

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Advanced Simulation – Lecture 9

J.P. Holzbauer Applied Electromagnetics - USPAS 2/3/2016

- More energy: electrons generate plasma and melt surface
- Molten surface splatters and generates new field emission points!
 ⇒ limits the achievable field
- Excessive fields can also damage the structures
- Design structures with low E_{surf}/E_{acc}
- Study new materials (Mo, W)

Damaged CLIC structure iris

E Mo W Cu e 0 500 μm

Damage on iris after runs of the 30-cell clamped structures tested in CTFII. First (a, b and c) and generic irises (d, e and f) of W ,Mo and Cu structures respectively.

First iris

downstream iris

High gradient tests of new structures with molybdenum irises reached 190 MV/m peak accelerating gradient without any damage well above the nominal CLIC accelerating field of 150 MV/m but with RF pulse length of 16 ns only (nominal 200 ns)

30 cell clamped tungsten-iris structure

CLIC – overall layout

- Very high gradients possible with NC accelerating structures at high RF frequencies ($30 \text{ GHz} \rightarrow 12 \text{ GHz}$)
- Extract required high RF power from an intense e- "drive beam"
- Generate efficiently long beam pulse and compress it (in power + frequency)

Demonstration of frequency multiplication

İİL

Software for EM Simulation

- CST-Microwave Studio
 - Standard for single computer simulation, some particle tracking, etc.
- ANALYST
 - Less common, but powerful scripting done by National Instruments
- ANSYS-APDL/HFSS
 - HFSS is now a module inside ANSYS-Workbench
 - Has the potential to do coupled simulation for Multiphysics
 - APDL is no longer supported, but very powerful Multiphysics solver (my preference, although I'm in the minority)
- COMSOL
 - Powerful Multiphysics solver, with high learning curve.

🛟 Fermilab

Distributed Computing

- All of these software choices are designed for single machine computing.
- You can spend tons of money on a single computer (64 GB RAM, 8-core with hyperthreading, etc.) and do significant amounts of R&D (think about the computing you've done with a standard computer).
- However, large simulations, complex geometries with symmetry, time domain/transient response, high precision simulation (perturbative) all are beyond single computer solvers.

ACE3P Group at SLAC

- At SLAC, they are building a code from the ground up to be used with distributed computing under the SciDAQ system.
- They have several computing clusters that they have tens of millions of core hours per year on.
- They've created modules to solve eigenmode, frequency domain, time domain, thermal, mechanical, particle in cell, and more.
- They run a workshop every hear called CW## (CW16 this year), which I recommend if you're interested.
- Thanks to Zenghai who provided me the following slides I'm showing today.

ACE3P

- CW14 is organized and hosted by <u>Advanced Computations Department</u> (ACD) to promote and disseminate <u>ACE3P</u>.
- ACD team members Lixin Ge, Kwok Ko, Oleksiy Kononenko, Zenghai Li, Cho Ng, Liling Xiao
- ACD is supported by SLAC and DOE's High Performance Computing Initiatives
 - (1998–2001) HPC Accelerator Grand Challenge
 - (2001-2007) Scientific Discovery through Advanced Computation (SciDAC) - Accelerator Science and Technology (AST)
 - (2007-2012) SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS)
 - o (2012-2015) SciDAC-3 ComPASS

CW14

1. 3D Electromagnetic Codes for Accelerator Modeling

Software for a coupled multiphysics problems analysis					
	ACE3P	COMSOL*	CST*	ANSYS*	
Domain	3D	2D, 3D	3D	3D	
Coupled RF & mechanical (df/dp)	V	V	V	V	
LFD	V	V	-	V	
Coupled RF & Thermal	V	V	V	V	
Parallel Computing	V	V	V	V	
Moving Mesh	-	V	-	-	
Nonlinear effects	V	V	-	V	

* Commercial software

CW14

Courtesy: Andrei Lunin, ICAP 2012, August 19-24, 2012, Rostock-Warnemünde (Germany)

1. ACE3P Code Suite

- ACE3P is a comprehensive suite of parallel electromagnetic codes based on the conformal, high-order finite-element method and written in C++
- ACE3P consists of six application modules:

