Emittance Preservation

Liouville's Theorem: the volume enclosed by surface in phase space is invariant under conservative forces
Another theorem from classical dynamics: integration over a time period of the "action variables" is an adiabatic invariant

$$
J=\int_{0}^{T} p_{x}(t) \frac{d x}{d t} d t
$$

- transverse: $\left(x, p_{x}\right),\left(y, p_{y}\right)$ are action variables
- longitudinal: ΔE and Δt are also action variables
, "normalized" transverse phase space emittances,

$$
\epsilon_{N}=(\beta \gamma) \epsilon=(p / m c) \int x^{\prime} d x=\int p_{x} d x / m c
$$

Protons vs. Electrons

- When dealing with a beam line or along a linac, the same issues affecting beam emittance exist for both electron and proton (or heavier ion) beams.
- In the case of circular accelerators, there is a distinct difference: charged particles radiate as they are accelerated, and electrons will radiate much more than protons and, as we have seen, the final emittance of electron beams in a ring will be defined by the optics of the ring.
- This is not true for a proton beam. If the emittance is increased due to errors or mismatches, the damage is done and cannot be undone without much effort

Sources of Emittance Growth

- Will discuss two classes of disruptive processes...
- Single non-adiabatic disturbance of the distribution
» examples: injection errors (steering, focusing); electrostatic "spark"; single pass through a vacuum window; a pinger/kicker excitation; intrusive diagnostic measurement; ...
- Repetitive random disturbances of individual particles, leading to diffusion
» examples: RF noise; beam-gas scattering; power supply noise; mechanical vibrations; ...

Non-adiabatic Disturbances Example: single pass through a thin object (vacuum window)

- Example: single pass through a vacuum window
- multiple Coulomb scattering through material

The beam particles interact with the atoms in the material and scatter, primarily from Coulomb interactions. In either plane - x or $\mathrm{y}-$ the distribution of scattering angles emerging from the material is given by:

$$
\theta_{r m s} \approx \frac{13.6 \mathrm{MeV}}{\beta p c} \sqrt{\frac{\ell}{L_{r a d}}}
$$

where $L_{\text {rad }}$ is the "radiation length" of the material:

$$
\frac{1}{L_{\text {rad }}} \approx 2 \alpha \frac{N_{A}}{A} \rho Z^{2} r_{e}^{2} \ln \frac{a}{R}
$$

$N_{A}=$ Avogadro's No., $A=$ atomic mass, $Z=$ charge state, $r_{e}=$ "classical electron radius", $a=$ radius of target atom, $R=$ radius of target nucleus, $\alpha=$ fine structure constant

Side Note: The Bethe Formula

- Radiation Length is related to the stopping power of material as charged particles pass through
- mean distance e- travels before losing all but 1/e of its energy
- The average energy loss rate is given by the Bethe formula:

$$
\frac{1}{L_{\text {rad }}} \approx 2 \alpha \frac{N_{A}}{A} \rho Z^{2} r_{e}^{2} \ln \frac{a}{R}
$$

"Bragg Peak"
$\left\langle\frac{d E}{d x}\right\rangle=\frac{4 \pi}{m_{e} c^{2}} \cdot \frac{n z^{2}}{\beta^{2}} \cdot\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2} \cdot\left[\ln \left(\frac{2 m_{e} c^{2} \beta^{2}}{I \cdot\left(1-\beta^{2}\right)}\right)-\beta^{2}\right]$

$$
n=\frac{N_{A} \cdot Z \cdot \rho}{A \cdot M_{u}}
$$

Used to determine depth of energy deposition for proton or ion therapy, for instance:

Non-adiabatic Disturbances Example: single pass through a thin object (vacuum window)

- As we saw earlier, the emittance and Courant-Snyder parameters describing a distribution can be written as:

$$
\epsilon_{N}=(\beta \gamma) \epsilon \quad \epsilon=\pi \sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}}
$$

- From the scattering, the angular distribution will be altered:

$$
\beta=\frac{\pi\left\langle x^{2}\right\rangle}{\epsilon} \quad \alpha=-\frac{\pi\left\langle x x^{\prime}\right\rangle}{\epsilon} \quad \gamma=\frac{\pi\left\langle x^{2}\right\rangle}{\epsilon}
$$

- We then average over the distribution to see the effect on the CS parameters and emittance...

$$
x^{\prime}=x_{0}^{\prime}+\Delta \theta \quad \Delta \theta \text { is random, with }\left\langle\Delta \theta^{2}\right\rangle \equiv \theta_{r m s}^{2}
$$

