
Emittance Preservation 

‣ Liouville’s Theorem:  the volume enclosed by surface in 
phase space is invariant under conservative forces 

‣ Another theorem from classical dynamics: integration over 
a time period of the “action variables” is an adiabatic 
invariant 

‣ transverse:  (x, px), (y, py) are action variables 
‣ longitudinal:  𝛥E and 𝛥t are also action variables 

‣ “normalized” transverse phase space emittances,  
‣         𝜖N =  (𝛽𝛾)𝜖 = (p/mc) ∫ x’ dx = ∫ px dx /mc
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Protons vs. Electrons

§ When dealing with a beam line or along a linac, the same 
issues affecting beam emittance exist for both electron and 
proton (or heavier ion) beams. 

§ In the case of circular accelerators, there is a distinct 
difference:  charged particles radiate as they are 
accelerated, and electrons will radiate much more than 
protons and, as we have seen, the final emittance of 
electron beams in a ring will be defined by the optics of the 
ring. 

§ This is not true for a proton beam.  If the emittance is 
increased due to errors or mismatches, the damage is done 
and cannot be undone without much effort
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Sources of Emittance Growth
§ Will discuss two classes of disruptive processes… 

• Single non-adiabatic disturbance of the distribution 
» examples:  injection errors (steering, focusing); electrostatic 

“spark”; single pass through a vacuum window; a pinger/kicker 
excitation; intrusive diagnostic measurement; … 

• Repetitive random disturbances of individual particles, leading 
to diffusion 
» examples:  RF noise; beam-gas scattering; power supply noise; 

mechanical vibrations; …
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Non-adiabatic Disturbances Example:  single pass 
through a thin object (vacuum window)

§ Example:  single pass through a vacuum window
• multiple Coulomb scattering through material
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16 32. Passage of particles through matter
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Figure 32.10: Quantities used to describe multiple Coulomb scattering. The
particle is incident in the plane of the figure.

Fig. 32.10 shows these and other quantities sometimes used to describe multiple
Coulomb scattering. They are
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All the quantitative estimates in this section apply only in the limit of small θ rms
plane and

in the absence of large-angle scatters. The random variables s, ψ, y, and θ in a given plane
are correlated. Obviously, y ≈ xψ. In addition, y and θ have the correlation coefficient
ρyθ =

√
3/2 ≈ 0.87. For Monte Carlo generation of a joint (y plane, θplane) distribution,

or for other calculations, it may be most convenient to work with independent Gaussian
random variables (z1, z2) with mean zero and variance one, and then set

yplane =z1 x θ0(1 − ρ2
yθ)

1/2/
√

3 + z2 ρyθx θ0/
√

3 (32.21)

=z1 x θ0/
√

12 + z2 x θ0/2 ; (32.22)

θplane =z2 θ0 . (32.23)

Note that the second term for y plane equals x θplane/2 and represents the displacement
that would have occurred had the deflection θplane all occurred at the single point x/2.

For heavy ions the multiple Coulomb scattering has been measured and compared with
various theoretical distributions [41].
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The	beam	particles	interact	with	the	
atoms	in	the	material	and	scatter,	
primarily	from	Coulomb	interactions.		In	
either	plane	—	x	or	y	—	the	distribution	of	
scattering	angles	emerging	from	the	
material	is	given	by:

where	Lrad	is	the	“radiation	length”	of	the	material:

1

Lrad
⇡ 2↵

NA

A
⇢Z2r2e ln

a

R

NA	=	Avogadro’s	No.,	A	=	atomic	mass,	Z	=	charge	state,	re	=	“classical	electron	radius”,	
a	=	radius	of	target	atom,	R	=	radius	of	target	nucleus,	α	=	fine	structure	constant

for	more	accurate	estimates,	see		Particle	Data	Booklet,		http://pdg.lbl.gov

http://pdg.lbl.gov


Side Note:  The Bethe Formula
§ Radiation Length is related to the stopping power of material as charged 

particles pass through 

• mean distance e- travels before losing all but 1/e of its energy 

§ The average energy loss rate is given by the Bethe formula:
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H. Bethe und J. Ashkin in "Experimental Nuclear Physics, 
ed. E. Segré, J. Wiley, New York, 1953, p. 253