ACE3P (Advanced Computational Electromagnetics 3P)				
Frequency Domain:	Omega3P	 Eigensolver (Damping) 		
	S3P	– S-Parameter		
<u>Time Domain</u> :	T3P	 Wakefields & Transients 		
Particle Tracking:	Track3P	 Multipacting & Dark Current 		
<u>EM Particle-in-cell</u> :	Pic3P	 RF Guns & Sources (e.g. Klystron) 		
<u>Multi-physics</u> :	TEM3P	 EM, Thermal & Structural Effects 		

https://slacportal.slac.stanford.edu/sites/ard_public/bpd/acd/Pages/Default.aspx

- ACE3P uses Cubit for model and mesh generation
- ACE3P uses ParaView for visualization

Development of ACE3P

ACE3P has been developed for the past 15 years under DOE SciDAC computing initiatives and SLAC program support. It has two unique features

- Based on higher-order curved finite elements for *high-fidelity* modeling and improved solution accuracy
- Implemented on massively parallel computers for *increased memory* (problem size) and speed

SLAC

2. SciDAC Collaborations in Computational Science

Adaptive mesh

Mesh correction

Adaptive mesh refinement

CW14

3. Massively Parallel Computing at NERSC

16

8

2

64

Speedup

Hopper: Cray XE6

- 153,216 compute cores
- 212 terabytes of memory
- peak performance of 1.28 petaflops/sec

Edison: Cray XC30

- 124,800 compute cores
- 332 terabytes of memory
- peak performance of 2.39 petaflops/sec

Omega3P - Strong scaling of hybrid solver on Franklin

T3P – Weak scaling on Hopper

T3P - weak scalability on Hopper (Cray XE6)

4. ACE3P - Accuracy and Complexity

Omega3P – NLC structure cell design

Track3P – Prediction of multipacting barrier in Ichiro SRF cavity

T3P - Wakefield coupling in CLIC two-beam module

200

150

CW14

T3P Modeling Capabilities

Time domain

- Wakefield and HOM determination from beam excitation
- Moving window technique for short-range wakefield
- Absorbing boundary condition for far fields

SLAC

4. ACE3P - Problem Size and Speed

Simulating a cryomodule of 8 cavities for the ILC in frequency and time domain

Omega3P - 3 million-element mesh, ~20 million DOFs, 1024 CPUs (Seaborg), 300 GB memory, 1 hour per mode

T3P - 80 million-element mesh, ~500 million DOFs, 4096 CPUs (Jaguar), 4 seconds per time step

CW14

Pic3P Example Case - LCLS RF Gun

Unstructured mesh model of LCLS RF gun, generated with <u>Cubit</u>

 $\frac{\text{Omega3P}}{\text{RF drive fields, directly}}$ $\frac{\text{mported into Pic3P}}{\pi\text{-mode } 2.856 \text{ GHz}}$ $\frac{120 \text{ MV/m}}{\text{Page } 21}$

Temporal evolution of electron bunch and scattered self-fields as modeled with <u>Pic3P</u>

Pic3P Modeling Capabilities

Time domain

- Self consistent particle-in-cell modeling of beam-cavity interactions in space-charge dominated devices
- User-specified particle emission model

SLAO

Causal Adaptive p-Refinement: Specify p

LCLS RF gun: Causal moving window reduces computational resource requirements by orders of magnitude

Ready for Supercomputers at NERSC

- Fields partitioned with graph-based methods (ParMETIS)
- Particles partitioned geometrically (Zoltan RCB 3D, SciDAC collaboration)
- Collective MPI on sub-communicators in disjoint regions, with optimized ordering to allow higher concurrency of communication

Example: LCLS RF gun, colors indicate distribution to different CPUs

Pic3P was tested on 24k CPUs: 750M DOFs, 5B particles

Larger problem: BNL Polarized SRF Gun

BNL Polarized SRF Gun (J. Kewisch)

¹/₂ cell, 350 MHz, 24.5 MV/m, 5 MeV, <u>solenoid</u> (18 Gauss), recessed GaAs cathode at T=70K inserted via choke joint, cathode spot size 6.5 mm, Q=3.2 nC, 0.4eV initial energy

Cut-view of unstructured mesh near cathode

Self-fields during bunch transit

Optimization of Choke Mode Cavity

Optimize the performance of the choke mode cavity by improving the damping of the higher-order dipole modes.