Non-adiabatic Disturbances Example: single pass through a thin object (vacuum window)

- As we saw earlier, the emittance and Courant-Snyder parameters describing a distribution can be written as:

$$
\begin{aligned}
& x=x_{0} \\
& \left\langle x^{2}\right\rangle=\left\langle x_{0}^{2}\right\rangle \\
& x^{\prime}=x_{0}^{\prime}+\Delta \theta \\
& \left\langle x^{\prime 2}\right\rangle=\left\langle\left(x_{0}^{\prime}+\Delta \theta\right)^{2}\right\rangle \\
& =\left\langle x_{0}^{\prime 2}+\Delta \theta^{2}+2 x_{0}^{\prime} \Delta \theta\right\rangle \\
& =\left\langle x_{0}^{\prime 2}\right\rangle+\left\langle\Delta \theta^{2}\right\rangle \\
& \left\langle x x^{\prime}\right\rangle=\left\langle x_{0}\left(x_{0}^{\prime}+\Delta \theta\right)\right\rangle=\left\langle x_{0} x_{0}^{\prime}\right\rangle
\end{aligned}
$$

assuming that the scattering process is uncorrelated with the phase space variables. The new emittance after scattering is then given by,

$$
(\epsilon / \pi)^{2}=\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}=\left\langle x_{0}^{2}\right\rangle\left(\left\langle x_{0}^{\prime 2}\right\rangle+\theta_{r m s}^{2}\right)-\left\langle x_{0} x_{0}^{\prime}\right\rangle^{2}
$$

or,

$$
\epsilon=\epsilon_{0} \sqrt{1+\frac{\left\langle x_{0}^{2}\right\rangle \theta_{r m s}^{2}}{\left(\epsilon_{0} / \pi\right)^{2}}}
$$

where $\theta_{r m s}=\left\langle\Delta \theta^{2}\right\rangle^{1 / 2}$. Since $\beta_{0}=\pi\left\langle x_{0}^{2}\right\rangle / \epsilon_{0}$, then we can write

$$
\epsilon=\epsilon_{0} \sqrt{1+\theta_{r m s}^{2} \frac{\beta_{0}}{\left(\epsilon_{0} / \pi\right)}}
$$

And, using this new emittance, we can describe the resulting distribution after the scattering by new Courant-Snyder parameters

$$
\begin{aligned}
& \beta=\frac{\pi\left\langle x^{2}\right\rangle}{\epsilon}=\beta_{0} \frac{\epsilon_{0}}{\epsilon} \\
& \alpha=\alpha_{0} \frac{\epsilon_{0}}{\epsilon} \\
& \gamma=\left(\gamma_{0}+\frac{\theta_{r m s}^{2}}{\left(\epsilon_{0} / \pi\right)}\right) \frac{\epsilon_{0}}{\epsilon}
\end{aligned}
$$

Figure 1: Phase space before/after (left/right) scattering. Blue/red lines indicate 95% emittances before/after scattering.

If the scattering is inherent in the system, then can imagine re-tuning the downstream optical system to match to the new conditions; but will still have an overall emittance growth

Non-adiabatic Disturbances

 Example: single pass through a linac/beamline$$
\theta_{r m s} \approx \frac{13.6 \mathrm{MeV}}{\beta p c} \sqrt{\frac{\ell}{L_{r a d}}}
$$

- Suppose we pass through a long "evacuated" tube of length $L=230 \mathrm{~m}$. As an example, consider a tube which started with air, and has been evacuated to an average pressure of 10^{-6} torr (760 torr $=1$ atm)
- From the PDG report, find $L_{\text {rad }}$ of air (dry; 1am):
- density $=1.205 \mathrm{~g} / \mathrm{l}, L_{\text {rad }}=36.6 \mathrm{~g} / \mathrm{cm}^{2}$
- so, $L_{\text {rad }}=\left(36.6 \mathrm{~g} / \mathrm{cm}^{2}\right) /(1.205 \mathrm{~g} / \mathrm{ml})\left(1 / 1000 \mathrm{~cm}^{3}\right)$
- $\quad=30373 \mathrm{~cm}=304 \mathrm{~m}$
- at 10-6 torr, through $P V=n R T$, $L_{\text {rad }}=231 \times 10^{9} \mathrm{~m}$

