos\phi_s$$

Buckets, Bunches, Batches, ...

- Have seen definition of "buckets" stable phase space area
- Buckets can be occupied by "bunches" of particles
 - note: need not be can have "empty buckets"
 - thus, can (in principle) adjust bunch spacing, bunch arrangements, etc.
- A set of bunches that are created in an accelerator (pulsed) is often called a Batch (especially if from a synchrotron)
 - can also be called a Bunch Train as well (especially if from a linac)

- Bucket Transformation
- Snap Capture
- Adiabatic Capture
- Parabolic acceleration
- Parabolic acceleration full bucket
- Transition Crossing

M. Syphers PHYS 790-D FALL 2019 34

M. Syphers PHYS 790-D FALL 2019 34

eV(n) = 193.334 keV

eV(n) = 193.334 keV

Discrete vs. Continuous Motion...

- Since longitudinal motion is "slow", can usually treat time as differential variable
- However, acceleration happens at a "point" (or limited number of points) in the synchrotron; more accurate to treat as a "map":

$$\Delta E_{n+1} = \Delta E_n + eV(\sin \omega_{\rm rf} \Delta t_n - \sin \phi_s)$$

$$\Delta t_{n+1} = \Delta t_n + k \Delta E_{n+1}$$

- Essentially the "Standard Map" (when $\phi_s = 0$)
 - (or Chirikov-Taylor map, or Chirikov standard map)

$$p_{n+1} = p_n - K \sin \theta_n$$
$$\theta_{n+1} = \theta_n + p_{n+1}$$

• A Limit of Stability? we know how to analyze this ...

Q

 $p_{n+1} = p_n - K \sin \theta_n$ $\theta_{n+1} = \theta_n + p_{n+1}$

Each view uses the same initial conditions for 27 particles

Typical synchrotrons: $K \sim 0.0001 - 0.1$

we had, for small synchrotron oscillations:

 $\Delta \phi_{n+1} = \Delta \phi_n + \frac{2\pi h\eta}{\beta^2 E} \Delta E_n$ $\Delta E_{n+1} = QeV \cos \phi_s \Delta \phi_n + \left(1 + \frac{2\pi h\eta}{\beta^2 E} QeV \cos \phi_s\right) \Delta E_n$

• A Limit of Stability? we know how to analyze this ...

$$p_{n+1} = p_n - K \sin \theta_n$$

$$\theta_{n+1} = \theta_n + p_{n+1}$$

Each view uses the same initial conditions for 27 particles

Typical synchrotrons: $K \sim 0.0001 - 0.1$

$$\Delta \phi_{n+1} = \Delta \phi_n + \frac{2\pi h\eta}{\beta^2 E} \Delta E_n$$

$$\Delta E_{n+1} = QeV \cos \phi_s \Delta \phi_n + \left(1 + \frac{2\pi h\eta}{\beta^2 E} QeV \cos \phi_s\right) \Delta E_r$$

\$

• A Limit of Stability? we know how to analyze this ...

$$p_{n+1} = p_n - K \sin \theta_n$$

$$\theta_{n+1} = \theta_n + p_{n+1}$$

Each view uses the same initial conditions for 27 particles

Typical synchrotrons: $K \sim 0.0001 - 0.1$

$$\Delta \phi_{n+1} = \Delta \phi_n + \frac{2\pi h\eta}{\beta^2 E} \Delta E_n$$

$$\Delta E_{n+1} = QeV \cos \phi_s \Delta \phi_n + \left(1 + \frac{2\pi h\eta}{\beta^2 E} QeV \cos \phi_s\right) \Delta E_n$$

• A Limit of Stability? we know how to analyze this ...

$$p_{n+1} = p_n - K \sin \theta_n$$

$$\theta_{n+1} = \theta_n + p_{n+1}$$

Each view uses the same initial conditions for 27 particles

Typical synchrotrons: $K \sim 0.0001 - 0.1$

$$\Delta \phi_{n+1} = \Delta \phi_n + \frac{2\pi h\eta}{\beta^2 E} \Delta E_n$$

$$\Delta E_{n+1} = QeV \cos \phi_s \Delta \phi_n + \left(1 + \frac{2\pi h\eta}{\beta^2 E} QeV \cos \phi_s\right) \Delta E_r$$

ᅷ

A Limit of Stability? we know how to analyze this ...

$$p_{n+1} = p_n - K \sin \theta_n$$

$$\theta_{n+1} = \theta_n + p_{n+1}$$

Each view uses the same initial conditions for 27 particles

Typical synchrotrons: $K \sim 0.0001 - 0.1$

$$\Delta \phi_{n+1} = \Delta \phi_n + \frac{2\pi h\eta}{\beta^2 E} \Delta E_n$$

$$\Delta E_{n+1} = QeV \cos \phi_s \Delta \phi_n + \left(1 + \frac{2\pi h\eta}{\beta^2 E} QeV \cos \phi_s\right) \Delta E_r$$

• A Limit of Stability? we know how to analyze this ...

$$p_{n+1} = p_n - K \sin \theta_n$$

$$\theta_{n+1} = \theta_n + p_{n+1}$$

Each view uses the same initial conditions for 27 particles

Typical synchrotrons: $K \sim 0.0001 - 0.1$

$$\Delta \phi_{n+1} = \Delta \phi_n + \frac{2\pi h\eta}{\beta^2 E} \Delta E_n$$

$$\Delta E_{n+1} = QeV \cos \phi_s \Delta \phi_n + \left(1 + \frac{2\pi h\eta}{\beta^2 E} QeV \cos \phi_s\right) \Delta E_r$$

• A Limit of Stability? we know how to analyze this ...

$$p_{n+1} = p_n - K \sin \theta_n$$
$$\theta_{n+1} = \theta_n + p_{n+1}$$

Each view uses the same initial conditions for 27 particles

Typical synchrotrons: $K \sim 0.0001 - 0.1$

we had, for small synchrotron oscillations:

 $\Delta \phi_{n+1} = \Delta \phi_n + \frac{2\pi h\eta}{\beta^2 E} \Delta E_n$ $\Delta E_{n+1} = QeV \cos \phi_s \Delta \phi_n + \left(1 + \frac{2\pi h\eta}{\beta^2 E} QeV \cos \phi_s\right) \Delta E_n$

• A Limit of Stability? we know how to analyze this ...

$$p_{n+1} = p_n - K \sin \theta_n$$

$$\theta_{n+1} = \theta_n + p_{n+1}$$

Each view uses the same initial conditions for 27 particles

Typical synchrotrons: $K \sim 0.0001 - 0.1$

we had, for small synchrotron oscillations:

 $\Delta \phi_{n+1} = \Delta \phi_n + \frac{2\pi h\eta}{\beta^2 E} \Delta E_n$ $\Delta E_{n+1} = QeV \cos \phi_s \Delta \phi_n + \left(1 + \frac{2\pi h\eta}{\beta^2 E} QeV \cos \phi_s\right) \Delta E_n$

Let's analyze this....

M. Syphers *PHYS 790-D* FALL 2019 39