SLAC

- Beam breakup (BBU) observed due to several high Q modes
- Used measured RF parameters such as f, Q_{ext}, and field profile as inputs to solve an inverse problem through an optimization algorithm.
- Identified shape imperfection that caused the high Q values, which was confirmed later from QC measurements.

TEM3P Modeling Capabilities

Multi physics

- Integrated EM, thermal and mechanical effects
- Non-linear thermal conductivity for superconducting cavities
- Non-linear heat flux and convective boundary conditions
- Shell elements for surface coating

SLAC

4. ACE3P for Prototyping in RF Cavity Design

5. Simulation Workflow - Preprocessing

- Cubit builds CAD models and generates finite element meshes.
- ACE3P inputs curved finite-element meshes for high-fidelity representation of geometry.

5. Simulation Workflow - Running ACE3P

 On NERSC computer facilities through submitting simple command files

Batch job script

#!/bin/bash
#PBS -N pillbox
#PBS -q debug
#PBS -l mppwidth=120
#PBS -l mppnppn=24
#PBS -l walltime=00:10:00
#PBS -e fpb.\$PBS_JOBID.err
#PBS -o fpb.\$PBS_JOBID.out
#PBS -A m1779
#PBS -V

cd \$PBS_O_WORKDIR

aprun –n 120 -N 24 /project/projectdirs/ace3p/hopper/omega3p pillbox.omega3p

Omega3P input file

```
ModelInfo: {
 File: pillbox4.ncdf
 BoundaryCondition : {
   Magnetic: 1, 2
   Exterior: 6
 SurfaceMaterial: {
   ReferenceNumber: 6
   Sigma: 5.8e7
FiniteElement: {
 Order:
               2
 CurvedSurfaces: on
EigenSolver : {
 NumEigenvalues: 2
 FrequencyShift: 1.0e9
```


CW14

5. Simulation Workflow - Postprocessing

- ParaView visualizes unstructured meshes, field and particle data.
- SLAC postprocessing tools for extracting rf parameters and field information

6 6 8 8 7 0 0 7	🚉 🕪 📣 🕨 🖾 Time: 9.9996e-14 0
🚦 🎴 🛱 🔹 efield 🗘 M.	1gnitude 🗧 Surface 🗧 🔀 🎭 😳 🗱 🕌 🗱 🕌 🗱 🖊 🎜 🎯 🎯 🔀
	= 🗈 🐵 🐌 🖳 🐏 💓 🛞 🕫 📂 e b 윉 📭 🌐 🔤 🔟 🚺 📫
O Pipeline Browser	Layout #1 🗴 +
builtin:	
hc1060.ncdf	
 ⊘ ⊡ € Entire Volume 	
ExtractBlock1	
Descention Information	
Properties Information	
Apply 🥝 Reset 🗱 Delete 💡	
Search	
Persecutation	
Surface +	
Coloring	
Show Literation Rescale	
Styling	
Opacity 0.2	
Cube Axes	
Show Axis Edit	

CW14

BPM Model

Cubit: make-pepx-bpm.jou

Coax cable: Z=50ohm, ɛr=1

Ceramic window: Z=50ohm, ɛr=4.9

BPM button: diameter=7mm

Cubit: mesh-pepx-bpm.jou

BPM - T3P Run

- Run T3P: t3p bpm.input
- Postprocess t3p output to obtain longitudinal wakefield cd OUPTUT acdtool postprocess wake_new wake.bnd wakefield.z.all.dat **0.0**.
 - Wakefield data in output file *wakes_new.out*,

BPM Trapped Modes & Signal Sensitivity

BPM - Field Visualization

- Postprocess data for ParaView
 acdtool postprocess volmontomode bpm.input
 Create *fs.out.mod in OUTPUT directory
 - Trapped mode in BPM button