Used	to	determine	depth	of	energy	deposition	
for	proton	or	ion	therapy,	for	instance:

“Bragg	Peak”
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§ As we saw earlier, the emittance and Courant-Snyder parameters 
describing a distribution can be written as: 

§ From the scattering, the angular distribution will be altered: 

§ We then average over the distribution to see the effect on the CS 
parameters and emittance…
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Non-adiabatic Disturbances Example:  single pass 
through a thin object (vacuum window)



§ As we saw earlier, the emittance and Courant-Snyder parameters describing a 
distribution can be written as:
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and hence,

hx2i = hx20i
hx02i = h(x00 +�✓)2i

= hx002 +�✓2 + 2x00�✓i
= hx002i+ h�✓2i

hxx0i = hx0(x00 +�✓)i = hx0x00i

assuming that the scattering process is uncorrelated with the phase space
variables. The new emittance after scattering is then given by,

(✏/⇡)2 = hx2ihx02i � hxx0i2 = hx20i(hx002i+ ✓2rms)� hx0x00i2

or,

✏ = ✏0

s
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where ✓rms = h�✓2i1/2. Since �0 = ⇡hx20i/✏0, then we can write

✏ = ✏0

s
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�0

(✏0/⇡)
.

And, using this new emittance, we can describe the resulting distribution
after the scattering by new Courant-Snyder parameters
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One can check that indeed �� � ↵2 = �0�0 � ↵2
0 = 1.

Figure 1 shows an example of the phase space distribution before and
after scattering where arbitrary initial parameters are ↵0 = �2, �0 = 20 m,
and the initial rms beam size is chosen to be 1 mm, for which the rms emit-
tance ✏ = 0.05 ⇡ mm-mr. The rms scattering angle is 0.25 mr in the example.
The ellipses indicated by dotted lines correspond to 95% emittances (= 6⇥✏
given above) for easier visibility. Here, the emittance growth is a factor of
5, and the amplitude functions � and ↵ decrease by factors of 5, consistent
with

p
1 + ⇡�0✓2rms/✏0 for the parameters used.
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Figure 1: Phase space before/after (left/right) scattering. Blue/red lines
indicate 95% emittances before/after scattering.
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If	the	scattering	is	inherent	in	the	system,	then	
can	imagine	re-tuning	the	downstream	optical	
system	to	match	to	the	new	conditions;	but	
will	still	have	an	overall	emittance	growth

x0 = x0
0 +�✓

x = x0

Non-adiabatic Disturbances Example:  single pass 
through a thin object (vacuum window)



Non-adiabatic Disturbances 
Example:  single pass through a linac/beamline
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r
`
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§ Suppose we pass through a long “evacuated” tube of length L = 230 m.  
As an example, consider a tube which started with air, and has been 
evacuated to an average pressure of 10-6 torr   (760 torr = 1 atm) 

§ From the PDG report, find Lrad of air (dry; 1am): 
• density =  1.205 g/l   ,    Lrad =  36.6 g/cm2        
• so, Lrad = (36.6 g/cm2)/(1.205 g/ml)(l/1000 cm3) 
•              = 30373 cm = 304 m 
• at 10-6 torr, through PV=nRT,  Lrad =  231x109 m  

‣ Estimate the rms scattering angle of a typical particle, just due to this 
effect:
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r
230 m

23⇥ 1010 m
⇡ 16 µrad

(beam	line	at	Fermilab)



Side Note:  Kicker Magnet
§ Want to induce an angular deflection of a particle bunch, or bunch train, 

without affecting other particles outside of the bunch/train 
§ Need significant B fields that turn on/off on the scale of, say, 𝜇s    

• ex:  bunches @ 1 MHz = 1 𝜇s 

§ Ex:  discharge large current into an inductive load (magnet) with a 
resistance,   gives time constants on the scale of ~ L/R:     𝜇H/Ohm = 𝜇s
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t

~1	𝜇s

many	𝜇s
~	>	1	𝜇s

B	=	B𝜌	𝜃/L

fast	means	low	inductance,	
thus	low	fields	and	low	turns,	
high	currents	in	the	magnets



Side Note:  Kicker Magnet
§ Kickers typically used to deflect beam into and out of beam lines and 

accelerators 

§ Can also be used for diagnostic purposes, by intentionally inducing a 
betatron oscillation in the beam and observing downstream reaction
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shape, this can translate into small offsets with respect to the closed orbit (betatron oscillations). Thus 
a fast, low-ripple, kicker system is generally required.  