Estimate the rms scattering angle of a typical particle, just due to this effect:

$$
\theta_{r m s} \approx \frac{13.6 \mathrm{MeV}}{27 \mathrm{MeV}} \sqrt{\frac{230 \mathrm{~m}}{23 \times 10^{10} \mathrm{~m}}} \approx 16 \mu \mathrm{rad}
$$

Side Note: Kicker Magnet

- Want to induce an angular deflection of a particle bunch, or bunch train, without affecting other particles outside of the bunch/train
- Need significant B fields that turn on/off on the scale of, say, $\mu \mathrm{s}$
- ex: bunches @ $1 \mathrm{MHz}=1 \mu \mathrm{~s}$
- Ex: discharge large current into an inductive load (magnet) with a resistance, gives time constants on the scale of $\sim \mathrm{L} / \mathrm{R}: \quad \mu \mathrm{H} / \mathrm{Ohm}=\mu \mathrm{s}$

$$
\mathrm{B}=\mathrm{B} \rho \theta / \mathrm{L} \quad \quad \sim 1 \mu \mathrm{~s}
$$ thus low fields and low turns, high currents in the magnets

Side Note: Kicker Magnet

Northern Illinois University

- Kickers typically used to deflect beam into and out of beam lines and accelerators

Ex: injection into a synchrotron:
figure courtesy of M.J. Barnes, et al., CERN

- Can also be used for diagnostic purposes, by intentionally inducing a betatron oscillation in the beam and observing downstream reaction

Non-adiabatic Disturbances
 Example: Discharge of a beam kicker in a synchrotron

Northern Illinois University

- Initially, the distribution is simply "displaced" by the action of the kick:
- Nonlinearities will yield:
- tune vs. amplitude
- decoherence
- filamentation
- emittance growth

Accelerator Model

- So we will model these effects by assuming the distribution will oscillate about the closed orbit, and that the oscillation frequencies of the particles will depend upon the amplitude of their oscillations
- typically: $v \approx v_{0}+k a^{2}$
- coherent at first,
- then "decoheres"
» leads to filamentation
- eventually: larger emittance
nonlinear tune shift

Example: Injection Steering Mismatch

- Example: injection steering error

```
how does ras evolve?
```


$$
\text { if } \Delta x=0 \text {, would have }
$$

$$
\left\langle x^{2}\right\rangle=\frac{1}{2} \rho^{2}=\sigma_{0}^{2}
$$

but here,
$a^{2}=\rho^{2}+\Delta x^{2}-2 \Delta x \rho \cos \phi$
average oven all parties. $\left\langle a^{2}\right\rangle=\left\langle\rho^{2}\right\rangle+\Delta x^{2}-2 \Delta x \underbrace{\langle\rho \cos \phi\rangle}_{\sim \phi}$
$\Rightarrow\left\langle a^{2}\right\rangle=\left\langle p^{2}\right\rangle+\Delta x^{2}$ apter decoherence
$\Rightarrow\left\langle x^{2}\right\rangle=\sigma_{0}^{2}+\frac{1}{2} \Delta x^{2}$

β O location $\alpha \Delta x$
ar. $\epsilon / \epsilon_{0}=1+\frac{1}{2}\left(\frac{\Delta x}{\sigma_{0}}\right)^{2}$

$$
\begin{aligned}
& \text { ingestion eros - } \Delta \epsilon_{N} \propto(\gamma \beta) \text {, } \therefore \text { one important © higher energies } \\
& \text { lt } \Delta x=1 \quad \hat{\beta} \quad \gamma \beta \quad \Delta \epsilon_{N}
\end{aligned}
$$

Injection Mismatch

Phase Space

$$
\operatorname{mean}\left(x_{f}\right)=-1.609
$$

\times Profile

$\operatorname{stdev}\left(X_{f}\right)=1.179$
Emittance Increase: \quad stdev $\left(x_{f}\right)^{2}=1.39$
(Steering Mismatch) $\quad 1+\frac{1}{2} \cdot \Delta x^{2}=3$

$$
\text { FRAME }=8 \quad \text { (Amplitude function Mismatch) } \quad \frac{r_{\beta}{ }^{2}+1}{2 \cdot r_{\beta}}=1
$$

Injection "Beta" Mismatch

- We imagine a ring with an ideal amplitude function, β, at an injection point. But, suppose the beam line transporting beam from an upstream injector delivers the wrong β function:

then, after the distribution tumbles and filaments in phone space, the eviltance will pow...

