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Outline

Review of particle-matter physical processes for muons
Review of the theoretical framework of ionization cooling

Application of ionization cooling to the Fermilab Muon g-2
Experiment

Design considerations:

— Choice of location

— Choice of material

— Choice of length and angle

— Choice of optics

Simulated performance




Particle-matter interactions

 Particles can interact with:
« atoms/molecules
 Atomic electrons

* nucleus

* Leads to several interaction processes:
lonization
Multiple scattering
Energy loss (Bremsstrahlung)

Hadronic showers




Carry the same electrical charge as electrons

Like electrons and unlike protons, muons are elementary
particles

« Do not feel the strong interaction, meaning no hadronic showers

Muons are ~200 times heavier than electrons

« Are not affected by Bremsstrahlung at most energies

As a result, muons can travel “untouched” for very long
distances inside materials




lonization

« Momentum of muons is reduced as they ionize atomic
electrons in the material

« Average energy loss is given by Bethe-Bloch formula
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Energy straggling
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* Due to the statistical nature of ionization energy loss, large
fluctuations can occur in the amount of energy deposited
by a particle traversing an absorber.

« Was first described by Landau (another Nobel prize
winner). Straggling increases rapidly for materials with high
electron density and very energetic beams.




Multiple scattering

0,

A

 Muon will be deflected due to Coulomb scattering from
nuclel

« The angle has a roughly Gaussian distribution of width 6,:
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Defining beam quality

Irregular beam lwregular galaxy

Particle

transverse Beam quality measures:

momentum

— emittance (g): volume of phase-space

— Brightness (B): density of phase-space

Particle
transverse

position We desire high brightness & low
emittance beams




Emittance growth from scattering

Incident Emerging
Beam . Beam

M. Syphers, GM2-doc-2343

For an individual particle after
scattering: x’' = x| + A6

Taking second order moments:
- (x?) = (x})
- {(x?) = ((xq + A6)?)
- {xx") = {xox0)

The new emittance after scattering is:
e = (x*Wx'?) — (xx')? or
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Emittance growth depends on size
and material




lonization cooling formalism (1)
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Absorber Accelerator

Momentum loss is Momentum gain

opposite to motion, is purely longitudinal \

D, Pv, Pu, AE decrease

Cooling term Multiple scattering term

l l « Cooling Is enhanced with good

der 1 dE_ Byprdos focusing & dense materials with
ds ~  PB2Eds

B2Eds "' 2 ds high radiation length

 BUT we cool transverse only!




lonization cooling formalism (2)

Cooling term | Stfaggling term

dE

: : : 2 0 (—) 2
- Longitudinal cooling: %% _ _,_\ds) , &<2Ems>
ds 0E ¢ ds

« Cooling occurs only if derivative:
(@) Incident Muon Beam

—af; >0
Evacuated
Dipole Magnet

lonization loss does not naturally
provide adequate longitudinal Apip
cooling

Can be enhanced, If it is arranged
that high energy muons lose more Wedge
energy than low energy ones. Absarer




Muon beam at birth
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History of ionization cooling (1)

CL G

Requirement:
Reduce 6D emittance ke :

by at least 5 orders
of magnitude ~ A\

d=8.4km

* As with an e*e™ collider, a y*u- collider would offer a
precision probe of fundamental interactions



Concept of ionization cooling (1)

The concept:

The physics processes:

Cooling improves if:
— Absorber is a low Z material

— The beam is well focused in the absorber

But, one more thing is missing...

Energy .
Loss I
ocssses
Two competing processes
1 .
Coulomb Scattering ' \
from Nucleus ®




History of ionization cooling (2)

RF Cavltles

SC mag,nets

% o% @%m

SC magnets

Absorbers

» Restore the lost momentum in z with a longitudinal E-field

« A pillbox cavity is placed adjacent to the absorber




First candidate — Guggenheim channel

Cavities u

Absorber' , | ‘ ' | —




Community acceptance
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A high-luminosity muon collider requires a significant reduction of the six-dimensional emittance prior
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A better design...

« Straight geometry (vs. spiral) simplifies construction and
relaxes several technological challenges

« Its length will depend on the application

absorber coll cavities TOP VIEW
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Cavities




One cooling cell

1LH wedge 650 MHz
] cavities




Performance: phase-space reduction
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Muon ionization cooling experiment (1)

Demonstration of ionization cooling at Rutherford Appleton
Laboratory, UK (US UK sponsored)




Muon |on|zat|on cooling experiment (2)
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Fermilab Muon Campus accelerator
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Motivation for the Muon g-2 Experiment

op/p = +1.26%

7000 ' . .
\ I Delivered
I Stored -

3.05 3.1 3.15
Momentum (GeV/c)

Statistical uncertainty of the measurement dependents on

muon intensity. Essential to place as many muons as possible
Into a stable orbit in the ring.