2 Single-turn (fast) injection 
Figure 1 shows an example of fast single-turn injection in one plane. The injected beam passes 
through the homogeneous field region (gap) of the septum: circulating beam is in the field-free region 
(i.e., space separation of injected and circulating beam). The septum deflects the injected beam onto 
the closed orbit at the centre of the kicker magnet; the kicker magnet compensates the remaining 
angle. The septum and kicker are either side of a quadrupole (defocusing in the injection plane) which 
provides some of the required deflection and minimizes the required strength of the kicker magnet. 

Septum magnet

Kicker magnet 
(installed in 

circulating beam)

Circulating beam

Quad
(defocusing in 
injection plane)

Homogeneous 
field

Field free region

Quad
(focusing in 

injection plane)

time
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field

intensity

injected 
beam

=boxcar? stacking
circulating 

beam

 
 

Fig. 1: Fast single-turn injection in one plane 

A kicker magnet is installed in the accelerator and hence the circulating beam is in the aperture 
of the kicker. Thus the kicker field must rise from zero to full field in the time interval between the 
circulating beam and the start of the injected beam (Fig. 1, top right) and fall from full field to zero 
field in the time interval between the end of the injected beam and the subsequent circulating beam 
(Fig. 1, top right). The kicker system is described in more detail in Section 4.  

Vertically deflecting 
kicker magnet

D-quad

Circulating 
beam

F-quad

Horizontally deflecting 
Lambertson septum 

magnet
Vertical Plane

Horizontal Plane

 
 

Fig. 2: Fast single-turn injection in two planes 

M.J. BARNES, L. DUCIMETIÈRE, T. FOWLER, V. SENAJ, L. SERMEUS
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Ex:		injection	into	a	synchrotron:

figure	courtesy	of	
M.J.	Barnes,	et	al.,	CERN	



Non-adiabatic Disturbances 
Example:  Discharge of a beam kicker in a synchrotron

§ Initially, the distribution is simply “displaced” by the action of the kick: 

§ Nonlinearities will yield: 
• tune vs. amplitude 
• decoherence 
• filamentation 
• emittance growth
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Figure 4.3: A simulation of kicked particles when there is an octupole field.

Because of the amplitude dependent tune shift due to the octupole field, the

particles gradually lose the coherence (decoherence). Due to the decoherence,

the oscillations of the beam centroid damp down and the beam size increases.
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figure	by	R.	Miyamoto



Accelerator Model 
§ So we will model these effects by assuming the distribution will oscillate 

about the closed orbit, and that the oscillation frequencies of the particles 
will depend upon the amplitude of their oscillations 

• typically:    𝜈 ≈ 𝜈0 + ka2 

• coherent at first, 
• then “decoheres” 
» leads to filamentation 

• eventually:  larger emittance
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nonlinear	tune	shift



Example:  Injection Steering Mismatch
§ Example:  injection steering error
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95%	emittance;	no	“6”	if	rms	emittance



Injection Mismatch
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Injection “Beta” Mismatch
§ We imagine a ring with an ideal amplitude function, 𝛽, at an injection 

point.  But, suppose the beam line transporting beam from an 
upstream injector delivers the wrong 𝛽 function:
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Injection “Beta” Mismatch
§ Can write a more general result in terms of the “mismatch” invariant:
• det(𝛥J)  =  | 𝛥𝛽𝛥𝛾 - 𝛥α2 |  =  invariant 

§ If inject with “beam” parameters α,𝛽, 𝛾, whereas the ring has 
periodic parameters α0,𝛽0, 𝛾0, then…

§ … after filamentation, the final emittance will be given by
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Injection Mismatch
§ movie…
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Mismatch of the Dispersion Function
§ Can also imagine having the dispersion function entering the 

accelerator from a beam line having the wrong value
• amounts to an injection steering error for an off-momentum particle 

— similar analysis as before
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important	if	the	incoming	beam	has	a	high	
momentum	spread