$$
a^{2}=x^{2}+\left(f_{0} x^{1}+\alpha_{0} x\right)^{2} \equiv x^{2}+p^{2}
$$

$$
\text { let } b \equiv \beta / \beta_{0} \Rightarrow\left\langle a^{2}\right\rangle=\left\langle x^{2}\right\rangle+\left\langle p^{2}\right\rangle
$$

$$
=\left(\sqrt{b} \sigma_{0}\right)^{2}+\left(\frac{1}{\sqrt{b}} \sigma_{0}\right)^{2}
$$

$$
\Rightarrow 2 \sigma^{2}=\frac{b^{2}+1}{b} \sigma_{0}^{2} \Rightarrow \epsilon / \epsilon_{0}=\frac{b^{2}+1}{2 b}
$$

Injection "Beta" Mismatch

- Can write a more general result in terms of the "mismatch" invariant:
- $\operatorname{det}(\Delta \mathrm{J})=\left|\Delta \beta \Delta \gamma-\Delta \alpha^{2}\right|=$ invariant
- If inject with "beam" parameters α, β, γ, whereas the ring has periodic parameters $\alpha_{0}, \beta_{0}, \gamma_{0}$, then...
... after filamentation, the final emittance will be given by

$$
\Delta J=\left(\begin{array}{cc}
\Delta \alpha & \Delta \beta \\
-\Delta \gamma & -\Delta \alpha
\end{array}\right)
$$

$$
\epsilon / \epsilon_{0}=1+\frac{1}{2}|\operatorname{det} \Delta J|
$$

Injection Mismatch

- movie...

Mismatch of the Dispersion Function

- Can also imagine having the dispersion function entering the accelerator from a beam line having the wrong value
- amounts to an injection steering error for an off-momentum particle
- similar analysis as before

$$
\begin{aligned}
& \text { each particle of momention } \frac{\Delta p}{p} \text { will } \\
& \text { see an injection steering error } \\
& \text { of amplitude } X_{p}=\Delta D \frac{\Delta p}{p} \\
& \Rightarrow \quad a^{2}=p^{2}+\Delta D^{2}\left(\frac{\Delta p}{p}\right)^{2} \\
& \Rightarrow \quad\left\langle a^{2}\right\rangle=\left\langle\rho^{2}\right\rangle+\Delta D^{2}\left\langle\left(\frac{\Delta p}{p}\right)^{2}\right\rangle
\end{aligned}
$$

important if the incoming beam has a high momentum spread

Emittance Growth from Diffusive Processes

- So far have looked at single, non-adiabatic disturbances of our initial particle distribution
- Next, we look at the effect of repetitive random disturbances of individual particles, leading to diffusion » examples: scattering of particles off of the residual gas in the vacuum chamber; power supply noise; RF noise; continuous mechanical vibrations, ...
- This amounts to continuous, random events taking place to alter the transverse amplitudes of the motion of individual particles

Repetitive Random Disturbances
Estimations from a phase space perspective...

Next, considu diffusive mechanisms...
each particle's amplitude is changed "continuously" by a vandom process...

$$
\begin{aligned}
& a_{1}^{2}=a_{0}^{2}+\beta^{2} \Delta \theta_{1}^{2}-2 a_{0} \beta \theta_{1} \cos \phi_{1} \\
& a_{n}^{2}=a_{n-1}^{2}+\beta^{2} \Delta \theta_{n}^{2}-2 a_{n-1} \beta \theta_{n} \cos \phi_{n}
\end{aligned}
$$

average over all particles...

$$
\begin{aligned}
\left\langle a^{2}\right\rangle_{n}=\left\langle a^{2}\right\rangle_{n-1} & +\beta^{2}\left\langle\Delta \theta^{2}\right\rangle_{n} \\
& -2 \beta\langle a\rangle\langle\theta\rangle_{n}\langle\cos \phi\rangle_{n}
\end{aligned}
$$

$$
\therefore d\left\langle a^{2}\right\rangle=\beta^{2} \theta_{\text {rus }}^{2} d n
$$

Repetitive Random Disturbances

- Look again at "vacuum" problem examined earlier
- Suppose circulating in a synchrotron w/ $P=10^{-6}$ torr:
- suppose $\langle\beta\rangle=20 \mathrm{~m}$ around the circumference, and that $E=13.6 \mathrm{GeV}$
- $d<a^{2}>=2 d<x^{2}>=2<\beta>d(\epsilon / \pi)=<\beta>{ }^{2} \theta_{r m s}{ }^{2} d n$
- $d \epsilon / d t=\pi / 2<\beta>\theta_{\text {rms }}{ }^{2} f_{0}=\pi / 2<\beta>(0.0136 / E) v / L_{\text {rad }}$
- $\quad=\pi / 2(20 \mathrm{~m})\left(10^{-3}\right)\left(3 \times 10^{8} / 2.3 \times 10^{11}\right)$
- $\quad=\pi\left(13 \times 10^{-6} \mathrm{~m} / \mathrm{s}\right)=13 \pi \mathrm{~mm}-\mathrm{mr} / \mathrm{s}$!
- so, might need much better vacuum here!