The ring accepts only a fraction of the delivered muons




Choice of

o

* For practicality, it is highly desirable to build the system
without modifying the existing Muon Campus beamline

Absorber is expected to trigger emittance growth &
mismatches so it is preferred to place it downstream of both
Injection to DR & extraction from DR areas wherein the

narrowest apertures exist.
Pick the last horizontal bend string in the M5 line. There are
two more advantages for this selection:

— Beam is free of protons and the remaining muons are at low rates,
hence energy deposition is at negligible levels

— Considerable dispersion and relatively low beta functions (next slide)




Choice of
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Choice of

Two alternative solutions for the
beam optics:

Y
w

— TDR (baseline) solution S;

— Modified solution S,that has
similar properties to S; but much
lower vertical beta function
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Choice of

 We can establish a merit factor Q, that takes into account
the cooling term (dE /ds) and scattering term (1/Lg), i.e.
Q — LR X dE/dS
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Choice of

Beryllium, Q=104.0 Polyethylene, Q=93.1

Stored Muons (%)
Stored Muons (%)

Wedge angle, 0 (deg.)
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Choice of

P

Aluminum, Q=38.8 Nickel, Q=18.6
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* Colors and performances are not same for the two plots!




Choice of

Solution 1 (S;) — TDR Solution 2 (S,) - Carol

B, =6.9m B, =24 m
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While a point with D >1 & beta <1 is preferred, with the tools
available (hardware, magnets) points (x) are currently possible

Monte Carlo assumes perfect matching & injection and no
straggling. More detailed simulation in the next slides




Simulations

* Monte Carlo model provides a good first-order estimate.
However, to further access feasibility of the wedge system it
must studied under more realistic assumptions

Use G4beamline, a Geant4 based code, that incorporates
key particle-matter physical processes (energy loss,
straggling, multiple scattering) as well as includes decays
and spin precession

All simulations start at ECMAG using a realistic beam
distribution that is the outcome of an end-to-end simulation
from the target




Performance at the end of M5 (1)
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Performance at the of M5 (2)
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Performance at the of M5 (3)
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Storage ring performance

—— No wedge
— Wedge (S,)

—— Wedge (S,)

ﬁ Gain: 21%
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Acceptance limits

Assuming 27.2 KV operation for the quads, the peak beta
functions in the ring are §,, = 8.0 mand B, = 18.0 m

The beam is constrained into a 45 mm aperture

Therefore acceptance limits are A,, = 253 ym and A,, =
112 um

This may explain the better performance for solution S,




Influence in muon polarization

No wedge — M5 end
o

i per POT
w -~ [4,]

0 : 1 - -0. 0 05 1
Polarization, Py Polarization, F’S

The wedge has a negligible effect on polarization and
therefore can be safely inserted along the beam path.




Influence In time profile
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Influence In time profile
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Positron removal?

e+, all
e+, Ap/p=+0.5%
— =g+, all (w)
M= =g+, AP/P=20.5% (W)
u+, all
1, Ap/p=+0.5%
].I.+, all (w)
— —u', Ap/p=£0.5% (W)
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Fabrication and installation progress

—— ———

Polyethylene wedge New power supplies for

- downstream optical matching Wedge housing

el

Wedge insertion g | Design of
actuator i~ | complete
with submillimeter B | mechanical
precision AR | .- assembly




Wedges in Muon Campus
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M5, Wedge 1 | M5, Wedge 2

« Special thanks to Jim Morgan for monitoring the fabrication
and installation process




Test with a Boron Carbide wedge

« A Dboron carbide wedge provided a 7% gain in stored muons
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Emittance exchange

« While the momentum spread reduces, the transverse

47

emittance grows as a result of the emittance exchange
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Test with a Polyethylene wedge

« A polyethylene wedge provided a 5% gain in stored muons
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Possibilities for improvement

 Lattice designs that will provide a higher dispersion and lower
beta function could improve the performance of the wedge

B, =6.9m

8.0 <
: 27.00
: - 24.00
25- 21.00
: 18.00
- _- 15.00
12.00
9.000
6.000
3.000

DlsperS|on D (

Beta function, g_(m)

o

49 7/19/2019 Diktys Stratakis | LDRD-Fest

Stored Muons (%)

2% Fermilab