	÷	6		for	rms	emittance	growth



Emittance Growth from Diffusive 
Processes

§ So far have looked at single, non-adiabatic disturbances of 
our initial particle distribution 

§ Next, we look at the effect of repetitive random 
disturbances of individual particles, leading to diffusion 
» examples:  scattering of particles off of the residual gas 

in the vacuum chamber; power supply noise; RF noise; 
continuous mechanical vibrations, … 

§ This amounts to continuous, random events taking place to 
alter the transverse amplitudes of the motion of individual 
particles
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Repetitive Random Disturbances

§ Estimations from a phase space perspective…
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Repetitive Random Disturbances
§ Look again at “vacuum” problem examined earlier 
§ Suppose circulating in a synchrotron w/ P=10-6 torr: 

• suppose <𝛽> = 20 m around the circumference, and that E = 13.6 GeV 
• d<a2> = 2 d<x2> = 2 <𝛽> d(𝜖/𝜋) = <𝛽>2 𝜃rms2 dn 
• d𝜖/dt = 𝜋/2 <𝛽> 𝜃rms2 f0 = 𝜋/2 <𝛽> (0.0136/E) v/Lrad  
•          = 𝜋/2 (20 m) (10-3) (3x108/2.3x1011) 
•          = 𝜋 (13x10-6 m/s) = 13 𝜋 mm-mr/s  ! 
• so, might need much better vacuum here!
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Repetitive Random Disturbances
§ So, we see that in repetitive systems such random scattering events and 

other similar disturbances can cause emittance growth over time 
§ Wish to analyze such conditions 

• analytical approaches 
• simulations
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The Diffusion Equation
§ particle velocities are 

randomly altered 
§ particles will move from one 

region into another 
§ the rate at which particles 

cross into or out of a region 
depends on the slope of the 
distribution function
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can	solve	analytically



The Diffusion Equation
§ think of betatron motion in 

terms of coordinates:
•  x, 𝛼x+𝛽x’    (circular)

§ use cylindrical coordinates 
for the Diffusion Equation

§ re-cast in terms of an 
emittance ~ r 2 / 𝛽

§ with appropriate scaling, 
can write a dimensionless 
equation for the distribution 
function.  Emittance is now 
scaled by the aperture 
acceptance

§ apply boundary conditions
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The Diffusion Equation

§ Analytical Calculations:
• solve and make plots:
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• Numerical Simulations
‣ give particles random 

kicks over time, track 
in phase space, and 
plot distribution, etc.
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“Emittance”

Beam	Size

ap	=	10	σ0 ap	=	1	σ0

Analytical	Solutions

“Emittance”

Beam	Size



Transverse Diffusion — Scattering
§ movie
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each	particle	
gets	a	random	
“kick”	in	x’	each	
turn,	taken	
from	a	Gaussian	
distribution	
with	rms	value	
of	𝜃rms

Numerical	Solutions



Transverse Diffusion

§ movie
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R	=	d𝜖/dt	=	constant			(given	by	mechanism)

final	N(t)	~	e-t/τ	

									τ	=	(4/2.4052)(W/R)

beam	has	not	
reached	the	
aperture	yet

final	equilibrium	
distribution	is	
well-defined

no	apparent	emittance	
growth,	but	particle	
amplitudes	are	indeed	
growing,	and	particles	
are	being	lost

W	=	𝜋a2/𝛽

aperture	at	x	=	a

Numerical	Solutions



Some Comments
§ The emittance may be growing, but the intensity will not decrease until 

the beam reaches an aperture 
§ The beam size may stop growing, but that does not mean that the 

individual particle amplitudes are no longer growing — just that the 
aperture was reached 

§ The long-term exponential decay of the beam intensity can tell you what 
the emittance growth rate is, if you know the transverse acceptance 

§ A beam with an initially more uniform distribution can actually have its 
“rms” value decrease until equilibrium is reached — it is NOT being 
“cooled”
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Comments on “Beam Cooling”
§ Stochastic Beam Cooling 
§ Electron Cooling of Hadron Beams 
§ Ionization Cooling
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Example:Longitudinal Diffusion due to RF Noise

§ movie
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Here,	a	random	phase	error	
is	given	to	each	particle	
every	turn