Repetitive Random Disturbances

- So, we see that in repetitive systems such random scattering events and other similar disturbances can cause emittance growth over time
- Wish to analyze such conditions
- analytical approaches
- simulations

The Diffusion Equation

$$
\begin{aligned}
& \frac{\partial}{\partial t}(f \cdot A \cdot d x)=\underbrace{A \cdot J(x)}_{\text {\#into }}-\underbrace{A \cdot J(x+d x)}_{\text {\#out of }} \\
& J=\text { average \# particles per unit time passing position } x \\
& \Rightarrow \frac{\partial f}{\partial t}=-\frac{\partial J}{\partial x} \\
& \text { \&f uniform, then } J=0 ; \text { otherwise } \quad J \propto-\frac{\partial f}{\partial x} \\
& \therefore \quad \frac{\partial f}{\partial t}=C \cdot \frac{\partial^{2} f}{\partial x^{2}} \quad C=\text { constant }
\end{aligned}
$$

- particle velocities are randomly altered
- particles will move from one region into another
- the rate at which particles cross into or out of a region depends on the slope of the distribution function

The Diffusion Equation

- think of betatron motion in terms of coordinates:
- $x, \alpha x+\beta x^{\prime} \quad$ (circular)

$$
\begin{array}{ll}
\frac{\partial f}{\partial t}=C \cdot \nabla^{2} f & \\
\frac{\epsilon_{p}}{} \equiv r^{2} / \beta \\
\frac{\partial f}{\partial t}=C \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right) & R \equiv \frac{\partial}{\partial t}\left\langle r^{2} / \beta\right\rangle \\
\frac{\partial f}{\partial t}=R \frac{\partial}{\partial \epsilon_{p}}\left(\epsilon_{p} \frac{\partial f}{\partial \epsilon_{p}}\right) & \begin{aligned}
W & \equiv a^{2} / \beta \sim \text { "acceptance" } \\
& \tau \equiv(R / W) t \\
& Z \equiv \epsilon_{p} / W
\end{aligned} \\
&
\end{array}
$$

$$
\begin{aligned}
f(Z, 0) & =f_{0}(Z) \\
f(1, \tau) & =0
\end{aligned}
$$

The Diffusion Equation

- Analytical Calculations:
- solve and make plots:

- Numerical Simulations
- give particles random kicks over time, track in phase space, and plot distribution, etc.

$$
\begin{aligned}
\binom{x_{n+1}}{x_{n+1}^{\prime}}= & M_{2 \pi \nu}\binom{x_{n}}{x_{n}^{\prime}+\Delta \theta_{n}} \\
& \begin{array}{l}
\text { random number each time, } \\
\text { determined by the process }
\end{array}
\end{aligned}
$$

Analytical Solutions

orthern Illinois University

- movie

each particle gets a random "kick" in x^{\prime} each turn, taken from a Gaussian distribution with rms value of $\theta_{\text {rms }}$

$$
\sigma_{\text {asy }}=1.965 \quad \sigma_{\mathrm{x}}=1.783
$$

$$
t=615
$$

$$
\mathrm{N}_{\text {leff }}{ }_{\mathrm{t}}=1849
$$

Numerical Solutions Transverse Diffusion

- movie
aperture at $x=a$

$$
\tau=\left(4 / 2.405^{2}\right)(W / R)
$$

Some Comments

- The emittance may be growing, but the intensity will not decrease until the beam reaches an aperture
- The beam size may stop growing, but that does not mean that the individual particle amplitudes are no longer growing - just that the aperture was reached
- The long-term exponential decay of the beam intensity can tell you what the emittance growth rate is, if you know the transverse acceptance
- A beam with an initially more uniform distribution can actually have its "rms" value decrease until equilibrium is reached - it is NOT being "cooled"

Comments on "Beam Cooling"

- Stochastic Beam Cooling
- Electron Cooling of Hadron Beams
- Ionization Cooling

Example:Longitudinal Diffusion due to RF Noise

Here, a random phase error is given to each particle every turn

